Genetic Algorithm based Deep Learning Model Selection for Visual Data
Classification

Haiman Tian, Shu-Ching Chen
School of Computing and Information Sciences
Florida International University
Miami, FL 33199, USA
Email: {htian005, chens}@cs.fiu.edu

Abstract—Significant progress has been made by researchers
in image classification mainly due to the accessibility of
large-scale public visual datasets and powerful Convolutional
Neural Network(CNN) models. Pre-trained CNN models can
be utilized for learning comprehensive features from smaller
training datasets, which support the transfer of knowledge
from one source domain to different target domains. Currently,
there are numerous frameworks to handle image classifications
using transfer learning including preparing the preliminary
features from the early layers of pre-trained CNN models,
utilizing the mid-/high-level features, and fine-tuning the pre-
trained CNN models to work for different targeting domains.
In this work, we proposed to build a genetic algorithm-based
deep learning model selection framework to address various
detection challenges. This framework automates the process of
identifying the most relevant and useful features generated by
pre-trained models for different tasks. Each model differs in
numerous ways depending on the number of layers.

Keywords-transfer learning; deep learning model selection;
genetic algorithms; image classification;

I. INTRODUCTION

In this age of the Internet, people frequently interact with
digital devices. These devices range from mobile phones,
tablets, sensor-equipped infrastructures, vehicles, to smart
household appliances. With this, we are experiencing a surge
in data generation and transmission, which affects our every-
day lives. More specifically, in multimedia data generation,
which plays a vital role in both industrial applications and
academic research [1][2][3][4]. This generation makes up
70% of the daily generated Internet data, and these vast
amounts of data can be utilized to solve various domains’
problems.

Advanced techniques, such as Deep Learning (DL), have
been popularly used to investigate the different ways to take
advantage of multimedia data analysis in different research
fields [5]. Many astonishing research outcomes are generated
with the assistance of DL approaches, including image clas-
sification [6], speech recognition [7], video understanding,
etc. However, it is time-consuming and computationally
expensive for each research group to build a DL model
from scratch to fulfill their targeting solution. A method

Mei-Ling Shyu
Department of Electrical and Computer Engineering
University of Miami
Coral Gabel, FL 33124, USA
Email: shyu@miami.edu

to better simulate a person’s learning process is needed
to generalize the knowledge to help solve these problems.
Transfer learning, which provides the ability to transfer the
experience from an original problem domain to a target
domain, eases the learning process, and makes the well
designed pre-trained models useful in a broader application
domain as feature extractors [8][9].

Pre-trained deep learning models can extract different
levels of features from the input data. However, for a
variety of datasets, the feature strength is also varied [10].
Therefore, to efficiently identify the best model to generate
the most representative features for the targeting problem
domain is challenging. In the early stage, researchers always
select the last layer before the prediction layer to extract
the high-level abstract features for their specific tasks. It is
uncertain whether this layer of every pre-trained model can
always be the best choice considering the target domain is
slightly different from the original problem domain. Hence,
extracting features from other layers that carry lower level
features might be more suitable for a particular target
domain. Regarding examining a set of layers of each popular
pre-trained model to obtain the best model for a specific
task, we are looking for an optimal solution from a very
large search space that exceeds the human ability. Therefore,
an efficient and effective optimization/search algorithm is
necessary to be used to automatically generate the feature
set for a specific target problem. When the input dataset
changes, the framework should have the ability to evaluate
each model’s performance regarding the new characteristics
of the data, then select a new model/layer that generates
the most representative feature to build the discriminative
model.

To the best of our knowledge, there is no literature cur-
rently focusing on automatically determining the pre-trained
deep learning model which fits a specific target domain.
However, there are some optimization/search algorithms
worth considering to tackle this problem. In this work, we
proposed a Genetic Algorithm (GA) based deep learning
model selection framework on identifying the feature set
from a pre-trained model automatically. This feature set

contains the most representative features of a specific dataset
that could potentially improve the model’s performance. This
generalized framework can accommodate different datasets
and problem domains. By integrating a two-stage genetic
code evolution process, the proposed approach identifies the
best feature layer or the layers’ combination for a specific
task to further build an image classification model.

The rest of this paper is organized as follows. In sec-
tion II, Convolutional Neural Networks (CNNs) and opti-
mization/search algorithms for deep learning are discussed.
Section III explains the details of the proposed framework
followed by a discussion of the experimental results in
section IV. In section V, we offer conclusions.

II. RELATED WORK

A. Convolutional Neural Networks

Essentially, Artificial Neural Networks (ANNs) are in-
spired by the behavior of different types of neurons in a
biological system. A group of neurons that share the same
properties will be responsible for the tasks related to a
certain level, for example, detecting bright colors. The first
level neurons’ outputs will become a collection of inputs for
the next level’s neurons. ANNs can learn and recognize the
observed patterns from this procedure.

Generally, CNNs are designed following a hierarchical
architecture that consists of both linear and non-linear layers.
Primarily, CNNs were intended to be utilized for basic image
recognition, which made them standout amongst the most
well-known and broadly utilized deep learning methods.
Different from traditional Artificial Neural Network (ANN)
models such as Multiple Layer Perceptrons (MLPs), which
isolate the feature layers completely, CNN models take a
raw image as input with a two-dimensional structure and
share the feature weights among local neuron connections.
This change significantly reduced the number of parameters
and made the model simpler and easier to learn.

Many CNN models are built and trained on ImageNet,
a large scale public image dataset, and can be utilized in
transfer learning to tackle visual data classification tasks in
a broader target domain. Inception V3 [11] is an updated
version of GoogleNet, which have the convolutional and
pooling layers separated in parallel. ResNet [12] overcomes
the potential overfitting and vanishing gradient issue by
constructing residual modules, which increase the depth of
the model. MobileNet [13] is an efficient lightweight CNN
model for mobile and embedded vision applications. The
standard convolutions are factorized into pointwise convo-
lutions and depthwise convolutions. DenseNet, proposed by
Huang ef al. in 2016 [14], connects every layer to every
other layer in a feedforward fashion. This modification
obtains significant improvement by strengthening the feature
propagation and encouraging the reuse of feature, which
substantially reduce the number of parameters.

B. Search and Optimization Algorithms

There has been an increase in demand for automated
optimization technology across the various industries in the
world of business and technology. The search algorithms
have a high capacity when it comes to delivering bet-
ter designs within a short period of time. Choosing the
most efficient optimization/search algorithm for a particular
problem is dependent on the already defined design space.
Some of the available algorithms include genetic algorithm,
evolutionary programming, grid search, random search, and
Bayesian optimization. The availability of those algorithms
has enhanced performance across a wide range of problems,
which eliminates the need for manual tuning.

Both genetic algorithms and evolutionary programming
are population-based optimization algorithms that incor-
porate many biological evolution operations to improve
the quality of the solutions iteratively [15]. The opera-
tions include reproduction, mutation, recombination (a.k.a.
crossover), and selection. A fitness function is defined to
evaluate the health of each individual during the evolution
process. Generally, a genetic algorithm is used to find precise
solutions to both optimization and search problems, includ-
ing finding either the minimum or the maximum function
[16]. Compared to traditional methods, a genetic algorithm
progresses from a population of candidate solutions, hence
minimizing the chances of finding a local optimum. They
can function under a noisy, nonlinear space, and are flexible
to adjust. Recently, researchers have seen working on ways
in which genetic algorithms can be used with evolutionary
computation such as neural networks. Evolutionary program-
ming is used in evolution simulation and to maximize the
suitability of multiple solutions within an objective function.
It relies on a known gradient within the search space
when applied to design problems whose objective is the
creation of new entities [17]. The recombination operation is
eliminated from evolutionary programming because it con-
siders each individual as an independent species. However,
its advantage is the same as that of genetic algorithms,
where no assumption is made about the underlying fitness
landscape. Compared to other methods, they perform well
on approximating solutions for nearly all types of problems
and act efficiently when combined with neural networks.

Grid search is used to perform hyperparameter tuning to
determine the optimal value for a specific model. Compared
to genetic algorithms, grid search helps to find near-optimal
parameter combination within specified ranges, such as sup-
port vector machine parameter optimization [18]. Gradient-
based optimization can be applied to the optimization of
neural network’s learning rate separately for every iteration
and layer. Compared to manual tuning, it enhances the
ability to learn completely new data sets. However, the
main disadvantage is that backpropagation across the entire
training procedure requires a lot of time.

Random search algorithms are used to randomly select a
representative samples from a given search space in order to
identify the optimal value in the sampling [19][20]. It does
not require derivatives to search in a continuous domain.
Compared to grid search, the chances of finding optimal
parameters are higher because of the random search pattern.
Random search is faster than exhaustive search, but it is
unreliable in determining the optimal solution.

A Bayesian optimization algorithm is a powerful tool
when it comes to joint optimization design choices due
to its ability to increase both product quality and pro-
ductivity of human beings through an enhanced automa-
tion capacity [21]. It has been popularly used in many
application domains, including interactive user-interfaces,
environmental monitoring, automatic network architecture
configuration, and reinforcement learning. Primarily in re-
inforcement learning, Bayesian optimization is used to tune
the parameters of a neural network policy automatically,
and to learn value functions at advanced levels of the
reinforcement learning hierarchy. The technology can also
be used to determine attention policies within image tracking
with the use of deep neural networks. Compared to manual
tuning methods, this approach can be used to tune many
parameters simultaneously, which is essential for machine
learning systems. The disadvantage with this technology,
however, is that it is independent and relies on an optimizer
to search the surrogate surface. Different from the general
problem domains that we have observed, Bayesian optimiza-
tion attains a superior performance, the relationship between
each layer’s feature performance for a specific CNN model
is unknown. Since Bayesian optimization assumes that the
solution space reflects the posterior probability distribution,
it is uncertain if it is a good fit of Bayesian optimization for
deep learning model selection.

III. PROPOSED FRAMEWORK

Figure 1 illustrates the overall structure of the proposed
automated model selection framework. The process for each
candidate pre-trained deep learning model is independent
and can be run in parallel. Therefore, the processing time of
the framework will not be significantly affected when adding
more models to the comparison. This framework consists
of two genetic code evolution processes to determine the
best feature set for a specific input dataset. First, the top
feature layers from each candidate model are selected in
the layer selection phase. For each model (1,2,...N), the
number of layers that we extract features from will change
(X,Y,...K layers). Therefore, the genetic code generation
accommodates the encoding of each feature layer as an
individual with a fixed length considering the maximum
number for each model. Then, the best feature combination
is evaluated during the feature selection phase to generate
the final features. This time, the encoding strategy changes to
represent different combinations of the top layers. During the

genetic code evolution process, several genetic operations
are used to improve the average performance in each pop-
ulation. Each model’s performance is validated in parallel
using the best feature set. Only the model that shows the
best performance on the validation data will be selected as
the best model at the end.

A detailed explanation of the proposed framework is
described next.

A. Genetic Code Evolution

Algorithm 1: Genetic Code Evolution

RETAIN + 04

SELECT « 0.1

MUTATE + 0.2

for individual i € Population p do
calculate FITNESS FUNCTION f ()
gradeli].score < f(i)

Sort grade in descending order

topGrade = grade[0 : RET AIN x grade.size]

restGrade = grade[RETAIN x grade.size :

grade.size]

10 for x € topGrade do

1 parents.append(x)

12 # Random selection

13 for z € restGrade do

14 if SELECT > random() then

15 parents.append(x)

16 #Mutation

17 for = € parents do

18 if MUTATE > random() then

19 MUTATE(x)

20 # Crossover

21 size < Population.size — parents.size

22 while children.size < size do

R - T T | T N S S

23 select famale and male randomly from parents
24 if female # male then

25 child = (male.partA + female.partB)

26 children.append(child)

27 parents.append(children)
28 return parents

Both the layer selection and feature selection phases use
the same strategy to evolve the individuals, as shown in
Algorithm 1. The initialization process randomly selects a
certain number of individuals (we set it to 10 individuals
empirically) and calculates the fitness score for each one of
them. The fitness score is generated by the fitness function
f(@) (line 5), which is the average F1 score (Avg. F1):

¢ 2% Pix R

£0) = (3 =) C. n

c=1

(7 Y
Model 2
D
X Layers Y Layers
Genetic code Genetic code . Giénetic code
(:"” Generatlon /;,:f'" Generahon ‘ Generahon
Layer Selection Layer Selection Layer Selection
Top Layer f Top Layer 1
Candidates Candidates
i f) OO o
Feature Feature Feature

Combinations

6 6

Feature Selection

Combinations

&

Feature Selection

Comblnanons

Feature Selection

Genetic Coh

Evolution

Initialization

Population
) Crossover
Creation
Fitness
aCalculaﬂnn T

- &) Mutation

Layer Selection Populatlon

U JH Ranking Random
Selecﬂon

| R Retalnlng

\;alr:ils Selecﬂon/
Genetic Coth

Evolution

=
O
Feature /

Combinations

i

Feature Selection

+

Initialization

Population
= Crossover
Creation
Fitness
e Calculatlon T

(&) (j‘; Mutation

Selection |

¥

Best Model

Figure 1.

where C' is the total number of classes in the target dataset;
i is a unique individual; P is the precision of class ¢, and
R is defined as the recall of class c. Precision represents the
classifier’s ability to not label a positive sample as negative,
while recall represents the classifier’s ability to find all the
positive samples. The relative contribution of precision and
recall to the F1 score is equal, which makes it a trade-off
between these two evaluation criteria.

The individuals in a specific population are ranked in de-
scending order to create a ranking list. Based on a predefined
retention, the individuals on the top of the list will continue
to the next generation and will produce offspring. Other
individuals will have a small chance to survive depending
on the random selection process in lines 12 - 15. All other
individuals will be discarded for the next generation.

Figure 2 and 3 depict the genetic code evolution process

i Population f

:| Ranking Random
Selection
Retaining

k;:rﬁls Selection/

Proposed framework for deep learning model selection using a genetic algorithm

for one generation for the layer selection and feature selec-
tion phases respectively. The figures illustrate the process of
the mutation and crossover operations referring to lines 16
- 19 and lines 20 - 27 in the algorithm.

B. Layer Selection Phase

In the layer selection phase, genetic encoding operation
transforms the ID of each feature layer into a unique
binary string. The available layers for feature extraction in
each model are different, which makes the corresponding
encoding bits different for each model’s process. For each
individual, the features from a particular layer are extracted
using the training data to build a Linear SVM classifier.
Furthermore, the features from the same layer are obtained
using the validation data to evaluate the classifier’s perfor-
mance and calculate the corresponding individual’s fitness

Population k (10 layers)
Features from

layer #1 using
training data

rain Linear!
SVM

DD CIEREN

Features from
layer #1 using
Validation data

Fitness Score
(Average F1)

o
o

Mutation

o‘
L ® O 0o B

[l o B

o
=)

Fitness Ranking Top 4

QICIOIO)

Figure 2. Genetic code evolution example for one generation in the layer
selection phase

-eatures from top
Layer using training

\\data

eatures from top
ayer using Validation
data

Random
@ —] Selection

Fitness Score |
(Average F1)

Fitness Ranking Top 4

®OWEO

Figure 3. Genetic code evolution example for one generation in the feature
selection phase

score.

A one-digit change (0 to 1 or 1 to 0) in the evolution
process will result in choosing a different layer for feature
extraction, affecting the performance of the classifier. For
instance, changing 001011 to 001001 means that layer #8
will be selected instead of layer #11 to generate the features.
This operation applies to the mutation process, where we
restricted the process to affect only one position of the
encoding each time for one selected individual.

The crossover operation generates new individuals for the
next population by combining the genetic codes from two
retained individuals. Each parent contributes only the left
half or the right half of the genes. A new individual is
then added to the next population by combining these two
halves to create a new genetic code of the same length. For
example, taking the left half of the genetic code 000111
and the right half of the genetic code 000011 will generate
another individual represented by the genetic code 000011.

C. Feature Selection Phase

After evolving the individuals in the layer selection phase
for several generations, the last generation identifies the top
layer candidates to represent the most reliable features for
a specific dataset. The best individuals are determined by
the predefined retention rate from the final ranking list.

Table I
THE PRE-TRAINED DEEP LEARNING MODEL CANDIDATES WITH THE
AVAILABLE NUMBER OF FEATURE CHOICES

Models Layers | # combinations
InceptionV3 94 947
ResNet50 64 6471
MobileNet 13 13%
DenseNet201 80 807
Total combinations - 3.41E32

Those features will be further encoded as different feature
combinations to proceed with feature selection.

Different from the previous stage, where each genetic
code represents a single feature layer, in the feature selection
phase each binary string encodes a way of combining
features from different layer candidates. The mutation and
crossover operations as described in the previous section
remain the same, except that each digit means a top feature
set will be selected or deselected to form the final feature set
(e.g., a “0” means do not select, while a “1” means select).
Therefore, a mutation process will either add a new feature
layer or remove a feature layer from the final feature set.

After finishing the second phase of the genetic code
evolution process, we selected the top feature set from each
pre-trained deep learning model with the highest average F1
score running on a Linear SVM classifier. The final model
is determined by comparing the average F1 scores using the
same validation data to extract features from each model.
The model with the highest score will be selected as the
best feature extractor to build the final classification model.

IV. EXPERIMENTAL ANALYSIS
A. Experimental Setup

We chose four pre-trained deep learning models as our
model candidates. The model and the corresponding number
of available layers are shown in Table I. As we set each
population to generate 10 individuals, and the retention rate
(r) to 0.4, for each model’s layer selection phase we have
a total number of K19*" feature set choices, where K is
the available number of layers for each model. As the final
output is limited to the feature set from one model, the total
number of possible choices to determine an optimal solution
adds up to 3.41E32. The space is far too large to be explored
exhaustively by hand.

We used four datasets from different domains to evaluate
our proposed approach: two imbalanced and two balanced
datasets. One of the imbalanced datasets is a disaster video
dataset that consists of two major hurricane events that
happened in 2017 in two different geographic locations:
Harvey in Texas and Irma in Florida. The other imbalanced
dataset is a surveillance camera dataset that contains images
captured from a variety of places. Table II shows the statisti-
cal information of these two datasets. In the Disaster dataset,
the “Flood and Storm” concept contains most of the samples.

Table II
THE STATISTICAL INFORMATION OF THE NETWORK CAMERA 10K AND DISASTER DATASET

Network Camera 10K Disaster
No. Concepts Instances | No. Concepts Instances | No. Concepts Harvey | Irma
1 Intersection 855 8 Yard 161 1 Demonstration 42 8
2 Sky 495 9 Forest 139 2 Emergency Response 81 20
3 Water Front 978 10 Street 431 3 Flood and Storm 426 177
4 Building+Street 603 11 Parking 99 4 Human Relief 70 1
5 Park 499 12 Building 243 5 Damage 42 172
6 Montain View 719 13 Highway 3724 6 Victim 75 16
7 City 432 14 | Park+Building 149 7 Speak 347 63
Total 9527 Total 1083 457

For the disaster dataset, by following a chronological order,
we use the first event as the training data and the second
event as the testing data. We extracted one representative
keyframe image for each video. For the Network Camera
10K dataset, 20 percent of the data was separated into
testing data. Moreover, 20 percent of the training data from
both datasets was randomly selected to form the validation
data for the fitness score calculation. The majority class in
this dataset is the concept “Highway”. The two balanced
datasets (CIFAR10 and MNIST-Fashion) are well-known
public datasets. CIFAR10 classifies objects and animals,
and MNIST-Fashion serves as a direct drop-in replacement
for the original MNIST dataset for benchmarking machine
learning algorithms. These two datasets were already split
into training and testing, but we randomly selected 20% of
the training samples for our validation data to calculate the
fitness score during the genetic code evolution process. Both
datasets consist of an equal number of samples for each
class. CIFARI10 includes concepts related to objects (e.g.,
airplane, automobile, ship, and truck) and animals (e.g.,
bird, cat, deer, dog, frog, and horse). MNIST-Fashion is a
collection of grayscale images of clothing types such as t-
shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker,
bag, and ankle boot.

We compared the performance of our proposed framework
with that of the three optimization algorithms mentioned in
the related work. Each of those algorithms selects a pre-
trained model as the best feature model. Bayesian Opti-
mization is chosen to evaluate if its advantage regarding
probability assumptions will have a positive impact on our
specific task. Evolution programming and genetic algorithm
without mutation operations are included in the comparison
to determine whether or not both mutation and crossover
operations are necessary to converge to the optimal solution.

B. Experimental Results

The performance of the proposed framework compared to
the other three optimization algorithms on the four datasets
and with different pre-trained models is shown in Table III.
Four metrics were considered: Precision, Recall, averaged
F1 scores [Avg. F1], and Weighted average F1 score [W.
Avg. F1]. For evaluating the performance of an imbalanced

dataset, the F1 score is a a better measure than accuracy.
As the F1 score captures the trade-off between precision
and recall, it is more suitable to evaluate the overall model
performance. In this framework, we use a Linear SVM
model to evaluate the feature performance on the validation
data. Therefore, the reported evaluation metrics are based on
the testing results of the SVM classifier’s output.

As shown in Table III, our proposed framework always
selected the pre-trained model with the best performance
on each dataset. For the disaster dataset, only our proposed
method selected ResNet50 to extract the feature set. The
performance improved more than 5% compared to the others
using W. Avg. F1. For Network Camera 10K dataset, though
Evolutionary Programming selected the same model as our
proposed method, the overall performance is the worst,
which means it failed to identify the best feature set. The
other two models selected ResNet50 to produce the final
feature set, while our method select InceptionV3 and has a
better performance on the testing.

For the balanced public datasets, CIFAR 10 and MNIST-
Fashion, all methods selected ResNet50 as the best feature
model. We didn’t report W. Avg. F1 scores here because they
are identical to the Avg. F1 scores when each class has the
same number of samples. Though all the methods selected
the same pre-trained model, the features performances are
not all the same. Our method is the only one can bring
CIFAR 10 data’s performance beyond 90%. Though all the
methods’ performance are very close in MNIST-Fashion,
our method still identifies the feature set with the best
performance.

Figure 4 - 7 illustrate the single model’s feature perfor-
mance using the proposed model and the other three opti-
mization algorithms. The y-axis in all the figures represents
the evaluation metrics’ scores (ranging between O to 1). The
purpose of these comparisons here is to ensure that our
proposed method could always determine the best feature
set for a specific dataset no matter how the candidate models
change. Though DenseNet201 and MobilenNet models are
not selected by any one of the optimization algorithms for
the four experimental datasets, from the bar chart we can
tell, the proposed method always have the best performance
consider all the evaluation metrics. Figure 7 also shows that

Table 111

PROPOSED FRAMEWORK’S FINAL MODEL PERFORMANCE ON FOUR DATASETS COMPARE TO BAYESIAN OPTIMIZATION, EVOLUTIONARY
PROGRAMMING, AND GENETIC ALGORITHM WITHOUT MUTATION OPERATION

Datasets Algorithms Final Model | Precision | Recall | Avg. F1 | W. Avg. F1
Bayesian Optimization InceptionV3 0.3215 0.3256 0.2747 0.3920
Disaster Evolutionary Programming InceptionV3 0.3192 0.3084 | 0.2514 0.3937
Genetic Algorithm w/o mutation | InceptionV3 0.3215 0.3256 0.2747 0.3920
Proposed Method ResNet50 0.3212 0.3276 | 0.2867 0.4430
Network Bayesian Optimization ResNet50 0.6398 0.6263 0.6290 0.7827
Camera Evolutionary Programming InceptionV3 0.6644 0.5896 | 0.6108 0.7705
10K Genetic Algorithm w/o mutation ResNet50 0.6391 0.6081 0.6175 0.7761
Proposed Method InceptionV3 0.6508 0.6339 0.6409 0.7985
Bayesian Optimization ResNet50 0.8949 0.8943 | 0.8945 -
CIFARIO Evolutionary Programming ResNet50 0.8996 0.8995 | 0.8995 -
Genetic Algorithm w/o mutation ResNet50 0.8934 0.8928 0.8930 -
Proposed Method ResNet50 0.9063 0.9061 | 0.9061 -
Bayesian Optimization ResNet50 0.9260 0.9263 | 0.9260 -
MNIST Evolutionary Programming ResNet50 0.9282 0.9285 0.9282 -
-Fashion | Genetic Algorithm w/o mutation ResNet50 0.9282 0.9285 0.9282 -
Proposed Method ResNet50 0.9289 0.9292 0.9289 -
DenseNet201 -- Network Camera 10K MobileNet -- Cifar 10
0.8 1
0.7 0.9
0.8
0.6
0.7
0.4 0.5
03 04
0.3
02 0.2
0.1 0.1
0 0
Precision Recall Avg. F1 W. Avg. F1 Precision Recall Avg. F1
M Bayesian Optimization M Evolutionary Programming M Bayesian Optimization M Evolutionary Programming

® W/O Mutation Operations ™ Proposed Method

Figure 4.
dataset

0.89
0.88
0.87
0.86
0.85
0.84
0.83
0.82
0.81

0.8

Figure 5.

DenseNet201 model performance on Network Camera 10K

DenseNet201 -- MNIST Fashion

Precision Recall Avg. F1
M Bayesian Optimization M Evolutionary Programming
= W/O Mutation Operations ™ Proposed Method

DenseNet201 model performance on MNIST-Fasion dataset

the proposed method identifies the best feature set from
InceptionV3 model, however it does not select it as the

® W/O Mutation Operations

Figure 6.

0.45
0.4
0.35

Proposed Method

MobileNet model performance on CIFAR10 dataset

Inception V3 -- Disaster

Precision

M Bayesian Optimization

Recall

®m W/O Mutation Operations

Figure 7.

0.3
0.25
0.2
0.15
0.1
0.05
0

Avg. F1 W. Avg. F1

M Evolutionary Programming
Proposed Method

InceptionV3 model performance on Disaster Dataset

best model. Thus, it is true that this model’s best feature
set’s performance cannot compete with the feature set from
ResNet50 model as we showed in the experimental result
table.

V. CONCLUSION

We identify the potential challenges of using pre-trained
deep learning models on different target problem domains.
We proposed to build a generalized framework using genetic
algorithms to automatically determine the best feature set
from a group of model candidates. A feature set that contains
the most representative features for a specific target domain
can be better utilized to train a classifier, then further
enhance the final model’s performance. The experimental
results have shown that our proposed approach outperformed
the other optimization algorithms and can always identify the
best feature set no matter how the model candidates change.
Since each model candidate is processed and evaluated
independently, the framework can be run in parallel and
makes the time-consuming task to be more efficient.

ACKNOWLEDGMENT

This research is partially supported by NSF CNS-1461926
and the Dissertation Year Fellowship (DYF) at Florida
International University (FIU).

REFERENCES

[1] S. Pouyanfar, Y. Yang, S.-C. Chen, M.-L. Shyu, and S. Iyen-
gar, “Multimedia big data analytics: A survey,” ACM Com-
puting Surveys (CSUR), vol. 51, no. 1, p. 10, 2018.

2

—

W. Zhu, P. Cui, Z. Wang, and G. Hua, “Multimedia big data
computing,” IEEE multimedia, vol. 22, no. 3, pp. 96—3, 2015.

[3] X.Li, S.-C. Chen, M.-L. Shyu, and B. Furht, “Image retrieval
by color, texture, and spatial information,” in Proceedings of
the 8th international conference on distributed multimedia
systems, 2002, pp. 152-159.

[4] S.-C. Chen, M.-L. Shyu, and R. Kashyap, “Augmented tran-
sition network as a semantic model for video data,” Interna-
tional Journal of Networking and Information Systems, vol. 3,

no. 3, pp. 9-25, 1998.

[5] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P.
Reyes, M.-L. Shyu, S.-C. Chen, and S. Iyengar, “A survey
on deep learning: Algorithms, techniques, and applications,”
ACM Computing Surveys (CSUR), vol. 51, no. 5, p. 92, 2018.

[6

—_

H. Tian, S. Pouyanfar, J. Chen, S.-C. Chen, and S. S.
Iyengar, “Automatic convolutional neural network selection
for image classification using genetic algorithms,” in 2018
IEEE International Conference on Information Reuse and
Integration (IRI). 1EEE, 2018, pp. 444-451.

[71 D. Wang and T. F. Zheng, “Transfer learning for speech
and language processing,” in 2015 Asia-Pacific Signal and
Information Processing Association Annual Summit and Con-
ference (APSIPA). 1EEE, 2015, pp. 1225-1237.

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz,
“Pruning convolutional neural networks for resource efficient
transfer learning,” arXiv preprint arXiv:1611.06440, vol. 3,
2016.

H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues,
J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional
neural networks for computer-aided detection: Cnn archi-
tectures, dataset characteristics and transfer learning,” IEEE
transactions on medical imaging, vol. 35, no. 5, pp. 1285—
1298, 2016.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22,
no. 10, pp. 1345-1359, 2010.

C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 2818-2826.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770-
778.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” arXiv preprint arXiv:1704.04861, 2017.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4700-4708.

T. Back, Evolutionary algorithms in theory and practice:
evolution strategies, evolutionary programming, genetic al-
gorithms. Oxford university press, 1996.

J. Yang and V. Honavar, “Feature subset selection using a
genetic algorithm,” in Feature extraction, construction and

selection. Springer, 1998, pp. 117-136.

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming
made faster,” IEEE Transactions on Evolutionary computa-
tion, vol. 3, no. 2, pp. 82-102, 1999.

P. Lameski, E. Zdravevski, R. Mingov, and A. Kulakov,
“Svm parameter tuning with grid search and its impact on
reduction of model over-fitting,” in Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing. Springer, 2015, pp.
464-474.

H. Mania, A. Guy, and B. Recht, “Simple random search
provides a competitive approach to reinforcement learning,”
arXiv preprint arXiv:1803.07055, 2018.

J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” Journal of Machine Learning Re-
search, vol. 13, no. Feb, pp. 281-305, 2012.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances in
neural information processing systems, 2012, pp. 2951-2959.

