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ABSTRACT
Autism spectrum disorder (ASD) is one of the common dis-
eases that affects the language and even the behavior of the
subjects. Since the large variations in the symptoms and
severities of ASD, the diagnosis becomes a challenging prob-
lem. It has been witnessed that deep neural networks have
been widely used and achieve good performance in various
applications of visual data analysis. In this paper, we pro-
pose SP-ASDNet which utilizes both convolutional neural
networks (CNNs) and long short-term memory (LSTM) net-
works to classify whether an observer is typical developed
(TD) or has ASD, based on the scanpath of the correspond-
ing observer’s gaze at the given image. The proposed SP-
ASDNet is submitted to 2019 Saliency4ASD grand challenge
and achieves 74.22% accuracy for validation.

Index Terms— Autism Spectrum Disorder (ASD), Deep
Neural Network (DNN), Long-Short Term Memory (LSTM)
Network, Saliency Prediction

1. INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disease
that affects the communication, behaviors, and social skills of
the subjects and reported to occur for about 1 in 59 children,
according to the estimation of Autism and Developmental
Disabilities Monitoring Network [1]. Therefore, it becomes
a critical challenge to diagnose and screen children with ASD
efficiently and effectively. A precise and timely diagnosis
can be helpful to mitigate the ASD effect for the children.
The current procedure of a comprehensive ASD evaluation
requires the assessment from well-trained specialists, which
is not available in less-developed regions. Hence, it is more
desirable to develop techniques that can objectively assess
whether children with or without ASD. These techniques can
help the early-stage detection of ASD and potentially moni-
toring the efficiency of the ASD remediation protocol [2].

It has been reported that children with ASD can have
atypical patterns in gaze perception [3], which is caused by
the disruption to early visual processing of the children with

ASD. Therefore, the scanpath which characterizes the loca-
tions and durations of the gazes, responding to the given stim-
ulus, becomes a useful cue to determine whether the observer
has ASD or not.

In 2019 Saliency4ASD grand challenge, the dataset con-
taining scanpaths of children with and without ASD for 300
images is released [4], which provides a benchmark to evalu-
ate the saliency prediction models for ASD children and the
scanpath-based ASD classification algorithms. As one of the
tracks in the grand challenge, the challengers are required to
classify the ASD and normal observer based on one scan-
path and the corresponding image stimulus. In this paper, we
propose SP-ASDNet which integrates convolutional neural
networks (CNNs) and long short-term memory (LSTM) net-
works [5] to accomplish the ASD classification task. In addi-
tion, the pre-trained saliency prediction model, SalGAN [6],
is leveraged as one component to generate the inputs of the
proposed networks along with a data pre-processing proce-
dure.

The rest of this paper is organized as follows. Section 2 in-
troduces the related work in deep neural networks and recent
advances in saliency prediction models. Then, our proposed
SP-ASDNet for ASD prediction and the overall framework
are presented in Section 3. Section 4 explains some details
about the datasets and the model configuration and shows the
experimental results of the proposed model. Section 5 con-
cludes our findings and discusses the future work.

2. RELATED WORK

2.1. Deep Neural Networks

Deep neural networks have become one of the most effec-
tive techniques for various applications, especially when the
training dataset is large [7]. As one type of deep neural net-
works, CNNs have become one of the most important tech-
niques in visual data processing since AlexNet [8] was pro-
posed in 2012 and achieved significant improvements in Im-
ageNet competition. It has been proven to be one of the most
effective techniques to learn features from images.



Fig. 1. The proposed SP-ASDNet framework.

On the other hand, recurrent neural networks (RNNs)
have been widely applied to natural language processing
(NLP), speech recognition, and other sequential data analysis,
and achieved much better results than the conventional mod-
els. LSTM networks [5], as one of the most important vari-
ants of RNNs, have shown robust performance and been ef-
fectively used to all kinds of sequential data, including videos,
audios [9], and scanpaths [10].

2.2. Saliency Prediction

A saliency map describes the likelihood of each pixel in the
image attracting the observer. The success of deep neural net-
works on visual data analysis has triggered the development
of deep saliency models since 2014 [11]. It has been illus-
trated that the deep saliency models perform much better than
the conventional models.

Among all the static deep saliency models which take
static images as the input, some of the recent advances will
be introduced in details. One of the approaches to further en-
hance the prediction performance is to integrate the encoder-
decoder structure into the deep saliency prediction model.
EML-Net [12] implements the encoder-decoder structure in
fully convolutional neural (FCN) networks which are trained
separately. An ensemble of CNNs can be trained with differ-
ent datasets to form the encoder to improve the overall per-
formance. Meanwhile, SalGAN [13] leverages the architec-
ture of the generative adversarial networks to train a genera-
tor with the encoder-decoder structure to estimate the saliency
map of the images. The adversarial training process can thus
boost the performance of convention encoder-decoder struc-
ture by constructing more adequate supervision signals for
the model training. More recently, the attention mechanism
has also been incorporated. For example, Saliency Attentive
Models (SAM) that combine FCN with an attentive recurrent
neural network were proposed [14].

2.3. Visual Attention for People with ASD

The hypothesis that people with ASD have different patterns
of visual attention from typical developed (TD) people has

been investigated and validated with the eye-tracking exam-
ination [15]. By incorporating recent advances in image
recognition and saliency prediction, the researchers have been
able to discover some atypical patterns from visual attention
data from people with ASD [16]. These findings illustrate a
prospective approach to diagnose ASD, which can potentially
help the early-stage diagnosis of ASD and provide an objec-
tive measurement for ASD diagnoses. Following this track,
Duan et al. has built a saliency prediction dataset for children
with ASD, consisting of eye-tracking data with 13 children
for 500 images [17]. As a pioneering work in utilizing visual
attention data to determine whether a person has ASD or not,
[18] proposed a deep neural network architecture to perform
ASD classification based on a set of images. Meanwhile, an
algorithm to select images with the most discriminative con-
tents was proposed, which can be an effective tool to analyze
the visual attention patterns of people with ASD.

3. SP-ASDNET

In this section, the details of the proposed SP-ASDNet frame-
work is introduced. In general, the scanpath-based ASD clas-
sification task is to predict whether a person has ASD or not
based on an image I and his/her gaze scanpath of the im-
age SP (I) = [(p1, t1), (p2, t2), . . . , (pN , tN )], where pi is a
position of the image where the subject looks at, ti is the du-
ration of the gaze, and N is the total number of the recorded
fixation locations. For this purpose, we propose to leverage
the deep neural network to extract latent features of the scan-
path and make the decision. Figure 1 depicts our proposed
SP-ASDNet classification model which is based on the CNN-
LSTM architecture using the observer scanpaths. As can be
seen from Figure 1, a pre-trained saliency prediction model
is first used to generate the reference saliency map of nor-
mal people for the given image. Then, a sequence of image
patches of the predicted saliency map is generated based on
the given scanpath, and is fed into the proposed SP-ASDNet
for ASD classification to predict whether the subject has ASD
or not.



3.1. Saliency Prediction

In SP-ASDNet, a pre-trained model estimating the saliency
map S of the given image I is used. More specifically, the
SalGAN model [13] is applied, which follows the architecture
of the generative adversarial networks, i.e., composing of a
generator and a discriminator. As shown in Figure 2, the gen-
erator takes the input image I to estimate the saliency map S,
while the discriminator tries to differentiate the ground truth
and the estimated result. The binary cross entropy is used to
train the generator and the adversarial loss is used to train the
discriminator. Such an adversarial training process can im-
prove the generative model and enforce the generated results
similar to the ground truth, which leads to the state-of-the-art
performance of SalGAN in saliency map prediction.

In the Saliency4ASD grant challenge, we use the gen-
erator in the SalGAN model1 pre-trained on the SALICON
dataset [6] to generate the reference saliency map for the
ASD classification. This component can be replaced by
any other saliency prediction models, though the influence
of saliency prediction performance on the final classifica-
tion performance has not exhaustively tested. The SALICON
dataset was collected from subjects over a large age range
and thus not perfectly reflected the saliency distribution of
the children. However, no public large-scale child saliency
dataset is available, with which we can train the model. If
sufficient training samples can be provided, the model can
also be trained based on the ground truth saliency maps from
children, which should provide a closer data distribution to
the test sample for ASD classification and provide better clas-
sification performance.

3.2. Data Pre-Processing

In order to collect more comprehensive information from the
saliency maps of the images and the scanpaths, the proposed
framework extracts features from the patches of the saliency
maps around the fixation locations in the scanpaths. Let
pi = (xi, yi) be the i-th fixation location in the given scan-
path, where xi ∈ [1, H] and yi ∈ [1,W ] are the coordinates,
and W and H are the width and height of image I , respec-
tively. The i-th patch of the saliency map is generated by
cropping the reference saliency map S, i.e., P

(
S, plt, prb

)
,

where plt = (xi − a, yi − a) is the coordinates of the left-top
corner of the patch in S, prb = (xi + a, yi + a) is the coordi-
nates of the right-bottom corner, and 2a+1 is the length of the
square patch. It is assumed that the subjects should not look
at any place outside the region of the image, so zero-padding
is applied whenever the patch includes a region outside of the
reference saliency map. The duration ti of pi is left aside and
integrated into the feature vector of each patch before feeding
into the LSTM model.

1https://github.com/imatge-upc/saliency-salgan-2017

Table 1. The design of the proposed CNN structures
Model Type #Channel Kernel Size Stride

A

Conv 32 7 1
AvePool 32 2 2
Conv 32 3 1
Conv 16 3 1
AvePool 16 2 2
Dense 1024 - -

B

Conv 32 3 1
AvePool 32 2 2
Conv 16 3 1
AvePool 16 2 2
Dense 1024 - -

3.3. SP-ASDNet Models

After the patches are generated, a visual feature vector fv
i is

computed by a shallow CNN. The design of the CNN struc-
tures in SP-ASDNet is shown in Table 1. Two variants of
the CNN structures are used and tested with the provided
training dataset, namely models “A” and “B”. The column
“Type” shows the type of each layer, where “Conv” means
the convolutional layer, “AvePool” means average pooling,
and “Dense” means the fully connected layer. Each row in
the table is a layer in the model and the outputs of the layers
are used as the inputs of the layer below. Both models “A”
and “B” produce a 1024-dimension visual feature vector fv

i .
The feature vector of the i-th patch fi = [fv

i , ti] is then
generated by concatenating the visual features and the dura-
tion. Thus, the feature of each patch is a vector of 1025 di-
mensions. Afterwards, the feature vectors of all patches of
the given scanpath are fed to the two-layer LSTM networks
of length L with a dense layer to classify whether the subject
has ASD or not at the end. The LSTM networks are applied to
capture the temporal information and sequential dependency
of the scanpaths, and to integrate the feature vector of each
patch together. In the case that the length of scanpath N < L,
the zero-padding feature vectors are applied to enforce the
same length of the inputs. The max-pooling layer is applied
to collect the outputs of LSTM and produce a compact feature
vector to the last dense layer for classification. Batch normal-
ization layers [19] are added after each convolutional layer
and the dropout layers [20] are added to each dense layer to
avoid model overfitting.

4. EXPERIMENTS

4.1. Dataset

In order to train the ASD classification networks, the eye
movement dataset for ASD children [4] provided by the
Saliency4ASD grand challenge organizer is used. The train-
ing dataset includes 300 images, where each image is ob-



Fig. 2. SalGAN for saliency prediction [13].

Table 2. Classification accuracy on the validation dataset

Model #Visual
Features Acc. without BN Acc. with BN

A
512 - 58.60%
1024 73.21% 74.22%
2048 - 68.89%

B
512 - 60.79%
1024 73.48% 74.19%
2048 - 68.05%

served by 14 TD children and 14 ASD children. Since some
of the children might not look at the locations inside the im-
ages, some of the images have less than 14 scanpaths from the
TD or ASD groups.

In the Saliency4ASD grand challenge, we use the first
80% images (i.e., images 1-240) and the corresponding scan-
paths to train the proposed model, while the images 241-300
and their corresponding scanpaths are used as the validation
dataset to select the model for testing.

4.2. Environment Setup

For track 2 of the Saliency4ASD grand challenge, the patch
size is selected as 225, i.e., a = 112, and the length of the
LSTM is configured as 40. Both the model with and without
the batch normalization layers are trained, while the ones with
batch normalization shows much better performance for the
validation dataset.

The training process of the proposed ASD classification
model is performed on NVIDIA P100 GPU with 16GB mem-
ory. The batch size is set to 8. Adam optimizer is used to
train the networks with the learning rate lr = 1e − 5 and the
momentum of 0.9. Each model is trained for 30 epoches and
the model performing the best on the validation dataset is se-
lected for testing. During the evaluation, the weights of the
model are fixed and no dropout is applied.

Table 3. Classification accuracy on the test dataset
Model Acc. Rec. Pre. F1

Model A w/t BN 0.5566 0.8771 0.5319 0.6577
Model B w/t BN 0.5739 0.5936 0.5684 0.5676
Model B w/o BN 0.5790 0.5921 0.5626 0.5697

4.3. Experimental Results

Based on the aforementioned dataset and setup, the perfor-
mance of the proposed models in terms of the validation ac-
curacy on the validation dataset can be found in Table 2,
where “Model” column refers to the CNN design, “#Visual
Features” column refers to the number of visual features M
generated from the CNN (i.e., the number of channels of the
last dense layer), the “Acc. without BN” column shows the
accuracy of SP-ASDNet without batch normalization, and
the “Acc. with BN” column shows the accuracy of SP-
ASDNet with batch normalization. As we can see in the table,
the performance with batch normalization is slightly better
than those models without batch normalization, and the best
74.22% accuracy on the validation dataset is achieved.

We also investigate how the performance is affected when
M varies. As can be seen from Table 2, the best perfor-
mance is achieved when M = 1024. We think that the
performance degrade when M = 2048 is caused by model
overfitting while the visual features do not sufficiently repre-
sent the patch of the saliency map when a smaller M is ap-
plied. In the evaluation stage, three models (namely model-A
with batch normalization, model-B with batch normalization,
and model-B without batch normalization) are submitted to
the grand challenge organizers and their performance on test
dataset is shown in Table 3 where the accuracy, recall, preci-
sion, and F1 scores of the classification are listed. The model
performance on the test dataset is much lower than that of the
validation dataset, which could indicate the submitted mod-
els being overfitted. Therefore, the structure within the visual
attention should be further investigated to improve the model
and to mitigate the overfitting problem. More efforts should
be made to improve the models to classify ASD and TD scan-



Table 4. Frequency distribution of per image classification
accuracy on the validation dataset

Range Frequency
[0, 0.5] 1
(0.5, 0.6] 6
(0.6, 0.7] 17
(0.7, 0.8] 24
(0.8, 1.0] 12

Fig. 3. Top-5 (first row) and bottom-5 (second row) images
in the validation dataset

paths.

We further investigate the model performance for each
image. Table 4 shows the frequency distribution of per image
classification accuracy among all the images in the validation
dataset, where each row shows the number of images having
accuracy within the range. The top-5 and bottom-5 images
are selected and depicted in Figure 3. The top-5 images are
listed in the first row of the figure, while the bottom-5 are in
the second row. Figure 3 shows that when there is a person,
especially when the person is looking at the camera when the
image was taken, the model performs better to classify ASD
children from TD. When the images are natural scene or no
face is shown in the images, the model performs worse.

5. CONCLUSION

In this paper, the SP-ASDNet framework for ASD classifi-
cation based on the observer’s gaze scanpaths is proposed.
The CNN-LSTM architecture is adopted to extract the fea-
tures from the saliency maps and to handle the sequence of
the fixation locations in the scanpath. The proposed model
achieves 74.22% accuracy on the validation dataset. In the
future, the attentive mechanism will be investigated and inte-
grated into the model to further improve the performance. We
would investigate whether other image features can be incor-
porated in our proposed models to improve the performance
as well. A thorough investigation on the differences in the
scanpaths between ASD and TD children will also be con-
ducted.
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