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ABSTRACT
Nowadays, the world faces extreme climate changes, result-
ing in an increase of natural disaster events and their severi-
ties. In these conditions, the necessity of disaster information
management systems has become more imperative. Specifi-
cally, in this paper, the problem of flood event detection from
images with real-world conditions is addressed. That is, the
images may be taken in several conditions, including day,
night, blurry, clear, foggy, rainy, different lighting conditions,
etc. All these abnormal scenarios significantly reduce the
performance of the learning algorithms. In addition, many
existing image classification methods use datasets that usu-
ally include high-resolution images without considering real-
world noise. In this paper, we propose a new image classifi-
cation framework based on adversarial data augmentation and
deep learning algorithms to address the aforementioned prob-
lems. We validate the performance of the flood event detec-
tion framework on a real-world noisy visual dataset collected
from social networks.

Index Terms— Flood event detection, deep learning,
style transfer, generative adversarial networks

1. INTRODUCTION

Natural disasters such as flood, earthquake, and hurricane
have caused devastating losses on human lives, environment,
and economy. In the last decade, disasters have made more
than $10 billion in losses [1]. In particular, flood, one of the
most severe natural disasters, has caused tremendous dam-
ages on roads, houses, and agriculture, and has been the main
topic in numerous studies [2, 3, 4]. Meanwhile, disaster in-
formation management systems have grown significantly in
recent few years due to the latest advances in data collection,
analysis, and visualization [5].

On the other hand, machine learning and deep learning
have achieved substantial progresses in image classification.
However, there are only very few methods that leverage deep
learning for real-world disaster detection and management [6,
7]. This is mainly due to the limited annotated data available
in this domain. Existing work usually collects the data from
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Fig. 1: Samples of (a) noisy and (b) normal flooding images

Web/social media and annotates them manually [7]. Never-
theless, the variability of images in such datasets may not
be sufficient to create a robust model which can be used in
different real-world situations. For example, many flood im-
ages in social media were taken during the day, most users
posted clear images without significant noise, etc. The model
trained on such data cannot easily detect a specific disaster
from the real-world noisy images (e.g., blurry or night im-
ages). Fig. 1(a) shows several noisy flood images that cannot
be detected by a deep learning model trained on normal flood
images (Fig. 1(b)).

In this study, a new disaster detection framework based
on state-of-the-art deep neural networks is proposed to ad-
dress the aforementioned challenges. Specifically, we focus
on flood detection and collect flood-based images from so-
cial media sources such as Twitter and YouTube. We also
consider three sets of real-world styles including “night”,
“blurry”, and “rainy”. Since collecting and annotating these
sets of images are difficult and tedious, recent photorealis-
tic style transfer techniques are utilized to transfer images
between two different domains (normal to style) in an un-
supervised manner. Specifically, a new data augmentation
method based on Cycle-Consistent Generative Adversarial
Networks (CycleGANs) is proposed. For each set of styles,
a CycleGAN is trained to transfer the images from regular
flood to the styled flood (e.g., to night-flood, rainy-flood, and
blurry-flood.). These images are later utilized in the data
augmentation step to train a Convolutional Neural Network



(CNN). To the best of our knowledge, this is the first work
that applies style transfer to flood event detection. In addi-
tion, this is the first flood detection framework that can detect
unusual flood images without seeing such irregular images in
the training set.

The remaining of this paper is organized as follows. Sec-
tion 2 discusses the related work in flood detection and image
style transfer using deep learning. Section 3 presents the pro-
posed framework and the experimental results are given in
Section 4. Finally, Section 5 concludes this paper.

2. RELATED WORK

2.1. Flood Detection

Traditional flood detection techniques based on machine
learning mainly focus on extracting representative and dis-
criminative features from remote sensing and aerial imagery
data to train the learning models [3, 8, 9]. In [3], texture,
color, and fractal features extracted from the Unmanned
Aerial Vehicle (UAV) surveillance images were used to clas-
sify the flood and non-flood geographic areas. In another
work, Support Vector Machine with different kernels on
TerraSAR-X satellite imagery was proposed [8].

Recently, deep learning techniques such as CNNs have
also been utilized in flood detection due to their great perfor-
mance in image classification and object recognition [4, 10].
In [4], CNNs with dilated convolutions and deconvolution
layers were proposed for flood detection using satellite im-
agery. A multi-modal deep learning model that utilizes the
image and textual data from social media for flood detection
was developed [10].

2.2. Image Style Transfer using Deep Learning

Recent advances in deep learning enable the transformation
of styles from one domain (source) to another domain (tar-
get) [11, 12, 13, 14, 15, 16]. Based on this approach, it is pos-
sible to generate the minority-class samples by combining the
main object in the content images and the artistic style (color,
local structures, etc.) from the style images. In [11], sep-
aration and recombination of content with neural representa-
tions were used to transfer the style. A generalized framework
that combines untied weight sharing, discriminative model-
ing, and a GAN loss was proposed for visual style transfor-
mation [12]. Also, an unsupervised pixel-level domain adap-
tation method without the need of source and target domain
pairs was developed to learn the style transformation [13].
The Multi-Style Generative Network (MSGNet) [16] uses a
CoMatch Layer approach that learns to match the lower order
statistics of content image with the style images. Different
from the existing work, we propose a novel framework that
applies adversarial style transfer data augmentation to flood
event detection.

Fig. 2: The proposed deep learning framework

3. THE PROPOSED FRAMEWORK

The proposed framework aims to train a CNN model for im-
age classification which is robust to various contexts (styles),
denoted as Y1, Y2, . . . , YN . For the application of flood event
detection, the training images are classified into two cate-
gories: flood and non-flood. Therefore, a training dataset
I = {I01 , I02 , . . . , I0M}, containing both flood-related and
non-flood images, is collected to train the model. Fig. 2
depicts the training process of our proposed deep learning
framework in which CycleGAN is utilized as data augmenta-
tion to enhance the CNN classifier for flood event detection.

3.1. CycleGAN Data Augmentation

Data augmentation is a common way to enhance the training
dataset and improve the performance of the CNN models and
its generalization capability. The conventional approaches
performing data augmentation include flipping, scaling, crop-
ping, rotation, etc., which manipulate the pixel values in a
simple manner. However, the patterns of the images can
significantly change in various contexts with a complicated
transformation. In the case of flood event detection, the im-
ages show different visual characteristics in day or night, in
rainy or sunny weather, and when the camera is moving or
not. GAN has shown powerful performance to learn the pat-
terns/styles of contexts regardless of the objects in the images,
and thus in this paper, we propose a novel approach of data
augmentation by utilizing CycleGAN [17] to perform care-
fully curated style transfer for flood in different contexts. We
first define the most common context as the regular context
X . All the original images in the training dataset are from
X . Then, for each stylized target context Yi, a CycleGAN
model is trained to translate a given flood image from X to



Yi without any paired image samples. The goal is to learn a
set of functions Gi : X → Yi, ∀i so that the learned transfor-
mation of images after applying Gi(X) are indistinguishable
from the style references Yi by using an adversarial loss. The
adversarial loss (LAdv) is applied to the mapping functions
Gi(X) as follows.

LAdv(Gi, DYi , X, Yi) = Eyi∼p(yi)[logDYi(yi)]

+ Ex∼p(x)[log(1−DYi(Gi(x))]
(1)

where Gi generates images Gi(x) or ŷi, and DYi
discrimi-

nates the training sample Gi(x) from the real target yi. A sim-
ilar loss is applied to the inverse mapping Fi : Yi → X and
its discriminator DX . Since these adversarial mapping func-
tions are under-determined and prone to overfitting, further
reduction of mapping functions is achieved through cycle-
consistency, i.e., x → Gi(x) → Fi(Gi(x)) ≈ x. Similarly,
another inverse cycle-consistency is introduced that learns the
transformation back yi → Fi(yi)→ Gi(Fi(yi)) ≈ yi. This
is achieved by using a cycle consistency loss, defined as

Lcyc(Gi, Fi) = Ex∼p(x)[||Fi(Gi(x))− x||1]
+ Eyi∼p(yi)[||Gi(Fi(yi))− yi||1]

(2)

The aforementioned generative model is trained with im-
ages of regular floods as well as other stylized contexts. At
the end, the reconstructed images Fi(Gi(x)) closely match
the input images x. These stylized images Gi(x) are then
used in the training of the CNN flood detection model.

3.2. Image Classification

Given all the CycleGAN models, each training image I0i
can be transferred into N types of contexts. The syn-
thetic images can be represented by I1i , I

2
i , . . . , I

N
i , re-

spectively. In each training epoch, the switch randomly
selects one of the transferred or original contexts for each
image in the training dataset. Then, it feeds the selected
images into the CNN model and updates the model pa-
rameters accordingly. In other words, in each epoch, a
proxy dataset Ik = {In1,k

1 , I
n2,k

2 , . . . , I
nM,k

M } is generated
to train the CNN model, where k is the epoch number and
ni,k ∈ {0, 1, 2, . . . , N} is the selected context of image I0i ,
randomly generated by the uniform distribution.

For the image classification, ResNet50 is applied, where
the last layer is replaced by a fully connected layer with sig-
moid activation. After the CNN model is trained, the test im-
ages are directly used to compute the prediction results, with-
out using any CycleGAN model to transfer the style.

4. EXPERIMENTS AND ANALYSIS

4.1. Experimental Setup

Datasets. We collected flood-related and non-flood images
from YouTube and Twitter with the corresponding keywords

Table 1: The size of the collected datasets

Training Test Style
Non-Flood Total 1866 1364 -

Flood

Total 8645 5072 21000
Regular - 3627 -
Night - 294 7000
Rainy - 799 7000
Blurry - 434 7000

and tags. First, we used the keyword “Harvey” which was
a major hurricane that occurred in the United States in 2017
with a severe inland flooding to search flood-related videos
on YouTube. Meanwhile, Twitter is leveraged to collect
flood-related visual data via Twitter API [18]. Both im-
ages and videos are collected from the tweets with hashtags
“flooding” and “flood”. The training set included all the
data collected from YouTube, however it randomly selected
30% of Twitter’s data. The remaining data from Twitter are
used as the testing set. All the images are manually labeled
as flood and non-flood for training and evaluation purposes,
while the flood-related images are tagged as “night”, “rainy”,
and “blurry” for evaluation purposes only, i.e., the proposed
framework is blind to these tags. Each image, if applicable,
can have more than one tag. Meanwhile, we also collected
style images from Google Images to train CycleGAN models
with the corresponding keywords. The number of images of
each context is shown in Table 1.
Computing Environment. An NVIDIA Tesla P100 GPU
with 16GB of GPU device memory is used to deploy the pro-
posed framework, including ResNet50 and all the CycleGAN
models in the experiment.
Hyperparameters. The ResNet50 model [19] pre-trained on
ImageNet [20] is used as the image classifier. Adam solver
[21] with learning rate=1e-3 and decay=1e-6 is applied to
train the image classifier for 100 epochs. We implement Cy-
cleGAN to transfer the image style and train the models with
Adam solver with learning rate=2e-4 for 150 epochs.

4.2. Experimental Results

Fig. 3 shows several samples generated by Cycle-GAN style
transfer model on our dataset. The first row of images in-
cludes original images from the collected dataset, while the
subsequent rows demonstrate the synthetic images generated
from each Cycle-GAN for blurry, rainy, and night contexts,
respectively. Although some of the generated images are not
realistic (e.g., blurry), it can still help the model to generalize
well and detect real-world flood images.

To demonstrate the effectiveness of the proposed frame-
work in transferring the style for each context (night, rainy,
and blurry), its performance (Recall) is compared with the
original CNN without style transfer (please refer to Table 2).
Recall or true positive rate is selected to show the number of
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Fig. 3: Cycle-GAN style transfer samples on the flood dataset

Table 2: Recall scores on the flood dataset separated by style

Method night rainy blurry
avg.
noisy

flood
(total)

CNN 0.785 0.795 0.791 0.790 0.898
Proposed
framework 0.831 0.927 0.873 0.877 0.936

correctly classified images for each context. It can be seen
from the table that the proposed framework significantly en-
hances the performance in all categories (the average recall
in three categories is increased by more than 8% and the to-
tal flood recall reaches 0.94). In other words, the proposed
model is able to accurately detect noisy and abnormal flood-
ing samples compared to the conventional CNNs.

Now the question is why Cycle-GAN is utilized in this
framework rather than other style transfer techniques. To
answer this question, we compare the proposed framework
with two other relevant style transferred methods, namely
MSGNet [16] and neural style transfer by Gatys [11], both
described in Section 2. Table 3 shows the comparison re-
sults between these three style transfer techniques and the
CNN model. As can be inferred from the table, CNN has the
highest precision compared to other techniques, meaning it
can detect non-flood images better than other methods. How-
ever, its recall value is the lowest among the others, which is
already discussed in Section 2. On the contrary, both style
transfer methods can achieve very high recall but significantly
lower precision. Conclusively, the proposed framework beats
all the benchmarks regarding the F1 score (the weighted
average of precision and recall) and accuracy.

Finally, Fig. 4 depicts several noisy flood samples that are

Table 3: Comparison results between different style transfer
techniques and the baseline

Method Precision Recall F1 Accuracy
CNN 0.916 0.898 0.907 0.855

MSGNet [16] 0.855 0.970 0.909 0.847
Style
transfer [11] 0.853 0.978 0.911 0.849

Proposed
framework 0.896 0.936 0.916 0.864

blurry

rainy

night

Fig. 4: Correctly classified samples by the proposed frame-
work for each style category on the flood dataset

correctly classified by our framework, whereas the regular
CNN cannot detect any of them. These results are evident
that the proposed adversarial augmentation model can signif-
icantly improve the existing disaster management systems.

5. CONCLUSION

This paper presents a new deep learning framework for real-
world flood event detection. CycleGAN is employed as part
of the proposed data augmentation to transfer various styles
(blurry, night, rainy, etc.) to regular flood images. This tech-
nique increases the generalization in deep learning, improves
the detection of real-world flood images collected from social
media, and reduces the need to have a large-scale annotated
dataset. Another important application of this framework is
to detect disasters from real-time images collected from pub-
lic cameras (e.g., network cameras) and assist the community
for better decision-making and faster and more reliable emer-
gency responses during a disastrous event.
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