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Abstract

Images or video recordings assist emergency responders
in quickly inspecting the damage after a disaster event. New
techniques are needed to help responders organize and find
important information at the right time. However, most ex-
isting methods don’t meet public safety standards mainly
due to a lack of training data. We propose a multi-source
weak supervision fusion technique to train on a highly im-
balanced dataset annotated with noisy labels. Using a Con-
fident Learning technique, we reduce the effect of the noise
while boosting the quality of the class labels. We combine
the predictive power from models trained on large-scale vi-
sual datasets using Differential Evolution. This research
demonstrates a fully-automatic approach with great poten-
tial to reduce required time and resources while delivering
exceptional results. In the TRECVID2021 Disaster Scene
Description and Indexing (DSDI) Challenge, our technique
achieved the top score among all the submitted runs, inde-
pendent of the training data utilized.

1 Introduction

Image and video recognition algorithms are rapidly ad-
vancing, growing faster and with better precision, and are
expected to become a critical component of incident and
disaster response [10]. Using advanced technology and
deep learning methodologies such as Convolutional Neu-
ral Networks (CNN), it is possible to deploy a drone ahead
of the search team to swiftly identify the most damaged ar-
eas that should be prioritized during a disaster. The auto-
mated content-based analysis and classification of observed
disaster-related features in recorded videos will allow better

curation and retrieval of critical information for situational
awareness. Due to insufficient training data and standards,
the bulk of existing methods does not fulfill public safety
demands.

Civil Air Patrol (CAP) has the technical capability to
function even when severe weather disrupts power, the in-
ternet, phones, and airplane takeoffs, making it a critical
and cost-effective tool for the Federal Emergency Manage-
ment Agency (FEMA) to survey the impacted region swiftly
and efficiently. CAP offers aerial pictures of flooded areas,
collapsed dams, and other natural disaster-related events.
To this end, several large-scale disaster imagery datasets,
including the Incidents Dataset [18], LADI (Low Altitude
Disaster Imagery) [12], xBD [8], etc., have been recently
released to stimulate the development of new research and
technologies in this field. Given the volume of data being
collected, it is also critical to develop sophisticated tools
and systems for curating all of the information.

The images taken by low-altitude planes are challenging
to analyze because they have a low height perspective, an
oblique angle, and many disaster-related parts that image
recognition systems don’t usually take into account. We
propose a weakly-supervised learning technique that incor-
porates data from a range of sources, many of which are of
low quality or have been trained on subjects significantly
different from the target classification task. The proposed
fully-automatic solution would significantly decrease the
time and expense associated with classification jobs while
delivering superior outcomes.

The main contributions of this paper are summarized as
follows.

• We propose a new semi-supervised training technique
that is robust to noisy, limited, and erroneous annota-
tions and class labels from multiple sources.



• For multi-source weak supervision fusion framework,
a unique approach for recognizing and merging the rel-
evant predictions from various pre-trained networks is
proposed.

• The proposed method is evaluated on the LADI dataset
achieving top score among all the submitted runs in the
TRECVID2021 [2] Disaster Scene Description and In-
dexing (DSDI) Challenge, independent of the training
data utilized.

The next sections of the paper are structured in the fol-
lowing order. Section 2 examines works that use deep
learning techniques to analyze low-altitude images. Sec-
tion 3 introduces our proposed weakly-supervised frame-
work, including confident learning and multi-source weak-
supervision fusion. In Section 4, the effectiveness of our
proposed framework is shown through quantitative exper-
imental results. Finally, Section 5 outlines the paper and
recommends future research.

2 Related Work

Most current solutions rely on high-quality annotations
to build reliable models that can sufficiently automate image
processing and concept detection. Non-experts are likely to
have only seen low-altitude photos on rare occasions. Con-
sequently, it will be too costly to get enough high-quality
annotations to build a good training dataset. Numerous re-
searchers have developed a variety of deep learning algo-
rithms that are less reliant on the quality of training data.
The weakly-supervised tag and visual information are used
to train semantic-aware hash functions [17]. Previously,
deep canonical correlation analysis (DCCA) [1] was used to
combine visual and text tag data. Many previously reported
techniques rely on sparse line reconstruction, sparse coding,
and dictionary learning to recover textual tags, which costs
time and space and is not suited for large-scale applications.
Research into automated disaster scene descriptions from
images has grown in popularity. Newly-released disaster
datasets such as xBD [8] and the Incidents Dataset [18]
feature a top-down and a ground-level view of the dam-
ages. However, LADI [12] is unique in the low-altitude
and oblique views found in its images. More recent studies
explore an ensemble learning approach to tackle the class-
imbalance and noisy-label issues [11, 14]. The incorpora-
tion of spatio-temporal information to increase the model’s
contextual awareness has also been investigated [15]. Our
proposed framework aims to improve the quality of noisy
labels in the LADI training data through a Confident Learn-
ing (CL) [13] strategy. Furthermore, a novel multi-source
information fusion is proposed to improve the performance
of target features that are underrepresented in LADI.

3 Proposed Framework

Figure 1 illustrates the full flow of our proposed frame-
work. CL is used to improve the quality of the noisy labels
in the crowdsourced annotated training set, which is the first
step in our multi-source architecture for combining weak
supervision from different sources. Given the scores of nu-
merous semantic concepts obtained from different machine
annotators, several semantically related predictions are used
to improve the performance of a target feature. The text that
describes the target feature is turned into high-dimensional
vectors, which are then used to look for semantic similarity
and pick relevant concepts from other networks. We opti-
mize a weighted average that incorporates all of the models’
relevant predictions into a single scalar that serves to rank
the video clip using Differential Evolution (DE).

3.1 Denoising with Confident Learning

According to the LADI researchers [12], annotations are
organized as Human Intelligence Task (HIT) which asks the
human worker whether any of the target features in each of
the five categories (i.e., damage, environment, infrastruc-
ture, water, and vehicle) are correct. Each HIT is allocated
to up to five workers (asking just one category at a time)
in order to reach agreement on label quality. Namely, for
an image i, and a target feature F that belongs to a specific
category C (i.e. FC ∈ C), the initial soft score Si,F is
calculated as follows.

Si,FC
=

#Positive V otesi,FC

Total V otesi,C
(1)

To calculate the Si,F , we assume a particular image must
have at least one vote from an annotated who was assigned
a specific category C. Then, we employ cross-validation
confident intervals [13] to derive out-of-sample prediction
probabilities from improving the label quality further.

3.2 Multi-source Weak Supervision Fusion

3.2.1 Machine Annotators

This study employs four CNN network configurations (i.e.,
ResNet50, DenseNet161, YOLOv4, ViT-B/16, and In-
ceptionV3) pre-trained on four open-source datasets (i.e.,
Places365, Incidents Dataset, MS COCO, ImageNet21k,
and LADI+Others). ResNet50 [9] and DenseNet161 are
pre-trained on Places365 dataset which contains 1.8 million
training images taken from 365 scene categories [19]. An-
other ResNet50 network is also pre-trained on the Incidents
Dataset containing 446,844 manually annotated images
covering 43 incidents across various scenes [18]. YOLOv4
(You Only Look Once) [4] pre-trained on Microsoft Com-
mon Objects in Context (MS COCO) is one of the leading
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Figure 1. The proposed weakly-supervised deep learning framework implements a confident learning
approach to denoise crowdsourced annotations along with a multi-modality fusion framework to
search and combine relevant target features predicted by multiple networks.

deep learning-based object detection frameworks. The ViT-
B/16 [7] model pre-trained on the ImageNet21K dataset is
proven to be a key component in our proposed framework.
Last but not least, an InceptionV3 model trained on LADI
plus other sources by Presa-Reyes et al. [15] have also been
incorporated.

3.2.2 Multi-Source Concept Fusion

Given the predicted scores Xp of many machine annotators’
semantic concepts (i.e., target classes), numerous of these
related concepts may help identify a target feature F . A
Universal Sentence Encoder based on the Deep Averaging
Network (DAN) [5] converts text describing the target fea-
ture into high-dimensional vectors T that is then utilized to
the obtained semantic similarity among different concepts
using the cosine distance θ of the vectors. To fuse multi-
source concepts, the high-dimensional vectors of the target
feature F and the semantic concept P are first matched, and
the weighted average score of those closely correlated con-
cepts are fused, i.e.,

SF (k,wF ) =
∑
p∈O

wp
F ·Xp

k (2)

where O = {P |θ(TF , TP ) > ϑ}, and wp
F ∈ Q is the set

of optimized weights representing the contributing power
of each pre-trained model’s predicted score Xp

k for a key

frame k. Moreover, the values for wp
F bounds and the ϑ

threshold are empirically decided based on validation per-
formance. Furthermore, there exist multiple key frames in-
side a given video shot v. Therefore, the average score over
all the key frames in v is computed as the shot-level feature
score, which can be formally written as

SV (V,wF ) =
1

||V ||
∑
k∈V

SF (k,wF ) (3)

Then, for a given dataset of video shots V and a target fea-
ture F , the the top-N shot with F can be defined an or-
dered sequence VF = [V1, V2, . . . , VN ], where Vi ∈ V and
∀i > j, SV (Vj , wF ) > SV (Vi, wF ).

3.2.3 Weight Optimization based on Differential Evo-
lution

The remaining problem is to determine the optimal weights
wF for each target feature F . Differential Evolution (DE)
is a kind of evolutionary optimization technique that works
with a population of candidate solutions. It uses genetic op-
erators like mutation and recombination to repeatedly en-
hance the population. The objective function G determines
each candidate’s fitness. If G(s1) < G(s2), candidate s1
is judged superior to candidate s2. The objective function
seeks to improve the average precision for a specific target
feature (i.e., minimize 1− APN ) by measuring the perfor-
mance of a collection of retrieved results using the precision



and recall metrics. Assuming the solution contains N video
shots ordered by final aggregated confidence score, our ob-
jective is to minimize the following error formula:

ŵF = argmin
wF

G(wF ) = argmin
wF

[
1−APN (VF )

]
(4)

Semantically relevant predictions are combined into a
single scalar, which is then used to score the video clip.

4 Experiment Results

4.1 Experimental Setup

4.1.1 Dataset

We test our methods using the LADI dataset, which com-
prises images acquired by CAP from a low-flying aircraft
and maintained by FEMA. The LADI training dataset con-
sists of images captured from an airplane, and the LADI
test dataset consists of brief video clips captured from a
UAV. The DSDI track’s test dataset in 2021 comprises 2,802
video shots with a maximum duration of 60 seconds per
shot, focusing on the devastation wrought by an earthquake
tragedy. The test set supplied in TRECVID2020-DSDI [3]
is used as validation during the DE processing in our case.
The Mean Average Precision (MAP) metric is used to exam-
ine and compare the performance of different approaches.

4.1.2 Competing Methods

To determine the effectiveness of the proposed technique,
we compare it to other competing methods, such as
BUPT MCPR [2] and VCL CERTH [6]. Both competing
methods are trained solely on the LADI-dataset. In par-
ticular, the problem was approached by VCL CERTH as
a panoptic segmentation problem with additional instance
and semantic segmentation annotations for 300 LADI im-
ages. The method proposed by Presa-Reyes et al. [15]
trained on LADI plus other datasets was also included. Two
baseline fusion techniques using the average of the best
performing model (Ours-CL-BA) and aggregated predictive
scores after z-score normalization (Ours-CL-ZS) are also
explored to compare against our proposed DE fusion.

4.1.3 Feature Score Model and Fusion

Two feature score models, EfficientNet-B5 [16] and
ResNet50 [9], are trained on the LADI’s confident labels
generated by the CL-based approach. Using transfer learn-
ing, we fine-tune the network’s weights on ImageNet. The
network’s final classification head is replaced with a fully-
connected layer followed by a sigmoid activation for multi-
class soft-label classification. With a starting learning rate
of (η = 1e − 4), we use the Adam solver to optimize our

model. For the differential evolution search, we employed
the DE/best/1/bin technique which generates new candidate
solutions by randomly picking solutions from the popula-
tion, subtracting one from the other, and adding a scaled
version of the difference to the population’s best candidate
solution.

4.2 Results and Discussion

The proposed framework is compared to competing
methods mainly categorized as LADI-based (L) the LADI
+ Others (O) track submission—where “Others” in our pro-
posed approach refers to the inclusion of models pre-trained
on open-source data benchmarks. Table 1 summarizes the
performance comparison across different methods. The ex-
cellent results obtained by the panoptic segmentation ap-
proach proposed by VCL CERTH on the LADI-based (L)
track underline the necessity to integrate additional infor-
mation about the image other than the noisy labels.

Our proposed technique achieves impressive results on
the LADI + Others (O) track, particularly compared to
other competing methods. The high recall rate illustrates
our classification model’s ability to detect and recover the
majority of positive examples within a relevant target fea-
ture. By comparing the baseline methods Ours-CL-BA and
Ours-CL-ZS, we demonstrate our proposed Ours-CL-DE
approach can find better weights when aggregating predic-
tions of different models. Furthermore, compared to sim-
ply training on LADI-based (L), the proposed method in-
troduced on LADI + Others (O) exhibits a considerable im-
provement of about 34% in MAP score, indicating the ef-
fectiveness of our strategy of fusing the weak supervision
from multiple sources.

In Figure 2, the average precision at the target feature
level shows that our suggested approach has obtained the
greatest performance for target features such debris, rock,
snow/ice, building, utility-line, boat, river, and road. Fig-
ure 3 depicts the performance contribution of each addi-
tional dataset used to train the machine annotators previ-
ously described in Section 3.2.1. Starting from our pro-
posed CL technique trained on LADI only, each additional
dataset is added to the ensemble as depicted by a check-
mark in the figure. The ResNet50 pre-trained on the Inci-
dents Dataset contributed a performance boost for the en-
vironment category, detecting concepts such as ‘snow cov-
ered’ and ‘field’ and improving on features snow/ice and
grass. Damage features, on the other hand, did not im-
prove as expected given the damage concepts from the In-
cidents Dataset, necessitating further investigation. Envi-
ronment features achieve better performance because they
are simpler to discern from long distances and show lower
inter-class variation than other categories. YOLOv4 net-
work pre-trained on MS COCO contributes a performance



Table 1. Performance comparison among our proposed technique and competing methods.

Method Training
Data

Precision@k Recall@k F1@k MAPk=10 k=100 k=1000 k=10 k=100 k=1000 k=10 k=100 k=1000
BUPT MCPRL [2] L 0.271 0.225 0.228 0.271 0.232 0.405 0.271 0.227 0.244 0.159
VCL CERTH [6] L+ 0.510 0.367 0.245 0.511 0.415 0.378 0.510 0.377 0.255 0.282
Presa-Reyes et al. [15] O 0.413 0.392 0.285 0.413 0.448 0.682 0.413 0.404 0.316 0.298
Ours-CL-BA L 0.394 0.346 0.279 0.394 0.383 0.648 0.394 0.351 0.307 0.254
Ours-CL-ZS O 0.471 0.409 0.296 0.471 0.522 0.789 0.471 0.425 0.332 0.339

Ours-CL-DE (proposed) L 0.384 0.351 0.286 0.384 0.395 0.683 0.384 0.360 0.315 0.268
O 0.481 0.425 0.310 0.481 0.502 0.793 0.481 0.439 0.345 0.359

L+ LADI-based (L) training data plus additional human annotations (i.e., instance and segmentation).
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Figure 2. The boxplot shows the distribution for a feature’s precision score compared across all
submissions to TRECVID2021-DSDI, independent of which training dataset was used to train each
technique. The placement of our proposed method’s performance is demonstrated using a black
diamond.

boost for vehicle categories, detecting concepts for ‘aero-
plane,’ ‘boat,’ ‘car,’ and ‘truck.’

We employ a weighted average ensemble achieving bet-
ter performance thanks to the integration of human and
machine-generated annotations. Since it is clear the re-
lationship between the relevant features is not linear to
their semantic similarity, our proposed technique has been
proven to be a viable approach to identifying the best pre-
dictions based on the performance of each machine annota-
tor. Because our proposed technique outperforms existing
methods with minimal training, they are an excellent means
of leveraging and transferring information from the meth-
ods that have already been presented in previous research
into any emerging topic.

5 Conclusion and Future Work

Due to a lack of appropriate training data, most present-
day picture recognition algorithms fail to meet public safety
requirements. As part of our multi-source weak supervi-

sion fusion architecture, we apply the CL technique to en-
hance the quality of noisy labels in the crowdsourced an-
notated training set. Semantic similarity is used to iden-
tify relevant concepts predicted by other networks. We use
DE to rank the video clip based on a weighted average of
all relevant model predictions. Combining many classifiers
pre-trained on well-known data standards improves over-
all performance, but only the best and most relevant pre-
dicted score towards a particular target feature should be
used. Overall, the study shows how this framework has
great potential to save a significant amount of time and re-
sources while still achieving outstanding results in the dis-
aster scene description task. Although this work focuses on
disaster scene description, the proposed methods have been
developed with extendability in mind. Our approaches are
effective for leveraging and transferring knowledge from
past study into any new topic. As a potential future work,
we will explore more advanced techniques of incorporating
other multi-modality sources using our proposed technique,
such as spatio-temporal data.



Figure 3. Ablation research demonstrating
how the performance of the proposed Ours-
CL-DE improves with the inclusion of each
machine annotator’s dataset.
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