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Abstract—Group detection is a fundamental problem in
sociological and behavioral data analysis and has attracted
much attention in recent years. Most of the current approaches
focus on using visual data, such as still images and videos,
to detect groups. One of the most important applications of
group detection is to assist psychologists to understand the
classroom dynamics. However, the camera recordings may be
unavailable and it could be infeasible to set up the cameras
without blind spots. Therefore, as an alternative approach to
group detection, we propose an audio-based framework that
utilizes multiple synchronized audio data streams collected
from wearable devices on each subject. In this paper, the
audio recordings collected from a preschool classroom over
multiple days are used to produce the group detection results
which are validated by clustering the subject locations collected
along with the audio data. The experiment shows on average
0.391 Normalized Mutual Information (NMI) scores for the
detected groups by the audio-based framework and location-
based clustering.

Keywords-group detection, classroom dynamics analysis, au-
dio processing

I. INTRODUCTION

Detecting conversational groups has recently drawn much
attention since it plays an important role in social group anal-
ysis, social robotics, and video surveillance [1]. Such results
can be applied to a variety of application domains, such
as improving human-robot interaction [2] and automated
comprehension of social communications [3]. Moreover, the
automated group detection results can provide objective and
quantitative measurements for interactive human behavior
analysis [4]. This particular analysis can be an initial step
in understanding the classroom dynamics and the effects
of social interactions on children’s cognitive and social
development.

Young children’s interactions, both with teachers and
peers, in early education programs have a long-lasting im-
pact on their cognitive and social development. The exposure
to the variegated and sophisticated vocabulary from teachers
is related to the preschoolers’ language gains, including the
growth in syntactic comprehension [5] and oral language
skills [6], as well as their later reading comprehension
abilities [7]. Further, vocal turn-taking between teachers and
children is related both to children’s vocalizations in the

moment and their vocabulary growth over the course of
the school year [8]. Social interactions with peers provide
children with the opportunities to learn through modeling
and imitation [9] as well as to expand their social and
cognitive knowledge through collaborations [10]. Interac-
tive plays with peers in the classroom facilitate positive
developmental outcomes in children’s language [11], [12],
social [13], learning [14], and cognitive competencies [15].
Thus, quantifying the simultaneous interactive dynamics
between children and their teachers and peers within the
preschool classroom is fundamental to understanding the
individual developmental trajectories and can help elucidate
the characteristics of interactions that can be leveraged to
promote the optimal development in all children.

Understanding the relation between early social dynamics
and later academic achievement is of particular importance
for children exhibiting delays in development as it could
provide an insight into features of interactions that would
benefit from targeted intervention. Children with hearing
loss experience an initial period of auditory deprivation
where their access to spoken language is limited, potentially
leading to delays in language use and acquisition. The partic-
ipation in the oral language education programs positively
impacts the oral communication abilities of children with
hearing loss [16]. While previous research has suggested
that children with hearing loss benefit from the exposure
to the enriched language environment of the oral language
education programs. What is missing from these accounts
is a rigorous examination of the in-the-moment features of
classroom dynamics within these intervention classrooms.

Since the spatial-temporal nature of the data increases
its complexity, machine learning techniques are commonly
applied to learn the pattern within the data [17]. Most of
the current research focuses on free-standing conversational
group detection (called F-formation detection) based on the
visual data such as still images and videos. These approaches
aim to localize o-space [18] which refers to a common space
that all the subjects in the group have direct, equal, and
exclusive access. Hung and Kröse first solved the problem
with dominant sets [19]. Following their work, game theory
[20], Hough voting [21], and graph clustering [1] algorithms



were proposed to improve the performance of F-formation
group detection. Ketti et al. [22] presented a graph-cut
algorithm that considers both probabilities of groups and the
visibility constraints, and achieved the currently best among
all the existing techniques. Recently, deep learning has also
been exploited for F-formation group detection [23].

While visual data has been exploited to detect interactions,
its use has certain limitations. First, to record a room without
blind spots, multiple cameras are needed and those cameras
need to be configured correctly. It could also be infeasible
to setup cameras in the environment, for example, when
there are open areas without fixtures to place the cameras
to or when the privacy is of concern. Meanwhile, visual
data can only provide information whether people gather
in space. It implies that the subjects share a common
space for conversation in the context of cocktail banquet or
poster section. However, in a general environment, such as
classroom, individuals could stand together without intention
to communicate. A more straightforward approach is to use
audio recordings to identify instances where the subjects are
involved in the same conversation. Therefore, in this paper,
we propose a group detection framework based on the audio
data collected by the audio recorders worn by the individual
subjects within a classroom to identify those who share the
same vocal input and those who have conversations with
each other.

The rest of this paper is organized as follows. Section II
introduces the related work and techniques of group detec-
tion and classroom dynamics analysis. Our proposed audio-
based group detection framework for classroom dynamics
analysis is presented in Section III. Section IV illustrates the
empirical experimental results for multi-day classroom data.
Finally, Section V highlights our conclusions and discusses
the future directions.

II. RELATED WORKS

A. Group Detection

Group detection based on visual data has been actively
studied as the F-formation detection problem [18]. The
dominant set approach was first developed in 2011 and
considers the affinities between subjects in the images as the
weights of a graph [19]. This idea is widely used to study
the correlation among semantic concepts [24] and was also
used in the later research while the method to determine the
affinity between subjects and the method to form the groups
are improved.

The game-theory for conversational group approach pro-
posed by Vascon et al. [20] utilizes a statistical model
to compute the affinity based on the possibility of two
subjects sharing attention and the evolutionary game theory
to consider the temporal information to refine the affinity.
Papers [1] and [21] utilized the graph clustering techniques
and Hough voting strategy respectively to determine which
subjects belong to the same group. Ketti et al. [22] proposed

the graph-cut algorithm to integrate positions, orientations,
and visibility constraints to determine the groups, which can
achieve the state-of-the-art performance.

Other than the visual-based approaches, group detection
is also exploited based on the location sensors [25], which
focuses on the subjects sharing the same trajectory over time.
In this approach, data collected from multiple sensors are
leveraged to identify the trajectory of individual subjects
using the Kalman filter and detect the groups with relative
clustering techniques.

B. Classroom Dynamics Analysis

Much of the previous work that studied classroom dy-
namics among children relied on relied on teachers’ obser-
vations, interviews with children, as well as experts’ manual
coding of classroom interactions. Both teacher ratings of
the frequency with which children play or have conflict
with one another as well as the students’ own reports of
peers who they do and do not like to play with have been
used to construct classroom networks of interactions [26],
[27]. While teacher observations and children’s self-reported
friendships can provide global information regarding the
peers who the children generally play or have conflict with,
they miss out on the moment-to-moment or day-to-day
variation in interactions and friendships.

Manual coding schemes, on the other hand, involve ob-
serving one child at a time and recording the features of
their individual interactions, including the valence of their
interactions (positive vs. negative) as well as their proximity
to each of their peers [27]. While these coding schemes
provide rich information for individual children over short
intervals of time (i.e., 25 minutes of the observation), they
are unlikely to capture all the interactions going on at the
moment. Researchers have also employed head-mounted
cameras worn by children in the classroom to record their
linguistic environments from the first person perspective, i.e.,
individuals’ language inputs and uses [28]. However, this
analyzing data collected from this measurement technique
is labor intensive, requiring manual transcriptions of multi-
hour recordings.

To overcome the labor intensive nature of manual coding
of interactions and to broaden the scope of simultaneous,
moment-to-moment information that can be acquired, re-
searchers have begun to apply automated data collection
techniques to understand the classroom dynamics. The
LENA system, which is composed of lightweight audio
recorders and pattern recognition software, allows for the
continuous, automated collection and analysis of children’s
language experiences, including both their language input
from peers and adults and their own language use, in every-
day contexts like the classroom [8], [29]. Radio frequency
identification (RFID) technology has also been employed
in the classroom to capture continuous measurements of
children’s location and movement to generate the measures



Figure 1. The proposed audio-based group detection framework

of the velocity of movements, and to indicate when children
are in social contact [30].

III. AUDIO-BASED GROUP DETECTION FRAMEWORK

A. Overall Framework

In this paper, we focus on the proposed group detection
framework based on audio data. As shown in Figure 1, the
proposed audio-based group detection framework includes
three steps, automated speech recognition (ASR), network
formation based on the transcripts, and graph-based cluster-
ing. The inputs of this framework are a set of audio files
which are collected by wearable devices on each subject in
the room, and these audio files are synchronized in time,
i.e., all the audios start and end at the same time. After
that, each audio recording is transcribed by the ASR engine
and converted to texts with timestamps, indicating the begin-
ning and end of the transcript. The text data of individual
subjects are then analyzed to compute the affinity among
the subjects and form the network, where the connection
between subjects are represented by the weights of the graph.
In the end, the graph-based clustering algorithm is used to
produce the groups for each time period. In particular, the
self-tuning spectral clustering algorithm [31] is applied to
automatically determine the number of clusters (i.e., number
of groups). In this paper, the groups will be identified at
every observation period of t seconds and the gap between
two adjacent observation periods is denoted as ∆t seconds.
Therefore, the i-th observation periods can be defined as
Ti = [(i− 1)×∆t, (i− 1)×∆t + t], i = 1, 2, . . . . All the
subjects will be assigned to one and only one group for each
observation period and all the subjects in the same group are
supposed to share a common conversational environment in
the specific period of time.

B. Automated Speech Recognition

Based on our definition of a group, the subjects in the
same group should be involved in the same conversation.
Therefore, in the proposed framework, audio data are first
converted to transcripts with the pre-trained ASR model.
Since all the audio data collected by the wearable devices
could include various types of noise and could be affected
by many unmanageable factors, this step could also benefit
the overall performance by mitigating the effect of the noise
in the audio recordings. We assume that the subjects are
in the same conversational environment if their recorders
contain the same conversation, i.e., have the same or similar
transcripts.

Automated speech recognition has been studied in the
past decades. Due to the recent advances in deep learn-
ing [32], the performance of the ASR system has been
improved significantly and is ready to provide stable re-
sults [33]. Deep learning models are able to learn audi-
tory features from large amounts of data and thus illus-
trate superior performance in all benchmarks [34]. In this
study, we apply Google Speech-to-Text cloud service1 to
produce the audio transcription results. The output of the
ASR module include the transcripts and the start time
and end time of each word in the transcripts. Therefore,
we denote the outputs of the ASR system as a list of
words w1, w2, . . . , wN and their corresponding timestamps
(ts,1, te,1), (ts,2, te,2), . . . , (ts,N , te,N ), where wk is the k-
th word in the transcript, N is the number of words in
the transcript, and ts,k and te,k are the start time and
end time of wk. Meanwhile, the transcription ensures that
there is no overlapping time period of any two words, i.e.,
∀k1, k2 ∈ [1, N ], k1 6= k2, (ts,k1 , te,k1)

⋂
(ts,k2 , te,k2) = ∅.

In other words, the words in the transcript come successively,
i.e., ∀k1 < k2 ∈ [1, N ], ts,k1

< te,k1
< ts,k2

< te,k2
.

C. Transcript-based Network Formation

Among all the subjects in the experiments, the relation be-
tween each pair of subjects can be regarded as an edge in the
graph while each vertex represents a subject. Therefore, the
relationship among all subjects can be naturally represented
by a weighted graph G = (V,E,W ), where V refers to the
set of vertices, E refers to the set of edges, and W refers
the weights of the edges in graph G. The weights of each
edge represents the affinity of a pair of subjects connected
by the edge. Without loss of generality, we assume that the
higher the affinity between the subjects, the smaller weight
is assigned. In Figure 2, an example network of six subjects
is depicted. The numbers on the edges indicate the affinity
between two connected subjects. Subjects C and E have the
largest weight and thus they have the lowest affinity.

In order to compute the affinity between subjects in every
observation period, the transcripts involved in the period is

1https://cloud.google.com/speech-to-text/



Figure 2. An example of the network representation

utilized as the inputs for the analysis. For the i-th observation
period, the words outside of Ti are first filtered out. The word
wk will be included if it satisfies the constraint below.

(ts,k, te,k)
⋂

Ti 6= ∅. (1)

We denote the list of words from the transcripts of subject
j as Lj . Thus, the affinity between subject j1 and j2 can be
represented by the distance between Lj1 and Lj2 , denoted
as d(Lj1 , Lj2). To appropriately measure the distance, we
propose to use the Manhattan distance between the word
count vectors,

dM (Lj1 , Lj2) =
∑
w∈W

(|Nj1(w)−Nj2(w)|), (2)

where W is the set of words presented in either Lj1 or Lj2 ,
and Nj1(w) and Nj2(w) are the word count of w in Lj1

and Lj2 , respectively.
Alternatively, Levenshtein distance between two lists of

words [35] can be used to evaluate how similar two tran-
scripts are. The Levenshtein distance can be computed by
dL(Lj1 , Lj2) = dlev(p, q)

∣∣∣p=|Lj1 |,q=|Lj2 | , where

dlev(p, q) =


max(p, q) if min(p, q) = 0

min


dlev(p− 1, q) + 1,

dlev(p, q − 1) + 1,

dlev(p− 1, q − 1) + Ip,q

otherwise

|Lj | is the number of words in Lj , Ip,q is 1 if the p-th
word in Lj1 and the q-th word in Lj2 are different and
Ip,q is 0 otherwise. Here, p and q are non-negative integers
ranged in [0, |Lj1 |] and [0, |Lj2 |], respectively. Levenshtein
distance is commonly used in approximate string matching
and the evaluation of automated speech recognition, and it
measures the minimal number of edits (insertion, deletion,
and substitution) of words required to make Lj1 and Lj2 the
same.

Algorithm: STSC for group detection

Inputs: Affinity matrix A ∈ RS×S

Outputs: Number of groups Ng and the subjects in each
group

1: Compute the normalized affinity matrix
Â = D−1/2AD−1/2

2: Compute X = [x1, x2, . . . , xS ], where x1, . . . , xS are
the eigenvectors of Â

3: for c = 1 to S do
4: Calculate Rc = arg minRc

lossc by the gradient
decent algorithm, where lossc is defined in Eq. (3)

5: Compute the minimized cost lossc based on Eq. (3),
given the optimized rotation Rc

6: end for
7: Determine the optimal number of groups by

Ng = arg minc lossc
8: Compute Z∗ = XRNg

9: for i = 1 to S do
10: Assign subject i to the ki-th cluster, where

ki = arg maxj Z
∗
ij

2

11: end for

Figure 3. Description of STSC Group detection algorithm

Although dM is simpler to compute and compare the
similarity of each transcript pair, it neglects the order of the
words in the transcripts. Therefore, dL should better reflect
the affinity between subjects.

D. Group Detection

Once the affinity is computed and the network graph is
formed, a group detection can be performed using the clus-
tering algorithm. In this study, we apply spectral clustering
to detect the groups sharing the same conversational envi-
ronment in each time period, which considers the network
structure and minimizes the in-group Levenshtein distance
between the subject pair. Since in the classroom dynamics
analysis, it is almost impossible to manually determine the
number of groups in each time period, it is essential to
determine the number of clusters automatically. Therefore,
instead of regular spectral clustering, Self-Tuning Spectral
Clustering (STSC) [31] is able to estimate the optimal
number of clusters based on the eigenvectors of the affinity
matrix A, where A = {aj1j2}S×S , aj1j2 = d(Lj1 , Lj2) and
S is the number of subjects in the experiment. The STSC
algorithm for group detection is summarized in Figure 3,
where D in step 1 is a diagonal matrix and the i-th element
in the diagonal can be computed by Dii =

∑S
j=1 aij . The

recovery of rotation Rc as mentioned in step 4 of STSC
algorithm is conducted by the gradient decent method, which



minimizes the objective function:

lossc =

S∑
i=1

c∑
j=1

Z2
ij

M2
i

, (3)

where Z = XRc, X is the column-wise concatenated
eigenvectors, and Mi = maxj Zij .

For each time period, the proposed framework is able to
generate the number of groups for that time period and the
subjects in each group.

IV. EXPERIMENTS AND EVALUATIONS

A. Data Collection

In order to validate the effectiveness of our proposed
framework, the audio data collected in multiple days of a
classroom are used in the experiment. All the data were
collected from children (ages 2.5 to 3.5 years old) enrolled
in an English-dominant oral language inclusion classroom
for children with hearing loss and their teachers.

The audios from all children and teachers were recorded
using LENA Digital Language Processors (DLPs). Contin-
uous measurements of children’s location were collected
using the Ubisense Dimension4 system. The Ubisense sys-
tem is composed of four sensors, one in each corner of the
classroom, which are linked by a timing and network cable.
The Ubisense sensors provide data to a dedicated laptop
running the Ubisense software, and track active tags (radio
impulses emitting) worn by the children and teachers. The
radio signal emitted by each tag was used to locate children
in three-dimensional space by means of triangulation (angle
of arrival = AoA) and time differences in arrival (TDoA).
The Ubisense system has the capability to track up to 40
participants 4 times per second and the accuracy of 15 cm
in the three-dimensional space.

Children wore LENA audio recorders in specially de-
signed vests that contained a pocket on the front to house
the recording device. In addition to the LENA recorder,
children also wore Ubisense tags in pockets, one on the
left and right sides of the vest. Teachers wore the LENA
recorders and Ubisense tags in fanny packs worn around
their waist. Ubisense and LENA recordings were collected
simultaneously once per week for the entirety of the school
day (approximately 4 hours) for 10 consecutive weeks dur-
ing the spring semester (March-May of 2017). On recording
days, there was an average of eight children and three adults
(one primary teacher and two aides) in attendance. Because
individual attendance varied, children contributed an average
of 8 recordings (SD = 1.69) to analyses.

B. Network in Classroom

As shown in Figure 4, the Levenshtein distance between
each pair of subjects in the classroom in one example day
is presented, where the x-axis shows the time period over
the day (t = 180,∆t = 60) and the y-axis shows the

Table I
THE COMPARISON OF NMI AND AMI SCORES BETWEEN GROUP

DETECTION OF BASELINE METHODS AND SPATIAL DISTANCE

Features NMI AMI
Difference in MFCC 0.218 0.097
Difference in Spectrogram 0.273 0.125
Manhattan distance of word count vector 0.388 0.179
Levenshtein distance of transcripts 0.391 0.191

Levenshtein distance between the paired transcripts in each
time period. On that day, 10 children and all three teachers
were present in the classroom. Each line represents the trend
of Levenshtein distance for a specific pair of subjects. The
pair of subjects is more likely to be in the same group when
the Levenshtein distance is closer to zero. On the other hand,
it can be clearly observed that the trend lines of some subject
pairs are clustered together at similarly high Levenshtein
distances, which potentially indicates that the subjects in
two groups are having different conversations.

C. Group Detection

In Figure 5, each marker represents the average location
of a subject in the classroom in the time period. The
marker with the same color belongs to the same group.
Figure 5(a) shows that the audio-based group detection
framework clusters the subjects that are close to one another
together. Meanwhile, Figure 5(b) shows a failure case, where
the audio recording of subject 1 is not correctly transcribed
due to the mechanical noise in the audio and thus not being
clustered with subjects 0, 2, and 4 correctly.

Furthermore, to validate the effectiveness of our proposed
framework, the location information of each subject in the
classroom collected from the Ubisense data is used as an
input to the STSC algorithm to generate the clustering results
and this cluster is used as the ground truth to compare the
performance of our proposed framework with some baseline
methods. The normalized mutual information (NMI) scores
and the adjusted mutual information (AMI) scores [36]
between the spatial-distance-based groups and the groups
generated by other algorithms are compared. The methods
to be compared include (1) Euclidean distance of the Mel
Frequency Cepstral Coefficients (MFCC) features of the
audio data between two subjects [37], (2) Euclidean distance
of the Short-Time Fourier Transform (STFT) Spectrogram,
(3) Manhattan distance of the word count vector, and (4)
Levenshtein distance of the transcripts. The average NMI
and AMI scores are shown in Table I and our proposed
framework shows much higher mutual information scores
compared to the baseline methods (the second and third rows
of Table I).

V. CONCLUSION AND FUTURE WORKS

In this paper, an audio-based group detection framework
is proposed for classroom dynamics analysis. The proposed



Figure 4. One-day Levenshtein distance trend for all subject pairs

(a) Success Case of group detection (b) Failure Case of group detection

Figure 5. Visualization of example group detection results based on audio data in a specific time period

framework is able to automatically detect groups based on
the audio data. These results could be used to provide
quantitative measurements for classroom dynamics and help
behavior analysis and classroom-based research. Based on
our experimental results, our proposed framework can detect
groups based on the audio data and outperforms the baseline
methods when the Ubisense data is used as the reference.

In the future, the performance of our proposed framework
can be further improved by incorporating different tech-
niques. First, the temporal information can be considered.
As discussed in Section II, game theory and other temporal
smoothing methods can be applied to integrate the informa-
tion over the time. Second, in addition to using the location
data as the ground truth, the orientation of the subjects can
also be considered. Third, the audio features such as MFCC
can be integrated into the proposed framework to improve
the robustness of audio-based group detection.

ACKNOWLEDGMENT

The research reported in this paper was supported by
grants from the National Science Foundation (1620294) and
the National Center for Special Education Research, Institute
of Education Sciences Award (R324A180203).

REFERENCES

[1] S. Inaba and Y. Aoki, “Conversational group detection based
on social context using graph clustering algorithm,” in Inter-
national Conference on Signal-Image Technology & Internet-
Based Systems, Naples, Italy, November 2016, pp. 526–531.

[2] R. Triebel, K. O. Arras, R. Alami, L. Beyer, S. Breuers,
R. Chatila, M. Chetouani, D. Cremers, V. Evers, M. Fiore,
H. Hung, O. A. I. Ramı́rez, M. Joosse, H. Khambhaita,
T. Kucner, B. Leibe, A. J. Lilienthal, T. Linder, M. Lohse,
M. Magnusson, B. Okal, L. Palmieri, U. Rafi, M. van Rooij,
and L. Zhang, “SPENCER: A socially aware service robot
for passenger guidance and help in busy airports,” in Field
and Service Robotics - Results of the 10th International



Conference. Toronto, Canada: Springer, June 2015, pp. 607–
622.

[3] A. Vinciarelli, M. Pantic, D. Heylen, C. Pelachaud, I. Poggi,
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