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Abstract

This paper presents the framework and results from the team “Florida International University-University of Miami (FIU-UM)”
in the TRECVID 2021 Disaster Scene Description and Indexing (DSDI) task. This year our team submitted a total of seven runs
in which four achieved the highest score among all participants, regardless of the training datasets utilized. The difference among
the runs lies mainly on the method to fuse the feature scores summarized as follows.

LADI-based Submission Runs:
• run1: fully automated feature score fusion through differential evolution;
• run2: mean aggregation of the predicted scores from the best performing models in the ensemble;
• run3: fully automated feature score fusion with z-score normalization and averaged z-scores.

LADI + Others Submission Runs:
• run1: fully automated feature score fusion through differential evolution;
• run2: further enhancement of the feature score fusion by the removal of the less relevant feature scores as determined by the

differential evolution;
• run3: fully automated feature score fusion with z-score normalization and averaged z-scores;
• run4: applied the team’s best performing model used to rank videos in TRECVID2020-DSDI.

The following processing steps are included in our framework: (1) pre-processing imagery from the provided LADI (Low
Altitude Disaster Imagery) dataset; (2) generating soft labels for imagery in the LADI dataset through the advanced fusion of
the annotations obtained from both human and machine annotators; and (3) categorizing the frames in the LADI imagery by the
pre-trained Convolutional Neural Network (CNN) models, each focused on a different aspect of the target features. We use a
variety of training strategies to improve the performance of the CNN models, including using a Confident Learning approach to
denoise the training set and fusing the information from multiple models pre-trained on the well-known public dataset benchmarks.
The final score is produced by (1) determining which characteristics from multiple models are semantically relevant to the target
features in DSDI and (2) searching for the optimum approach to combine the predicted feature scores from multiple pre-trained
models using a Differential Evolution optimization technique. The test video clips are then ranked according to their final feature
scores that determine their relevance to a certain target feature. The FIU-UM team took the first position in four of the submitted
runs this year, regardless of the training dataset used. The submission details are as follows.

• Training type: LADI-based (L) and LADI + Others (O)
• Team ID: FIU-UM (Florida International University - University of Miami)
• Year: 2021

I. INTRODUCTION

The TREC Video Retrieval Evaluation (TRECVID) [1] is a competition led by the National Institute of Standards and
Technology (NIST), which aims to accelerate the research and development in video-based content analysis and retrieval [2].
The introduction of the Disaster Scene Description and Indexing (DSDI) track this year allowed our team to leverage our
comprehensive knowledge and previous work in disaster data management [3–8] and our past experiences competing in other
TRECVID tracks [9–12]. Among a total of seven prioritized submitted runs with different relevancy sorting techniques, four
of our run submissions ranked the top 4 among all the submissions, regardless of the training dataset used.

The DSDI track gives the participants the access to the LADI (Low Altitude Disaster Imagery) dataset [13] to train their
models. LADI is composed of imagery collected by CAP (Civil Air Patrol) from a low-flying aircraft and hosted by the Federal
Emergency Management Agency (FEMA). The dataset emphasizes unique disaster-related features such as the damage labels
and scene descriptors. Image variations, including lighting, orientation, perspective, and resolution, are a key component to the
LADI dataset. Any technology or tool developed to support disaster response will need to handle these types of variations.
Convolutional Neural Network (CNN) has proven to generalize well when the training images are with variations while also
achieving impressive results in the image recognition task [14].

The LADI dataset employs a hierarchical labeling scheme of five coarse categories and then more specific annotations
for each category. Each image also contains valuable metadata with information on the camera used to take the photo and



the aircraft’s location and altitude. A subset of the LADI dataset, representing more than forty thousand images, were hand-
annotated using the Amazon Mechanical Turk (MTurk) service. Moreover, the LADI dataset also includes machine-generated
labels from commercial and open-source image recognition tools to provide additional context. The multimedia data, such
as the one that can be found in LADI and in contrast to conventional data that consists of just texts and numbers, is often
unstructured and noisy. Conventional data analysis will not be able to handle this massive volume of complex data. Hence,
more extensive and sophisticated solutions are necessary [15–17].

Delivering an efficient response requires a timely and accurate analysis of the impacts of a disaster. Data obtained using
remote sensing technology, such as high-flying aircraft or drones, has proven to be critical in assessing the extent of damage
in areas that have been inaccessible as a result of the disaster [18–22]. By leveraging the advanced technologies and machine
learning methods such as deep learning [23, 24] during a disaster, it is possible to send a drone ahead of the search team
to rapidly identify regions that are the most affected and should be prioritized. The automatic content-based analysis and
classification of the features found in the recorded videos would provide the augmented curation and retrieval of the relevant
information for situational awareness [25–27].

One of the major challenges encountered when working with LADI was handling a large and mostly unlabeled dataset with
a limited number of samples that at best included some noisy labels. This posed a substantial challenge in developing an
appropriate catastrophe scene description model. Furthermore, the crowd-sourced human annotations supplied for a section of
the LADI training set are very imbalanced and untrustworthy, with some photos including mislabels on a regular basis. We
further enhanced the LADI training labels with the help of open-source pre-trained models and datasets from multiple sources,
allowing us to reach an exceptional performance.

Considering the mislabels that can be found in LADI’s labeled subset, the soft-label assignment method aids in the solution
of such a challenge. Soft labels offer information to the model about the relevance of each target feature. The model is
trained to recognize the existence of a given feature inside an image and how significant that feature is, using the soft labels.
Such approach has shown to be very effective in addressing the ranking issue. It also enables us to better combine the soft
labels supplied by human annotators, the SoftMax weights provided by the pre-trained models, and the numerous commercial
classifiers made accessible by the DSDI task coordinators.

In TRECVID2020-DSDI, our team adopted various training strategies, including (1) using the model pre-trained on ImageNet;
(2) propagating the labels during training, following the sequence nature of the LADI dataset; and (3) retrieving more relevant
data using an image crawler to enhance the training data [12, 28]. Imagery in LADI is taken following a sequence, much like
a video [29]. Using the time and location metadata from the images, we generated that sequence and propagated the labels
nearest to the image containing the highest ground truth soft-labels. If an image includes a particular feature, it is very likely
that the image taken before or after also includes the said feature as well. For better flexibility, five separate CNN models were
trained for the features belonging to each coarse category (i.e., damage, environment, infrastructure, vehicles, and water). This
year, our team made further improvements to our established method by incorporating a more advanced approach to integrate
the SoftMax weights predicted by other models.

For inference, the testing video images are divided into numerous picture frames, which are then fed into the feature-
score models to predict the scores for the 32 characteristics. In the next step, the feature-score fusion and aggregation of the
frame-level scores are applied in order to rank the video shot according to its relevance to enable the content-based retrieval
system [30, 31].

The remainder of this paper is structured as follows. Section II explains the proposed framework for the TRECVID 2021
DSDI task and the details of different strategies used in each run. Section III evaluates the performance of each submission and
demonstrates the submission results. Section IV concludes the paper and suggests future directions for next year’s submission.

II. THE PROPOSED FRAMEWORK

While working with LADI, one of the most challenging problems was dealing with a vast and largely unlabeled dataset that
includes a limited subset of samples with noisy labels, which presents a significant obstacle in training an effective model for
the disaster scene description. On the other hand, the crowd-sourced human annotations provided for a subset of the LADI
training set are highly imbalanced and unreliable, with several images often containing mislabels. With the support of open-
source pre-trained models and the datasets from various sources, we improved the LADI training labels, making it possible
to obtain excellent results. Like last year’s competition, each image in our training set is first assigned a value between 0
and 1 for a specific target feature, calculated from the crowd-sourced annotations. As shown in Figure 1, we utilize a CL
(confidential learning) method to confidently train a model on samples with a high predicted probability for their training label,
focusing on label quality rather than quantity. Our CL-based method is conducted by first employing five-fold cross-validation
to generate out-of-sample predicted probabilities for the training set, resulting in soft labels that can be used to train a model
with confidence. Soft labels provide the advantage of allowing a model to be trained on the reliance of each target feature,
alleviating some of the problems associated with the highly imbalanced and noisy labels. The soft labeling technique also
aligns well with the ranking problem that the DSDI track aims to solve, producing a continuous confidence measure.
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Fig. 1: The proposed framework uses a confidential learning approach to denoise the LADI training data and differential
evolution to fuse feature scores predicted by various models pre-trained on LADI and well-known public dataset benchmarks.

We further enhance the training set by integrating the soft labels with the softmax weights produced by the models pre-trained
on well-known data benchmarks such as ImageNet and Places365. Moreover, this year we also used the scores generated by
models pre-trained on more relevant datasets, including the Incidents Dataset and ImageNet-21K. A semantic similarity match
connects the target features with the features predicted by these pre-trained models based on the semantic meaning of the feature.
These features’ names or textual definitions are encoded as high-dimensional vectors using a universal-sentence-encoder model
based on the deep averaging network (DAN). The cosine distance between these vectors measures how similar two pieces of
text are in meaning. The scores acquired from our models trained on the relevant target feature are then integrated with those
identified from relevant pre-trained model target features. The best-weighted combination of these scores is then dynamically
obtained through DE (differential evolution) implemented to optimize the ranking scores obtained from the previously released
TRECVID2020-DSDI test set. DE is a population-based meta-heuristic search method that optimizes a problem by repeatedly
developing a potential solution based on an evolutionary process. Such algorithms make little or no assumptions about the
underlying optimization issue and may rapidly explore incredibly vast design spaces. The final score is generated from the
optimum combination of multiple scores obtained from numerous models. It is then used to rank the test video clips according
to their relevance to a target feature.

A. Machine Annotators

LADI provides machine-generated labels for each image from some well-known open-source models and commercially
available pre-trained models. These machine annotations generate each feature’s label in the form of a numerical score indicating
the relative confidence in the presence of the said feature. Our team further includes other machine-generated annotations from
open source pre-trained models only for the LADI + Others (O) type of submissions.

1) Inception-ResNet-V2 Pre-trained on ImageNet: ImageNet [14] is a well-known large-scale picture dataset including
concepts from a variety of fields, including animal, instrumentation, scene, and activity, all of which occur in some of the
queries. ImageNet has 1.2 million photos in total, divided into 1000 classifications. This dataset contains a large number of
real-world items, and the classification accuracy of those models trained on it has outperformed human performance using



contemporary deep neural networks. To obtain the prediction scores for concepts in each keyframe from the final dense layer,
we employ a Inception-ResNet-V2 [32] model pre-trained on the ImageNet dataset.

2) ResNet50 Pre-trained on Places365: Scene detection is included as one of the machine annotators and essential in
improving the framework’s performance. Among all the public scene detection datasets, Places365 incorporates 365 scene
categories used to train the model [33]. A ResNet50 model trained on Places365 is applied to detect the location and environment
in the LADI imagery. In the Places365 dataset, 1.8 million training images are provided, and each class includes at most 5000
images. This model provided many helpful concepts that enhanced the training set in terms of including images containing
features under the categories for the environment, infrastructure, and water.

3) Google Cloud Vision: LADI provides machine-generated annotations from the commercially available pre-trained models
marketed by Google Cloud Vision (GCV) [34]. GCV offers a number of products, of which LADI provides the scores for (1)
the GCV label detection service and (2) the GCV web entity detection. The GCV API offers powerful pre-trained machine
learning models to rapidly assign labels to images and quickly classify them into millions of predefined categories. The web
entity detection detects web references to an image and returns a list of recommended tags.

4) YOLOv4 Pre-trained on COCO: Other than the previously described ResNet50 and GCV models, our team also applied
the inference from the YOLOv4 model pre-trained on the COCO dataset [35]. YOLO (You Only Look Once) is a real-time
object detection deep learning architecture proposed by Redmon et al. in 2015 [36]. YOLO trains on full images and directly
optimizes the detection performance while treating the detection mechanism as a regression problem. YOLO is fast compared
to other detection networks. Microsoft COCO (Common Objects in Context) is a large-scale object detection, segmentation,
and captioning dataset. Moreover, the annotations provided by the YOLOv4 model trained on COCO include relevant features
such as car and truck and have proven to be crucial in enhancing the model developed for the vehicle category.

5) ViT-B/16 Pre-trained on ImageNet21K: Alexey Dosovitskiy proposed the Vision Transformer (ViT) model [37] as a
competitive alternative to CNNs. ViT is recently extensively employed in various image identification applications. The vision
transformer model employs multi-head self-attention without the need for image-specific biases. The model divides the pictures
into a series of positional embedding patches, which the transformer encoder processes. It does so in order to comprehend the
image’s local and global characteristics. Moreover, the ViT has shown to achieve a greater accuracy rate with less training
time on a big dataset than a regular CNN model. As part of our machine annotators, ViT-B/16 pre-trained on ImageNet21K
plays a key part in our developed framework, specially in detecting the smaller objects, such as the Utility-line, Car, Boat, and
Truck.

6) ResNet50 Pre-trained on Incidents Dataset: The large-scale Incidents Dataset includes 446,684 scene-centric class-
positive photos (annotated by humans) relating to natural catastrophes, forms of damage such as events that may need human
attention or aid. The 43 categories covered by the Incidents Dataset are referred to as occurrences. A total of 49 distinct places
were used to provide variations in the images. The dataset also includes 697,464 class-negative pictures, which were utilized
for training the final model to reduce false-positive predictions.

B. Human Annotators

A subset of images from the LADI training set were annotated using Amazon Mechanical Turk (MTurk) [38]. The
crowdsourced human labels provided for a subset of more than 40k LADI imagery were highly imbalanced with several
images containing often incorrect labels. Such a problem was overcome through a soft label assignment approach. Each
Human Intelligence Task (HIT) on the MTurk platform, according to the LADI creators, asks the human worker whether any
of the labels in each of the coarse categories are correct. Each HIT only asks about one category at a time. As a result, each
HIT is given to three individuals in order to establish an agreement on label quality. If more validation was necessary, the HIT
was outsourced to two more employees, bringing the total to five workers per category and picture. Each image is assigned
a value from 0 to 1 for a specific target feature, using the number of votes from each worker as a weight for the score. The
more workers that assign a feature for a certain image, the higher the confidence in the image containing the correct feature.

C. Confident Learning

The crowd-sourced annotations are used to give a value between 0 and 1 to each picture in our training set for a certain target
feature. We use a CL technique to train a model with confidence on samples with a high predicted probability for their training
labels, concentrating on label quality rather than quantity. Our CL-based technique begins with five-fold cross-validation to
provide out-of-sample predicted probabilities for the training set, yielding soft labels that can be used to confidently train a
model. Soft labels have the benefit of enabling a model to be trained on the dependency of each target feature, which eliminates
some of the issues that come with extremely imbalanced and noisy labels. The soft labeling approach also correlates nicely
with the DSDI track’s goal of providing a continuous confidence measure, which performs favorably to resolve the ranking
issue.



D. Feature Score Model Setup and Training

Our feature score model trained on the LADI’s confident labels generated by the CL-based technique, and is based on the
EfficientNet-B5 architecture [39]. Following the transfer learning approach [40], we fine-tune the weights of the entire network
that has been pre-trained on ImageNet [14]. The last classification-head of the network is replaced by a dense layer implementing
the sigmoid activation function for multi-class classification of soft-labels. During training, the binary crossentropy function
calculates the model loss and updates the weights of the model accordingly. Adam solver is employed to optimize our model
with a starting learning rate (η = 1e− 4). The chosen learning rate is small enough to update the transferred weights slowly
when fine-tuning the pre-trained model—achieving a more optimal set of final weights [41]. During training, the learning
rate will drop to 10% of its current learning rate if there are no improvements to the validation loss value for a total of 10
consecutive training epochs.

E. Feature Fusion

1) Target Feature Match: A semantic match of the feature’s name (or definition) in both LADI and the pre-trained model’s
feature list is formed before the actual fusion of the scores. Semantic similarity uses Natural Language Processing (NLP)
methods like word embedding to detect how similar two pieces of text are by their meaning. Text describing the target feature
is encoded into high-dimensional vectors using the Universal Sentence Encoder, which may be used for text classification,
semantic similarity, clustering, and other natural language applications. The Universal Sentence Encoder [42] has been pre-
trained and is freely accessible on Tensorflow-hub. The encoder used in this work is based on the Deep Averaging Network
(DAN), which averages the input embeddings for words and bi-grams before passing them through a feedforward deep neural
network (DNN) to effectively construct the sentence embeddings. Moreover, this encoder uses unsupervised training data
from various online sources, including Wikipedia, web news, web question-and-answer sites, and discussion forums. We then
compute the cosine similarity of the two sentence embeddings to find a match given a certain cosine distance thresholds.

2) Optimizing the Weights of the Pre-trained Models Using Differential Evolution: The weighted sum approach merges all
model’s predictions into a single scalar that can serve as a score to rank the video clip according to a target feature. The
problem emerges while assigning the weighting coefficients since the answer is heavily dependent on the weighting factors
selected [43]. This strategy of optimizing a problem by constantly constructing a possible solution based on an evolutionary
process is known as DE. The DE procedure starts by creating a population of real-valued decision vectors, sometimes known
as genomes or chromosomes, at random. These are the potential solutions to the multidimensional optimization issue. The
method inserts mutations into the population at each iteration to develop new candidate solutions. In contrast to traditional
optimization algorithms, such algorithms make little or no assumptions about the underlying optimization problem and are
capable of swiftly exploring very large design spaces [44]. In order to rank the test video clips based on their relevance to a
target feature, the final score is calculated by identifying the best possible combination of many scores received from a variety
of models, and it is then utilized to calculate the final score.

F. Submitted Runs

1) LADI-based: A total of three runs were submitted to the TRECVID 2021 DSDI task following the LADI (L) training
type. Only the LADI dataset that has been provided will be utilized in the development of our system.

• run1: fully automated feature score fusion through differential evolution;
• run2: mean aggregation of the predicted scores from the best performing models in the ensemble;
• run3: fully automated feature score fusion with z-score normalization and averaged z-scores.
2) LADI + Others: A total of four runs were submitted to the TRECVID 2021 DSDI task following the LADI + Others

(O) training type. The difference among all the submitted runs is the computation of the final score, namely, the feature score
fusion from multiple models before the shot-level score aggregation.

• run1: fully automated feature score fusion through differential evolution;
• run2: further enhancement of the feature score fusion by the removal of the less relevant feature scores as determined by

the differential evolution;
• run3: fully automated feature score fusion with z-score normalization and averaged z-scores;
• run4: applied the team’s best performing model used to rank videos in TRECVID2020-DSDI.

III. RESULTS

A. Evaluation

Our proposed framework processes all the video shots in the test dataset and ranks them based on the predicted relevance
to each feature of interest [31]. For each of the given features, the top-1000 relevant video shots’ IDs were submitted to be
evaluated by the competition coordinators. The test dataset for the DSDI track contains 2,802 video shots, and each shot is
about maximum 60 seconds. The videos were compiled from operational footage from previous natural catastrophe events,
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Fig. 2: Comparison of MAP scores among FIU-UM runs (red) with all the other submitted runs in DSDI.
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regardless of the training dataset utilized. The boxplot’s interquartile range is 25th to 75th percentiles. The red dot denotes our
best run’s (O FIU UM 1) position among all entries. The yellow diamond indicates our last year’s solution (O FIU UM 4).
The blue square implements our proposed solution trained solely on the LADI dataset (L FIU UM 1).

with this year’s concentration on showing the destruction caused by an earthquake tragedy. All the videos are evaluated by the
assessors at NIST and annotated whether they are related to each feature of interest [45]. The Mean Average Precision (MAP)
metric is computed to evaluate and compare the performance of different approaches.

B. Performance

The MAP scores of the runs based on our proposed framework and all other submitted runs are shown in Figure 2. Four of
our submitted runs which utilized the data from LADI along with other datasets for its development achieved the best results.
Their MAP scores are 0.359 (run1), 0.331 (run2), 0.339 (run3), and 0.298 (run4), which ranked 1st, 3rd, 2nd, and 4th, among
all the submitted runs, regardless of the training dataset used. Our top submission makes use of the fully automated feature
score fusion technique implemented using DE. Our proposed methods perform well and require very little training, effectively
leveraging and transferring the knowledge from the methods that have already been previously proposed. It’s interesting to



TABLE I: Qualitative results comparing the first 10 video clips retrieved for 6 features using three of our submitted solutions,
namely, L FIU UM 1 (top-row), O FIU UM 4 (middle-row), and O FIU UM 1 (last-row).
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note how our last year’s trained solution (i.e., O FIU UM 4) [12] achieved one of the top scores. This year, we were able to
improve on our methodologies previously developed and demonstrated in last year’s submission, with a strong emphasis on
improving the fusion of multiple pre-trained models.

Figure 3 summarizes the mean average precision (MAP) per target feature. The x-axis of the figure shows the DSDI target
feature name, while the y-axis presents the average precision measure of each target feature. The distribution of the feature-level
performance across all competition entries, regardless of the training style, is illustrated using a boxplot whose interquartile
range is at the 25th and 75th percentiles. Within the distribution of the boxplot, the placement of three of our runs are depicted.
The location of our best run among all participants, regardless of the training dataset used, is shown by the red dot. Our best
solution using our method from last year’s TRECVID2020-DSDI is demonstrated by the yellow diamond. Finally, the blue
square represents our proposed methods trained solely on the LADI dataset. These feature-level metrics indicate that our top
submission performs the best in various target features such as rubble, rock, snow/ice, bridge, building, river, and road. Also,
the best average precision scores for features like damage (misc), dirt, grass, sand, and lake are achieved by the other runs
submitted by us. Several aspects of our proposed methodologies have contributed to these good results.

The enhanced fusion between human and machine annotations allows us to apply a weighted average ensemble where each
model’s contribution to a prediction must be weighted proportionately to the performance achieved on the validation dataset.
In our example, the test set released in TRECVID2020-DSDI serves as validation. We integrate various pre-trained models’
predicted labels to the relevant target feature using the proposed semantic sentence match. For example, the performance on
features like rock and building benefit considerably from the relevant classes ’rock arch’ and ’office building,’ predicted by the
model trained on the Places365 dataset. Another example is the performance gain achieved by applying the ViT-B/16 model
pre-trained on ImageNet21K, which includes several useful concepts such as ’powerline’ to aid in the detection of utility-lines.
Our approaches are fully-automated and considerably reduce the need to train sophisticated models from scratch on massive
annotation datasets, saving a significant amount of time and resources while achieving great results. Further processing and
curation of the data labels will guarantee better improvements.

Table I qualitatively summarizes the top 10 video clips retrieved for six of our best performing target features. This qualitative
visual is meant to help compare the performance among our proposed methods trained on LADI only; our previously submitted
method from last year trained on LADI + Others; and our proposed improvements trained on LADI + Others. Our proposed
method is demonstrated to work best when the prediction from multiple models is available. Our technique works well in
retrieving suitable clips for target features like car and/or road, even if their visual attributes are widely diverse. Furthermore,
by applying the transformer techniques such as ViT, the proposed approach is able to recognize smaller items in a picture,
such as the utility-line target feature.

IV. CONCLUSION AND FUTURE WORK

In this notebook paper, the framework and results of the FIU-UM team in the TRECVID 2021 DSDI task are presented.
This year, we used a Confident Learning (CL) strategy to build a model that could handle the noisy labels in the training set.
We also combined the results of models trained on more relevant datasets like the Incidents Dataset and ImageNet-21K. The
final score is determined by (1) evaluating which features from multiple models are semantically relevant to the DSDI target
features and (2) using a method known as DE to find the optimum approach to combine the matching predicted scores from
these models. The test video clips are then ranked according to their relevance to a particular feature in the final score.

As part of our future work, we will enhance the proposed framework by developing one single model that supports the
hierarchical labeling style of the LADI dataset. Moreover, we will explore ways to also consider the sequence information of
the images to further improve the model performance. The LADI test set is a collection of short video clips taken from a UAV,
as opposed to the training set, which is mainly made up of still pictures collected from an aircraft. In 2021, DSDI released
the new test set of the videos containing the location data in the form of Keyhole Markup Language (KMZ). The KMZ files
provide the location data for the test videos illustrated in Figure 4 (b). These files include the following:

1) Path area for the video;
2) Start location (Latitude, Longitude);
3) End location (Latitude, Longitude).
The new metadata available from LADI’s 2021 test set gives us the opportunity to exploit the spatial knowledge about the

video, retrieve further information in regards to the area captured, and improve the accuracy of the model at test time. In total,
there are 2,801 short video clips with the average duration of 8 seconds, each segmented from the original 29 videos (total
duration of about 6.5 hr). As described in the aforementioned list, each video can be represented as a path covering a spatial
region with only the information of where the video begins and ends.
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(a) LADI Training Spatial Area
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Fig. 4: A comparison between the spatial area captured from training set and testing set in the LADI dataset.

REFERENCES

[1] G. Awad, A. A. Butt, K. Curtis, J. Fiscus, A. Godil, Y. Lee, A. Delgado, J. Zhang, E. Godard, B. Chocot, L. Diduch,
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