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Abstract—While the deep convolutional neural net-
works (DCNNs) have shown excellent performance in various
applications, such as image classification, training a DCNN
model from scratch is computationally expensive and time
consuming. In recent years, a lot of studies have been done to
accelerate the training of DCNNs, but most of them were per-
formed in a one-time manner. Considering the learning patterns
of the human beings, people typically feel more comfortable to
learn things in an incremental way and may be overwhelmed
when absorbing a large amount of new information at once.
Therefore, we demonstrate a new training schema that splits
the whole training process into several sub-training steps. In
this study, we propose an efficient DCNN training framework
where we learn the new classes of concepts incrementally. The
experiments are conducted on CIFAR-100 with VGG-19 as the
backbone network. Our proposed framework demonstrates a
comparable accuracy compared with the model trained from
scratch and has shown 1.42x faster training speed.

Keywords-Deep Convolutional Neural Network (DCNN); In-
cremental Model Training; Efficient Model Training

I. INTRODUCTION

Since the first deep convolutional neural
network (DCNN), AlexNet, was proposed in 2012 [1],
DCNNs have proved to be one of the best techniques for
image classification tasks and various advanced network
structures have been proposed to further improve the
performance of DCNNs [2]. In 2014, Oxfords renowned
Visual Geometry Group proposed VGGNet [3], which
increases the depth to 16-19 convolutional layers and
replaces the kernels in AlexNet with the small (3x3)
ones. In the same year, GoogleLeNet [4] implemented the
Network-in-Network architecture and performed very well
in the ILSVRC-2014 challenge [5]. After that, the ResNet
architecture was proposed, which incorporates the skip
connections to improve the efficiency in backpropagation
and gains considerable accuracy improvements [6]. ResNet
achieved 3.57% error rate on the ImageNet test dataset,
which was the first time that a computer beats humans
in image classification on ImageNet. With the success of
DCNNs in image classification, DCNNs have also been
extended and widely used in a variety of applications,
including text classification [7], face recognition [8], speech
recognition [9], etc.

Training a DCNN requires a lot of computational re-
sources due to its increasing depth and complexity. For

example, training a 50-layer ResNet on ImageNet [10]
from scratch on an NVIDIA M40 Graphics Processing
Unit (GPU) takes about 2 weeks. There have been attempts
to develop new techniques to accelerate the training process
of DCNNs, including upgrading the optimization algorithms,
model compression, and highly-parallel training with a large
number of GPUs. Several major approaches are to improve
the performance of the stochastic gradient descent (SGD)
optimization algorithms, and to develop new optimization
algorithms including Adagrad [11], Adam [12], learning
rate annealing [13], etc. Compared to SGD, these advanced
optimization algorithms have better robustness and higher
convergence speeds, and thus enabled the training process
to take fewer steps to reach good performance. In addition,
tremendous studies rely on model compression for training
acceleration, which can be roughly divided into the follow-
ing four categories [14]: 1) Parameter pruning [15] elimi-
nates redundant parameters that are less crucial to the overall
performance; 2) Low-rank factorization [16] estimates the
value parameters by tensor decomposition; 3) Transferred
convolutional filters [17] replace the over-parametric filters
with simpler blocks to improve the speed; and 4) Knowledge
distillation [18] transfers the knowledge learned from the
original large CNN model to a more compressed compact
model. However, these approaches either need extra efforts
to compress the model after the original model is trained or
the model performance can be degraded.

Other than algorithmic acceleration, the recent focus is
on accelerating model training by distributed computing
with extreme scalability. In [19], a large minibatch size
was shown to greatly help highly-parallel training without
accuracy loss, and training ResNet-50 on ImageNet for 90
epochs was achieved in 15 minutes with 1024 Tesla P100
GPUs. The batch size was further increased using LARS
algorithm and a slighter better speed with less GPU compu-
tation powers was obtained [20]. In [21], a mixed-precision
training method with a large batch size was proposed and
the ResNet50 training was accelerated to 6.6 minutes with
comparable GPUs. These approaches require a massive
amount of computing resources and are not available in all
the scenarios.

However, most of the current frameworks treat model
training as a static processing, and few studies focus on train-
ing the model for multiple-class classification in a dynamic



process. This motivates us to investigate an incremental
training framework for the DCNN model, which splits the
whole training process into several sub-training steps and
dynamically evolves the model for the training efficiency and
model performance. The framework first divides the learning
concepts into different groups, and trains the initial model
with the first group of concepts. The model is adapted and
further trained while new groups of concepts are fed into the
model in an incremental learning scenario. In this proposed
framework, the concepts are grouped and added into the
model in a sequence and the overhead of the old training
data and the convergence speed is balanced to obtain a more
efficient training process.

In image classification, transfer learning [22] has been
widely applied, which initializes the DCNN with the weights
trained from an existing dataset and adaptively trains the
model with new data. Transfer learning enables the domain
adaption from one dataset to another dataset and utilize
the knowledge and patterns learned from previous dataset
to help the learning process. Meanwhile, it is ubiquitous
that one might want to accommodate several additional
customized classes of concepts to a pre-trained DCNN and
enhance the classification capability for the new concepts.
In this case, it is wasteful to train the model from scratch
again, giving that the pre-trained model has been optimized
for all the original classes of concepts.

The contributions of this study include: (1) it presents a
framework that incrementally trains a DCNN and achieves
comparable performance of training from scratch; (2) it
illustrates the relation between the convergence speed and
the number of classes of concepts in the old and new dataset;
and (3) it introduces a novel efficient incremental model
training framework for the DCNNs.

The rest of the paper is organized as follows. We introduce
some related work in Section II and present the proposed
framework in Section III. The experiment results are then
shown in Section IV for performance evaluation. Finally,
Section V concludes the contribution of this study.

II. RELATED WORK

Inspired by the idea of transfer learning [23], the features
learned from the previous model can assist the task of
learning a new related concept (or class). It has been shown
that the features extracted in the lower layers of CNNs are
general features, similar to Gabor filters and color blobs;
while the features eventually become specific at the last
layer [24]. The general features can be also applied to extract
low-level features of the new concepts. Thus, transferring the
network parameters from a pre-trained model will greatly
increase the training speed of a new model, especially when
the concepts of the new model are related to those of the pre-
trained model. It has been observed that a model initialized
with transferred features will not lose its generalization
ability even after it is fine tuned with the target dataset. Such

an observation makes us confident to use the idea of transfer
learning incrementally, since the initial generalization ability
will linger after fine-tuning.

We also borrowed some ideas from the context of in-
cremental learning, which is also very popular in image
classifications. A partial sharing method between a new
network and the base network was proposed in [25], which
allows new classes to be trained incrementally and effi-
ciently. In [5], a hierarchical DCNN which grows like a
tree to incrementally learn new classes was proposed. An
incremental learning technique that splits the base network
into various sub-networks was proposed, which are then
gradually incorporated in the training process [26]. Another
approach trains the new model with minimum supervision to
enhance the training efficiency in the incremental learning.
In [27], the authors proposed an one-shot learning algorithm
which learns the knowledge of a category from only one
or very small number of images. Their proposed Bayesian
transfer learning algorithm avoid retraining the whole model
from scratch and achieves good performance in learning new
classes with very few training data. However, the one-shot
learning approach cannot achieve very good performance.
However, the incremental learning approach cannot achieve
very good performance. Although both our proposed di-
agram and the diagram of incremental learning add new
concepts to the model during training, the proposed method
works for offline dataset instead of training the model in an
online manner. The training dataset is deliberately split into
several parts to accelerate the overall training speed.

III. PROPOSED FRAMEWORK

A. Problem Formulation

In this paper, we propose to train the DCNN model
for image classification in an incremental manner so the
training process can be accelerated without using additional
computing resources and without losing model performance.
Assume that the model is expected to distinguish N∗ classes
of concepts, and this concept set is denoted as C∗ = {ci}N

∗

i=1.
The dataset D∗ =

⋃N∗

i=1 Ii is given to train the model, where
Ii refers to the set of training images of the concept ci.
Instead of training the model with D∗ directly, we propose
to separate D∗ into T subsets d1, d2, . . . , dT , where each
subset dj contains all the training images of nj concepts
and each concept belongs to only one subset. Without loss of
generality, we split the training dataset as the given order of
concepts, i.e., dj =

⋃Nj

k=Nj−1+1 Ik, where Nj =
∑j

k=1 nk is
the number of concepts in dj and all the preceding subsets.
In particular, N0 = 0.

In our proposed framework, the training process is accom-
plished in T stages. In the j-th stage, all the training images
of nj concepts will be added into the original training set
to form a new dataset Dj using Equation (1).

Dj = Dj−1 ∪ dj , (1)



Figure 1. An example of the proposed incremental training framework

where D0 = ∅. The new model Mj will be trained based
on the model from the previous stage Mj−1 and the new
dataset Dj . Since each image sample will be added to the
dataset once and only once, we have DT = D∗, NT = N∗,
and dj1 ∩ dj2 = ∅,∀j1 6= j2. An example of the proposed
incremental training framework is depicted in Figure 1,
where the training process is separated into N∗ stage and
one class of concept is added in each stage (nj = 1, j = 1,
2, . . . , N∗). Our goal is then to find an appropriate method
to train Mj capable of classifying both the original and new
classes of concepts and find an appropriate way to determine
the number of stages T and nj for each stage.

B. Model Growing and Incremental Training

Since the DCNN uses the fully connected (fc) layer as
the last layer to perform classification, the fc layer in the
model Mj−1 has Nj−1 nodes. Each of the node represents
a class of concept and outputs the likelihood of the given
image being the corresponding class of concept. Therefore,
a straightforward way to grow the model is to add nj nodes
in the last fc layer in the j-th stage, and the new model Mj

will have Nj = Nj−1 + nj nodes in its last fc layer.
Since the model parameters in Mj−1 have already been

optimized for Dj−1, all the parameters in the previous layers
from Mj−1 can be transferred to the new model Mj to
initialize these layers. Given the success of transfer learning,
the model Mj initialized by this parameter transfer process
should be able to learn the new classes of concepts with the
constraint of the model learnability. Regarding the last fc
layer, assume its input is a feature vector x ∈ Ra, where a
is the dimension of the feature vector. Then, the parameters
of the last fc layer in the new model Mj can be represented
as a matrix Wj =

[
W 1

j ,W
2
j

]
, where W 1

j ∈ R(a+1)×Nj−1

are the parameters used to predict the classes of concepts
in the previous model Mj−1, and W 2

j ∈ R(a+1)×nj are the
parameters used to predict the new classes of concepts. The
additional dimension is the bias in the fully connected layer.
Since the parameters of all the previous layers remain the

same and the model Mj−1 has been optimized to classify
Dj−1, the parameters of the previous classes of concepts in
the last fc layer should remain the same to ensure the best
classification accuracy. That is,

W 1
j = Wj−1. (2)

Without the prior knowledge, the best parameters for the
new nodes are unable to determine. Hence, the standard
procedure to initialize these parameters with random values
is adopted, and the output with the dimension Nj can be
determined by Equation (3).

yj = f(
[
xT , 1

]
·Wj), (3)

where xT is the transpose of feature vector x, and f is the
activation function for classification and softmax is com-
monly used for image classification. Therefore, the output
becomes the likelihood of being the classes of concepts in
the training set. Since the activation function is calculated
element-wise, the output can be written as follows.

yj = [y1j , y
2
j ] =

[
f(
[
xT , 1

]
·W 1

j ), f(
[
xT , 1

]
·W 2

j )
]
. (4)

Therefore, it can be observed that all the parameters in Mj−1
are transferred to Mj . Since y1j = yj−1 before the training
process in the j-th stage is performed, the model Mj should
keep the capability of identifying images from the previous
Nj−1 classes of concepts.

C. Stage Separation

During the incremental training process, the total training
time ttotal is the sum of training time of each stage, i.e.,
ttotal =

∑T
j=1 tj , where tj is the training time of the j-

th stage. For each stage, the training time can be further
decomposed into two parts: the training steps over Dj−1
and new concepts dj . Since the computation times for both
forward and backward propagation are roughly the same for
various images, the training time tj is proportional to the
number of images in the dataset and can be represented by



tj ∝ (|Dj−1|+ |dj |) ∝ (1 +αj), where αj =
|dj |
|Dj−1| and |·|

represents the size of the set. On one side, if αj is small, tj
also tends to be small because there are only (a + 1) × nj
new parameters to be trained from scratch (where a is the
dimension of the feature vector as defined in Section III-B);
while the other parameters transferred from the previous
model are just fine-tuned to accommodate the new classes
of concepts. If nj is larger, there are more parameters to
be trained from scratch, and thus the initial parameters can
be considered farther than the optimal points. On the other
hand, using small αj will increase the number of stage
T or enlarge αk,∀k 6= j to complete the training, which
can potentially increase the training time. Therefore, the
remaining question for performing an efficient incremental
training framework is how to determine the appropriate αj

in each stage to minimize the computation time without the
loss of accuracy.

However, since the expected training time for a given
initial size of dataset |Dj−1| and the number of incremental
concepts |dj |, denoted as Etj (|Dj−1| , |dj |), remains un-
known for a new dataset or model, the optimal value of
αj cannot be determined. To address this issue, based on
our empirical experiment as shown in Section IV-C, we
find that Etj (|Dj−1| , |dj |) is a monotonically increasing
function on nj . Meanwhile, we can also observe that for
a larger original sample size, the overhead during training
tends to be larger, i.e., Etj (|Dj−1| , |dj |) is also monotonic
on |Dj−1|. Therefore, balancing the sizes of the original
dataset and incremental dataset is critical for an efficient
incremental training scheme. Based on our empirical study
on the CIFAR-100 dataset, it is observed that setting αj = 1
for all the stages can achieve efficient training speeds.

IV. EXPERIMENTAL RESULTS

A. Benchmark Dataset

For all the experiments, CIFAR-100 [28] dataset is used,
which consists of 100 classes of concepts. For each concept,
there are 500 training images and 100 testing images in the
dataset. All the images of each concept are included in the
training set, after the concept is added to the model. In the
experiment, the accuracy is reported based on the testing
data of the concepts added to the model. Although the testing
data will be used multiple times in the whole testing process,
there is no overfitting since the model is not trained on any
of the testing images. The order of the concepts is randomly
generated, but the order of the concepts in each comparison
is kept the same.

B. Implementation Details

The backbone network used in all the experiments is
a variant of VGG-19 proposed in [29]. The network is
designed for the CIFAR-100 dataset and shrinks the 3 fully
connected layers to 1 average pooling layer and 1 fully

Figure 2. Comparison between the proposed incremental training frame-
work and the baseline on the CIFAR-100 dataset

connected layer. During training, some common data aug-
mentation methods are applied, including horizontal flipping,
random cropping, and padding. Both the training and testing
images are normalized by the mean and standard deviation
along each channel. After each convolution layer, a Rectified
Linear Units (ReLU) activation and batch normalization [30]
are employed. SGD is adopted as the optimizer where
the momentum is 0.9 and the weight decay is 5e-4. A
softmax function is performed to the output of the last fully
connected layer to generate the class probability.

The models trained from scratch including various num-
bers of concepts are used as the baseline. In each of the
training process, 300 epochs training in total are performed,
where the learning rate starts from 0.1 and is divided by
10 in every 100 epochs. The baseline model is used as
the initial model M0 in the experiments. The incrementally
trained models are expected to have achieved comparable or
slightly lower accuracy values.

C. Results

For the comparison, the performance results of incremen-
tal training in terms of accuracy and the convergence speed
are presented. All the experiments are conducted with the
CIFAR-100 dataset and the number of epoches for training
is set based on the empirical study.

As discussed in Section III-C, the number of incremental
concepts is determined based on the α value. In particular, to
train the model for the whole CIFAR-100 dataset (with 100
concepts), the model is trained in five stages. In the initial
stage, 10 concepts are applied to train the model and then
in the three following stages, the number of new concepts
added is the same as the number of concepts in the model
at the current stage (i.e., nj = Nj−1). In this study, the
numbers of new concepts added in the first three stages are
10, 20, and 40, respectively. That is, the total numbers of
concepts to train the model in the first three stages are 20, 40,
and 80. In the last stage, since there are 20 concepts (i.e., 100
- 80) left to add, all of these 20 concepts are included. The
comparison of accuracy between the proposed model and
the baseline is shown in Figure 2, where the x-axis refers
to the number of concepts in the model and y-axis refers to



Table I
THE CONVERGENCE SPEED OF SINGLE-STAGE TRAINING (UNIT:

THOUSANDS OF NUMBERS OF STEPS)

∆n
n1

10 50 80
1 82 408 648
5 330 1015 1485
10 650 1950 3285
20 1480 2400 4600
50 2610 4450 -

Table II
THE TOP-1 ERROR RATES OF THE INCREMENTALLY TRAINED MODELS

WITH DIFFERENT n1 AND ∆n

#ID n1 ∆n
N∗

90 100
1 10 1 28.07 28.63
2 30 1 27.56 28.81
3 50 1 27.13 28.78
4 80 1 26.87 27.51
5 10 2 28.20 28.24
6 10 5 27.93 28.58
7 10 10 26.66 28.20
8 10 45 - 30.04
9 10 90 - 30.67

the accuracy value. The final accuracy of the incrementally
trained model is able to reach 70.83% which is comparable
to the baseline result, and the total training takes 5.6 million
steps, which is 1.42x faster than training from scratch.

The determination of the stage partitioning is essentially
the hyper-parameter tuning of the number of concepts in
the initial stage n1 and the number of incremental concepts
∆n. In the following experiments, the same nj is used for
all the following stages and thus ∆n is used to represent
the number of incremental concepts). The performance of
training depends on n1 and ∆n. Hence, an empirical study is
conducted to analyze the relations of the convergence speed
of the training process with n1 and ∆n. The learning rate
is fixed as 0.01 and the number of steps for the training
process to reach a sufficiently small gradient is recorded
as the measure of the convergence speed. As shown in
Table I, each result corresponds to the pair of the numbers
of incremented concepts and initial concepts (∆n, n1). For
example, when the numbers of incremented concepts and
initial concepts are both 10, the training process takes 650
thousand steps to converge. The dash (“-”) in the table means
that the data point (∆n, n1) = (50, 80) is not applicable
since there are only 100 concepts in total in the dataset. From
the results in Table I, it can be observed that the convergence
speed slows down when ∆n and n1 become larger, which
verifies the property mentioned in Section III-C. Since
training is a stochastic process, the cost to obtain a complete
information about the convergence speed is unaffordable.
This demonstrates that our proposed framework balances the
number of stages and the convergence speed of each stage.

Furthermore, we executed nine runs with various numbers
of initial concepts n1 and incremented concepts ∆n, and the
same number of incremented concepts (∆n) is adopted in
all the stages. In each run, 300 epoches are executed as
the same setting of the baseline. In these experiments, the
top-1 error rates of the obtained models with 90 and 100
final concepts (N∗ = 90 and 100) are calculated, where the
results of N∗ = 90 only account for the data of the 90
concepts included in the model.

The error rates on the testing dataset are shown in Table II.
Each of the error rate corresponds to the tuple of the number
of initial concepts, the number of incremented concepts, and
the final number of concepts (n1,∆n,N

∗). For example,
when the numbers of initial concepts and incremented sam-
ples are both 10 and the number of final concepts is 90, the
top-1 error rate is 26.66%. The dashes (“-”) in the table also
mean that the data points (n1,∆n,N

∗) = (10, 45, 90) and
(10, 90, 90) are not applicable.

As shown in Table II, Runs 1 to 7 show comparable
performance results compared to the baseline model, and
Run 7 has the best performance results (26.66% for N∗ = 90
and 28.20% for N∗ = 100) which are slightly better than
those of the baseline (26.72% for N∗ = 90 and 28.3%
for N∗ = 100). On the other hand, Runs 8 and 9 show
significantly higher error rates than the baseline results. The
reason might be that the visual patterns learned from the first
10 concepts are insufficient to be generalized to the whole
dataset and misleading the model. Therefore, the models
require more steps to converge to the original performance
and show higher error rates with the same setting as the
baseline model.

Based on the results of Runs 1 to 4, it can be observed
that a model with a larger number of initial concepts has
better performance than the lower ones. The initial model
with a higher n1 learns more generalizable visual patterns
in the first place so that the error rate becomes lower when
the initial model is trained with more concepts.

V. CONCLUSION

In this paper, a novel efficient incremental training frame-
work for deep convolutional neural networks (DCNNs) is
proposed. The experiments using the CIFAR-100 dataset
to train the image classification model are conducted and
the performance results in terms of the accuracy and the
convergence speed are presented. It can be seen from the ex-
perimental results that the model trained with our proposed
framework is able to achieve comparable accuracy results in
comparison to the model trained from scratch and converges
with 1.42x faster speed. These results further demonstrate
the effectiveness and efficiency of our proposed incremental
training framework.
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