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Abstract—Deep neural networks (DNNs) have seen tremen-
dous industrial successes in various applications, including
image recognition, machine translation, audio processing, etc.
However, they require massive amounts of computations and
take a lot of time to process. This quickly becomes a problem in
mobile and handheld devices where real-time multimedia appli-
cations such as face detection, disaster management, and CCTV
require lightweight, fast, and effective computing solutions. The
objective of this project is to utilize specialized devices such
as Field Programmable Gate Arrays (FPGAs) and Graphics
Processing Units (GPUs) in a heterogeneous computing envi-
ronment to accelerate the deep learning computations with the
constraints of power efficiency. We investigate an efficient DNN
implementation and make use of FPGA for fully-connected
layer and GPU for floating-point operations. This requires the
deep neural network architecture to be implemented in a model
parallelism system where the DNN model is broken down and
processed in a distributed fashion. The proposed heterogeneous
framework idea is implemented using an Nvidia TX2 GPU and
a Xilinx Artix-7 FPGA. Experimental results indicate that the
proposed framework can achieve faster computation and much
lower power consumption.

Keywords-FPGA, GPU, Heterogeneous Computing, Low-
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I. INTRODUCTION

Deep learning has seen many industrial successes over
the past decade to many practical problems, including im-
age recognition [8], speech recognition [2] [7] [9], natural
language translation [4] [5] [24], etc. By automatically
identifying representative features from raw input values,
deep neural networks (DNNs) eliminate the time and effort
spent on creating hand-crafted features. However, in order
to achieve better model performance, it is essential to train
the models with large amounts of trainable parameters.
For example, BERT [5] showed 5.3% improvements of
the validation accuracy when a larger model (340 million
parameters, 93.7% validation accuracy) is applied, compared
to the baseline model (110 million parameters, 88.4% valida-
tion accuracy) for the BLUE benchmark [22]. However, the
growth of model size significantly increases the computing
time for each sample. Therefore, the performance of deep
learning methods is heavily limited in real-time applications

where portability, energy efficiency, and accuracy are all
equally important. Several multimedia real-time applica-
tions such as surveillance camera analysis [16], disaster
management [14] [21], person detection [20] are shown
in Figure 1. These applications require portable, power-
efficient, and computation-efficient hardware to process the
data on-site. Heterogeneous computing is considered one
of the most promising techniques to meet this scalability
demand to handle large deep learning models. Together with
CPUs, deep learning computations can be accelerated by
graphics processing units (GPUs). However, for distributed
edge computing, further acceleration is required to achieve
real-time performance and maximize the utilization rate of
all computing devices. Model parallelism is considered as
one of the best approaches to achieve this goal [3].

Model parallelism can be thought of as partitioning the
neural networks into subprocesses, which are computed in
different devices. Such parallelism allows a model to be
trained distributively and reduces network traffic [3]. This
approach is particularly beneficial in big data, multimedia,
and/or real-time applications [15] [17] [19] [20] where
the size of data inhibits file transfers. In this paper, we
propose a model parallelism architecture for DNNs that
is distributively computed on low-powered devices. These
devices are heterogeneous and consist of a Xilinx Artix-
II FPGA and Nvidia TX-2 GPU. The proposed framework
accelerates the performance of a simple DNN architecture
while reducing its power consumption. This makes model
parallelism an ideal fit to compute deep learning models for
scalability, real-time, and power efficiency, enabling on-edge
real-time services such as surveillance video analysis, speech
recognition, and disaster management.

The rest of the paper is organized as follows. Section
II describes the related work on heterogeneous computing
using FPGAs, GPUs, and CPUs from other publications
with different novelties and performance comparisons. The
proposed methodology applied in this paper, as well as the
framework, are described in section III. The detailed analysis
and experimental results are presented in section IV. Finally,
the conclusions and future directions are provided.



(a) Disaster scenes detected in surveillance cameras (b) Map of camera distributes in Hous-
ton

(c) Person detection in surveillance cam-
eras

Figure 1: Different real-time multimedia processing applications

Table I: End-to-end comparison among CPU, GPU, and
FPGA platforms [25]

Platforms CPU GPU CPU+FPGA
Device E5-2609 GTX1080 VX 690t
Precision float float fix 16
Frequency (GHz) 1.9 2.1 0.15
Power (Watt) 150 180 26
Latency / image (ms) 733.7 23.5 65.13
Speedup 1x 31.2x 9.7x
Energy Efficiency 1x 26x 65x

II. RELATED WORK

A long-term trend in embedded multimedia applications is
the adoption of the FPGA (Field-programmable gate array)
as the primary processing engine and supporting devices
such as GPUs/ASICs to process floating-point calculations.
As depicted in Table I, FPGAs are nearly 7x more power-
efficient and relatively faster in inference than GPUs. The
heterogeneous environment is programmed using High-
Level Synthesis (HLS) and regular programming languages
such as OpenCL or C++, allowing for a much higher level
of abstraction. However, even with state-of-the-art HLS, pro-
gramming with FPGAs is still an order of magnitude more
difficult. This is because certain components of the neural
network can cause bottlenecks if not properly implemented
in heterogeneous environments. For example, when using
Intels OpenCL compiler, it takes between 4 to 12 hours to
compile a typical Convolutional Neural Network (CNN) for
the FPGA due to the place-and-route phase.

In model parallelism, batch size, model architecture, and
domain parallelism all play important factors in achieving a
truly low communication model parallelism [6]. An interest-
ing recent development is to use heterogeneous computing
environments (HCEs) in model parallelism. In this case,
computation accelerators such as FPGAs [10] can be used to
accelerate the model training or inferencing. Thus, assigning
each component in a DNN to a proper device becomes a key
challenge [12]. [11] [12] proposed reinforcement-learning-
based algorithms, where a sequence-to-sequence model is
trained in runtime to tune the parallelism scheme and gen-
erate the best solution. This shows that the computation time

of a DNN model in an HCE with multiple CPUs and GPUs,
can be greatly improved if an automated device placement
is applied. However, this automated algorithm requires an
additional GPU to adjust the scheme in runtime and takes
hours to fully converged. Adjusting the placement scheme
during runtime can cause large amounts of additional model
deployment and communication overheads, and thus makes
the algorithm not scalable.

Furthermore, FPGAs have also been incorporated to ac-
celerate CNN computation. Table I shows an end-to-end
comparison with existing optimized CPU and GPU solutions
for VGG16 [25]. With on-board (VX 690t) testing, 16-
bit fixed-point operations demonstrate a 9.7x speedup and
65x energy efficiency over a 4-core CPU (E5-2609), and
2.5x energy efficiency over cuDNN implementations on an
Nvidia GTX1080 GPU.

Since FPGAs are more efficient to process binary data
with logic gates, [13] proposed to implement Binarized
neural networks (BNNs) on FPGAs, and compared its com-
puting time and power efficiency on GPUs. The results
indicate that GPUs are better for training but worse at
inferencing. As addressed by [23], there is no clear winner
among different computing architectures, and each has its
own advantages for some specific applications. Meanwhile,
[18] proposed an FPGA-GPU-CPU framework that achieves
real-time cardiac physiological optical mapping. A real-time
locating system based on an HCE using FPGA, GPU, and
CPU was proposed in [1]. The platform achieves the best
balance among performance, cost, and flexibility by assign-
ing the tasks according to the characteristics of different
technologies. In [18], an energy-efficient hybrid architecture
was developed to accelerate face recognition using FPGA
and GPU. Chip designers also focus on providing HCE
platforms. For example, Nvidias Tesla T4 GPU consists
of embedded FPGA coupled with ASIC TPUs to accel-
erate inferencing. Intels Nervava neural network processor
platform addresses training and inference separately, using
Intel NNP-L 1000 and NNP-I 100 respectively. Thus, it is
evident that the general consensus is towards developing
efficient HCEs. However, the challenges with low latency
data transfer, load balance among devices, limitation of on-



chip memory, threads, etc. inhibit rapid developments in this
area.

III. FRAMEWORK

The objective of this study is to develop deep learning
inferencing architectures with FPGAs and GPUs to enable
scalable and real-time deep learning for multimedia applica-
tions. We achieve this goal by using a combination of FPGA
and GPU devices with model parallelism. FPGAs are well
suited to perform real-time machine learning and can achieve
a deterministic latency of within microseconds. However,
FPGA implementations require the hardware circuit design,
which is a tedious and costly process. Moreover, when
dealing with multimedia data and floating-point operations,
the throughput of FPGAs is only one-third of a 75W GPU
solution on Nvidia T4. This is because the GPU cores
are native hardware for floating-point processing, which
can run massive amounts of floating-point operations every
clock cycle. This makes GPUs a natural fit for floating-
point-intensive applications in real-time signal and image
processing. Thus, we use FPGAs as the primary processing
engine and GPUs in a supporting role to process floating-
point heavy calculations. The end result is a heterogeneous
computing architecture that dramatically accelerates training
and inferencing to enable a scalable and real-time DNN.
The general high-level design of this idea is illustrated
in Figure 2. The proposed system mainly contains two
computing devices, namely GPU and FPGA. Both devices
communicate with each other through a Universal Asyn-
chronous Receiver/Transmitter (UART) serial connection.
In the proposed design, processes including convolution,
pooling, etc. are realized on the GPU, while fully connected
layers are accelerated on the FPGA.

Figure 2: The general device setup of the proposed solution

A. Heterogeneous Framework

The DNN architecture implemented is similar to LeNet-5.
We use this architecture to classify large scale hand-written

digits in the MNIST dataset. The architecture is primary a
CNN. It contains six layers, from which three of them are
convolutional layers, two are sub-sampling (max pooling)
layers, and the remaining one is a fully connected layer with
softmax activation. All convolution layers in the network
have 5x5 kernels. Sub-sampling layers are 2x2 max-pooling
layers. RELU activation is used throughout the convolution
layers in the network.

We break down the DNN architecture by implementing
the fully connected layer on the FPGA and the rest on the
GPU. This is because GPUs are better suited to perform
parallel operations and thus can run convolution operations
much faster than FPGAs. Due to the low overhead im-
plementation of FPGAs and the direct realization of the
hardware, FPGAs are well suited to accelerate the fully con-
nected layers, which includes a sequential process summing
up the weighted inputs. Since this is only a proof of concept,
we only implement the fixed-point operations on the FPGA.
The complete framework diagram with its modularities is
shown in Figure 3.

In order to implement a multi-level representation of the
CNN, it is vitally important to understand which of the
processes work better on which device. The high number
of parameters processed in a DNN can easily overrun the
number of slice registers, lookup tables (LUT), and block
RAM (BR) of an FPGA. To implement an architecture such
as Google’s inception-v3 having up to 24 million parameters
would require massive control blocks to manage the archi-
tecture modules. Moreover, all computations are calculated
in real numbers, which requires a resource-intensive logic
implementation to handle floating-point operations. Thus,
a careful consideration is required when implementing the
DNN in a heterogeneous fashion.

The choice of devices for the proposed framework was
based on power consumption, rapid prototyping, and mod-
ularity advantages. The FPGA used in our proposed frame-
work is an Artix-7 FPGA chip on the Nexys A7-100T
development board by Xilinx. This FPGA consists of 15,580
programmable logic slices, each with four 6-input Lookup
Tables (LUTs) and eight flip-flops. The GPU employed
in the framework is the Nvidia Jetson TX2 embedded
computing device. The onboard GPU is a 256-core Nvidia
Pascal GPU, while the CPU is a Quad-core ARM Cortex
A57 MPCore CPU.

B. Universal Asynchronous Receiver/Transmitter

The proposed algorithm processes the DNN distributively.
Thus it is required to connect two devices and establish a
reliable interface between the GPU and FPGA. There are
several options by which the inter-layer data can be trans-
ferred between devices, but we chose to interface the de-
vices using a Universal Asynchronous Receiver/Transmitter
(UART).



Figure 3: The proposed framework for heterogeneous computing on the FPGA and GPU

Figure 4: Frame of serially transmitted data

A universal asynchronous receiver is a parallel to serial
line converter that sends and receives data in serial and
provides the data in parallel to the FPGA. A UART is
required when transferring data serially between devices
because the data is transferred using Universal Serial Bus
(USB). Moreover, the UART handles the mismatch between
the voltage levels of the GPU kit and the TTL logic in FPGA
(0-5volts). The Nexys A7 development kit has a standard
FT2232 HQ USB UART bridge. The FT2232HQ is also
used as the controller for the USB-JTAG circuitry. A serial
port can transmit 6, 7 or 8 bits at a time with different
varieties of start and stop bits as shown in Figure 4. The
data transmission starts with logic 0 and terminates with
logic 1. In between are the data bits and the parity bit that
is optional. The stop bits can be selected from 1, 1.5 or
2 bits. In serial transmission, the transceiver system is first
set upon a few parameters that overlay the guidelines of the
transmission and reception. These parameters are the number
of data bits, parity bit, number of stop bits, and baud rate
that describes the speed of the overall data exchange. The
baud rate can be selected from 2400, 4800, 9600 or 19200
bauds.

Since a UART system follows a sequence of a finite
number of procedures, we implement a finite state machine

to control the system data flows. The UART transmitter
is similar to the UART receiver, apart from the different
flags and control bits. The devices signal a flag high when
the entire data has been received by providing an acknowl-
edgment to the program controller. The block diagram of
the overall UART system is shown in Figure 5, where the
baud rate generator produces the working clock for the
system, receiver converts the serial signal rx into parallel
data, transmitter performs the data transformation in the
reverse way, and both receiver and transmitter are connected
to a First-In First-Out (FIFO) to cache the data. The other
components in the system will load data from or push data
into the corresponding FIFO in order to read to write data
from GPU.

Figure 5: The complete UART system as implemented on
the GPU and FPGA



Table II: Nexys A7-100T Brief Technical Specifications

Product Variant Nexys A7-100T
FPGA Part Number XC7A100T-1CSG324C
Look-up Tables (LUTs) 63,400
Flip-Flops 126,800
Block RAM 1,188 Kb
DSP Slices 240
Clock Management Tiles 6

Table III: Jetson TX2 Brief Technical Specifications

Product Variant Jetson TX2 module
GPU 256-core NVIDIA Pascal GPU

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU
Quad-Core ARM Cortex-A57 MPCore

Memory 8GB 128-bit LPDDR4 Memory
Storage 32GB eMMC 5.1
Power 7.5W / 15W

The UART system used in the proposed framework is
a sub-optimal solution due to its relatively slow speed.
Serial interfacing is usually not recommended in the final
realization due to its slow speed, high overhead, and the
requirement for additional hardware modules. Alternate op-
tions like system bus interfaces can be very efficient and may
provide optimal overhead times. As a future development
task, we aim to use Intel’s DE5a-Net DDR4 Altera Arria 10
FPGA device. This device supports PCI Express x8 Edge
that can significantly reduce the overhead. Since the goal
of this paper is to provide a proof of concept by testing
and verifying the heterogeneous implementation, the GPU-
FPGA interface utilizes UART serial interfacing modules.

IV. EXPERIMENTS AND RESULTS

The proposed heterogeneous framework is tested using
a Nexys A7-100T FPGA from Xilinx and a Jetson TX2
module from NVIDIA. The Nexys A7-100T board, previ-
ously known as Nexys 4 DDR, contains a 128MiB DDR2
SDRAM and 1,188 Kbits of fast block RAM. It has 15,850
Programmable logic slices, each with four 6-input LUTs and
eight flip-flops. The TX2 board is a low-power (7.5W) em-
bedded computing device, which is built around an NVIDIA
Pascal-family GPU and loaded with 8GB of memory and
59.7GB/s of memory bandwidth. The communication be-
tween the FPGA and GPU board is achieved through UART
with RS232 standard. The baud rate is set to be 19,200
without the parity bit. Tables II and III briefly show some
technical specifications of the hardware, respectively.

A simple deep learning model, which contains three
convolutional layers and one fully connected layer, is tested
with the MNIST dataset. The pre-trained model and its
weights are loaded to the FPGA board in the initial stage.
During inferencing, the GPU will first forward the inputs
to calculate the output vector X[n] of the second last layer,
where n represents the length of X and is determined by
the number of input nodes of the last fully connected layer.

Table IV: End-to-end performance comparison of different
hardware configurations

GPU GPU+FPGA+overhead GPU+FPGA
Precision float fix 16 fix 16
Time (ms) 4.019 41.625 3.085
Frequency (fps) 248 24 324
Power (Watt) 6 3.7

Table V: Performance comparison of different feature sizes

Feature Size n Time (ms) Frequency (fps)
16 0.73 1370
32 0.995 1005
64 1.064 940

The generated feature vector X[n] will then be transmitted
to the FPGA board through UART. After the calculations
of the fully-connected layer are finished on the FPGA, the
result will be sent back to the GPU through UART. The
calculation precision involved in the GPU is floating-point,
however, the intermediate feature vector is converted to fix-
point numbers before sending to the FPGA.

Table IV shows the end-to-end performance comparisons
among different hardware configurations. The Nvidia TX2
GPU is set in the max-P mode, which optimizes the power
efficiency of the board. As shown in Table IV, both TX2
GPU and FPGA board can operate with a relatively tight
power constraint. Between the two, the FPGA consumes
1.62x less power. In terms of the time latency, the hetero-
geneous system is faster when the overhead is not included.
The overhead involved in GPU+FPGA module mainly
comes from the intermediate UART communication, where
the data transfer rate is limited to match the baud rate. In our
case with baud rate = 19200, one bit requires approximately
1bit/19200bps = 52µs. This UART transmission overhead
will be less obvious in a larger model since the speedup in
the FPGA will compensate more for communication delay.
A better solution is to replace UART by PCI express, which
can greatly increase the transmission speed.

Table V compares the FPGA computing time for a single
fully connected layer regarding different feature sizes. When
the feature size doubles (i.e., the number of nodes in the fc
layer increases), the computing time increases 36% and 7%
respectively with n = 16 and 32. As the feature size grows
larger, the calculation time is expected to grow only slightly,
which proves the scalability of our proposed framework.

V. CONCLUSION

In this paper, a power-efficient neural network imple-
mentation on a heterogeneous computing system with both
FPGA and GPU is proposed. Considering the different
hardware characteristics of FPGAs and GPUs, we use the
FPGA to accelerate a fully connected layer and the GPU for
the rest. A small prototype framework is implemented using
Xilinx Artix-7 FPGA and Nvidia TX2 GPU, where both



devices are designed for power-efficient computations. The
experimental results show the performance improvement
of the heterogeneous system over the GPU-only system
regarding both computation time and power consumption.
In the future, our work can be extended in multiple aspects
to experiment and profile the performance of various DNN
structures on FPGAs. We plan to test (1) networks with
multiple layers, (2) other types of neural network layers,
and (3) a more powerful FPGA board (e.g., Intel DE5a-
Net). We also plan to apply an alternative data transmission
method (e.g., PCI Express) for the FPGA-GPU intermediate
communication to effectively reduce its overhead.
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