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Abstract—Autism Spectrum Disorder (ASD) is a neuro-
developmental disorder characterized by deficits in social
communication and restricted and repetitive patterns of be-
havior. Autism is estimated to affect 1 in 59 children in the
United States and costs roughly $35B to the society. Early
diagnosis of ASD is vital for promoting early intervention
and positive developmental outcomes. Traditional diagnostic
procedures for ASD include structured behavioral observation
by a trained clinician. Diagnosticians typically rely on the
Autism Diagnostic Observation Schedule (ADOS-2) to quantify
ASD symptoms. In this paper, we take a parallel approach
and investigate language modalities and discover associations
between objective measurements of social communication and
ASD symptoms. We analyze 33 children with autism and
extract their linguistic patterns from their conversations with
diagnosticians in a clinical setting. Our methods use Long-
Short Term Memory (LSTM) networks to learn Speech Activity
Detection (SAD) and speaker diarization patterns to generate
the vocal turn-taking metrics. We then use our novel proposed
pipeline to predict the ADOS-2 Calibrated Severity Scores
(CSS) of Social Affect (SA). The proposed framework achieve
state-of-the-art predictive diagnostic estimates of ASD severity
compared to industry’s leading algorithms. Results compared
with the language acquisition system Language ENvironment
Analysis (LENA) and other algorithms indicate a significant
improvement in the R? measure.

Keywords-Multimedia Data mining, Medical Diagnostics,
Autism Spectrum Disorder (ASD), Deep Learning

I. INTRODUCTION

Knowledge Discovery and Data Mining (KDD) has been
extensively used in interdisciplinary domains such as CRM,
education, clinical medicine, fraud detection and genetic data
mining [1]. These methods focus on extracting useful knowl-
edge from raw multi-modal data that would be inaccessible
by traditional machine learning methods. Recently, there
has been a lot of interest to utilize data mining methods
in exploring niche behavioral and psychological symptoms
such as autism spectrum disorder (ASD) [2]. The challenge
of extracting predictive features from highly collaborative
domains such as in autism research is that it draws upon
research from statistics, databases, pattern recognition, data
visualization, and high-performance computing. Thus, until
recently, the computation power as well as the penetration
of machine learning in behavioral sciences was limited.

However, with the advent of ground-breaking deep learning
methods such as Convolutional Neural Networks (CNNs)
and Long-Short Term Memory (LSTM) networks [3], a
myriad of highly predictive deep features are uncovered [4].
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Figure 1. Differences in spectral and deep features between audio of adult
and child, which allows us to model predictions based on the type of audio
data.

Diagnoses of ASD can be difficult to obtain as they can
only be made upon observation by a highly trained examiner
[5]. The difficulties in processing data such as child speech
in a daily-life environment have been highlighted at the 2017
JSALT Summer Workshop at CMU [6], where it became
apparent that unconventional speech containing mumble,
cry, overlaps and other artifacts required finer models and
motivated the organization of the 2018 DIHARD Challenge
[7]. To date, there have not been large-scale investigations
that objectively measure social communication disturbances
in children with ASD [8].

In this paper we use data from a sizable ASD study and
mine useful patterns using efficient deep learning. Spec-
trogram samples from the study, shown in Figure 1(a,b)
illustrates the differences in audio patterns between adult and
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Figure 2. Resources to study objective measures at the Early Play and Development Laboratory in the Department of Psychology.

child vocalizations. This allows us model predictions using
CNNs and separate speakers based on their deep features
as shown in Figure 1(c). Currently the “gold standard” for
autism diagnosis includes the Autism Diagnostic Observa-
tion Schedule (ADOS-2) [9], a semi-structured play-based
assessment. Our data is collected following the ADOS-2
standard in a controlled environment as shown in Figure 2a.
Using face mounted Pivothead glasses, worn by examiners
and parents (Figure 2b), we observe social communication
as well as restricted and repetitive behaviors of interests.
The assessment takes between 40 to 60 minutes to complete
and includes a variety of materials and activities that are
chosen based upon the child’s language fluency (Figure 2c).
The children are treated on a variety of symptoms and
given a calibrated severity score (CSS). The diagnosis is
captured from all attendees and processed for multi-modal
analysis in the control room (Figure 2-d). This paper uses
deep learning methods to investigate the association between
objective measurements of social communication and ASD
symptoms in 33 children having ASD. Linguistic patterns
of, children having ASD, are explored to derive objective
measures that directly predict the CSS Social Affect. A data
mining pipeline that uses these vocal patterns is developed to
model a non-parametric estimator that accurately classifies
ADOS-2 symptoms.

The rest of the paper is organized as follows. Section II
highlights the methods developed by other research teams.
The methodology applied as well as the developed prediction
framework are described in Section III. The experiments and
results are explained in Section IV. Finally, the conclusion
is given in section V with indications of improvements and
future work.

II. PREVIOUS WORK

Autism Spectrum Disorder is defined by restricted, repet-
itive patterns of behavior, as well as persistent disturbances
of social communication and interaction across multiple
contexts [10]. These patterns can be subdivided into linguis-
tic, social, facial and movement features that explain ASD
symptoms.

Linguistic deficits are a key component both of the
diagnostic profile of ASD and the early identification of this
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Figure 3. Studies on child communications are indicative of differentiation
between children with and without ASD.

disorder [11]. Initial referrals are often based on concerns
over language delay, with other social challenges becoming
more apparent later on [12]. Cohen et al. [13] found that
higher child latency to parent approach was associated
with higher ADOS Social Affect severity scores. A social
network analysis indicated that children with communica-
tion disorders (deaf/hard-of-hearing children) exhibited more
heterogeneous social interaction patterns than other children
[14] (Figure 3a). The average distance between child and
parent was also related to the child’s RRB CSS at the level
of a trend, r = .74,p < .10.

Esposito et al. evaluated and distinguished ASD risk and
outcome patterns from vocal differences notable early in de-
velopment [15]. 15-month-old infants at high risk for ASD,
who went on to receive a diagnosis of ASD by 36 months,
were observed to produce cries that are shorter and of a
higher fundamental frequency than their peers (Figure 3b).
Young children with ASD can also be differentiated from
their typically developing peers (18-37 months) based on
the content of language produced (e.g., length of utterance,
number of nouns, etc.) [16]. However, research addressing
the cross-context stability of social communication distur-



bances is rare in part because the field has lacked efficient
methods for measuring behavior [17]. Further application of
these measures may improve diagnostic accuracy as well as
elucidate the importance of child relative positioning and
approach in social interactions.

Natural language processing has also been studied to
model ASD symptoms. Luo et al. [18] used standard nat-
ural language processing methods to digitize and visualize
these descriptions. The complex patterns of these descriptive
sentences exhibited a difference in semantic space between
individuals with ASD and control participants. Studies from
neuroscience have highlighted that the corpus callosum and
intracranial brain volume holds significant information for
detection of ASD [19]. The approach uses multi-source
joint analysis scheme for collecting/processing data for ASD
classification. Their approach uses mostly linguistic features
based on vocalizations and word counts and classifies the
tones and content of the conversations to find cues in ASD.
Vocalization patterns across interactive and non interactive
contexts have shown to indicate a strong predictive correla-
tion for early communication development [20].

Spectrograms have long been used to directly model vocal
patterns in speech of infants and children. Authors in [21]
use spectograms to model infant crying patterns based on
differences in the distribution of energy in the spectrograms.
Azizi [22] demonstrated several abnormal features in the
spectrographic analysis of children with ASD. Visual as-
sessment investigates the intonation pattern, mean of pitch,
amplitude, duration, intensity, and tilt in the ASD. A skill
such as prosody that unobtrusively conveys emotional and
pragmatic aspects of speech may be particularly vulnerable
in children with autism, but those who do not have learning
difficulties may be capable of increasing their prosodic
awareness and ability [22].

Recently, usage of deep learning based computer vision
methods towards objective measurement of of child facial
expressions have seen significant increase in interest [23].
These measurements are used to better understand children’s
emotional reactivity and early interaction [24], and detected
patterns of smile [25] and head motion atypicalities [26] in
children with ASD. Children with ASD show atypical pat-
terns of attention to internal features of the face, particularly
the eyes. In such conditions, computer vision methods can be
used to capture both gazes and smiles at adults from children
in first-person-video [27]. An issue that can arise with deep
learning methods is the semantic gap between the low-
level deep features and their high-level semantic meaning
[28]. There has been considerable effort towards bridging
the connection between deep features and the conceptions
formed by representation systems [29]. Other notable efforts
include analyzing brain imaging activate patterns to inves-
tigate patterns of functional connectivity [30]. Rad et al.
[31] studied atypical postural or motor behaviors in social
interactions using deep learning methods. They used deep

learning to learn the discriminating features from multi-
sensor accelerometer signals.

III. THE FRAMEWORK

Movement toward objective quantification of ASD symp-
toms has the potential to increase the reach of screening,
decrease time to diagnosis, and reduce ethnic and sex-based
disparities [32]. These objective measurements can produce
quantitative indices of ASD symptoms that could inform
clinical categorization and referral [33].

In this paper we propose a pipeline framework that
mines for meaningful objective measurements of social
communication and language across contexts and how they
are associated with autism severity indices and language
capabilities. The overall framework diagram in Figure 4
shows the complete process from raw audio to ADOS-2
CSS score predictions. The objective is to separate speakers
and utilize the vocalizations and vocal duration as predictive
objective measures. We start by transforming the captured
audio into Mel Frequency Cepstral Coefficients (MFCC)
and train a CNN using manually coded samples, to ignore
the non-speech segments. The Long Short-Term Memory
(LSTM) [3] networks identify speakers and speaker changes
on a frame-by-frame level [34]. The speaker activity and
change are used to generate diarization metrics to incor-
porate the number and duration of vocalization regimes,
e.g., child speaking versus child yelling. This data is used
to train a Synthetic Random Forest with interactions and
1000 replications to predict the Social Affect scores. The
Synthetic Random Forest prediction model estimates ADOS-
2 Calibrated Severity Scores (CSS) with R? of 0.402.

Our methods use hand annotated samples of from 33
ADOS-2 examination interviews. Around 2000, 2-second
clips were hand annotated as ”Adult”, ”Child”, ”"Both”, and
“Irrelevant”. These annotations were used to generate spec-
trograms and train a CNN to classify out the irrelevant audio.
A batch size of 32 spectrograms were selected. An adaptive
learning rate schedule was chosen that increases by 5%
when validation error rate decreases by 1%. Furthermore,
the learning rate decreases by 20% when the validation error
rate decreases by 0.5%. We halt the training process when
the validation error rate drops below 0.1%. Since we are
dealing with only three closely related classes, regularization
and dropout were not used, as they reduce the classification
accuracy. We repeat the train/test process several times
with different weight initialization. The best classification
accuracy for removing irrelevant artifact frames was 84.7%
with a feed-forward network, an initialized learning rate of
0.001, and a momentum coefficient of 0.75. The network
had 0.65M parameters. Details of computing MFCC, LSTM
Noisemes event detection and speaker diarization are pro-
vided in the following sections.
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Figure 4. The overall workflow of the proposed framework.

A. Mel-Frequency Cepstral Coefficients (MFCCs)

The audio signal is fed to the pipeline in the form
of frequency spectrum representation called Mel-Frequency
Cepstral Coefficients spectrograms (MFCC). Spectral rep-
resentations of audio signal are widely used in speech and
speaker recognition because of their low-dimensional and
perceptually-relevant representation of the signal. The most
common method to calculate spectrograms is using the
Short-time Fourier Transform (STFT) to compute the sinu-
soidal frequency and phase content of the time varying sig-
nal. First the energy spectrogram is computed by taking the
magnitude of the complex-valued STFT v/a? + b2; where
a and b are the real and complex components of the STFT.
GPU implementation of TensorFlow Discrete Fourier Trans-
form (DFT) operations are used without any specific kernel
optimizations. In the TensorFlow DFT, usually there are 513
unique bins or frequency banks to compute the energy spec-
trogram. The Mel-spectrograms are calculated from the en-
ergy spectrograms using TensorFlow as well. Given a vector
x of n input amplitudes such as z[0], z[1], z[2], ..., [V — 1].
The Discrete Fourier Transform yields a set of n frequency
magnitudes defined as:
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Here, k is used to denote the frequency domain ordinal,
n is used to represent the time-domain ordinal and N is the
length of the sequence to be transformed. The signal must
be restricted to be of a size of power of 2 i.e. N has to
be power of 2 or must be zero-padded otherwise. Real sine
waves can be expressed as the sum of complex sine waves
using Euler’s identity
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Since the DFT is a linear function, the DFT of sum
of sine waves is the sum of the DFT of each sine wave.
So for the spectral case, you get 2 DFTs, one for the
positive frequencies and one for the negative frequencies,
which are symmetric. The Mel-spectrogram magnitudes are
further compressed by applying a non-linear logarithmic
compression. This helps to balance the data in low and high
energy regions of the spectrum that more aptly represents
the human auditory behavior.

B. Noisemes Event Detection

The proposed framework uses deep learning based event
detection using the Noisemes audio classifier [35]. Noisemes
is a neural network that detects speaker activity by evaluating
frame-level probabilities of 17 types of sound events (called
“noisemes”), including speech, singing, crying, etc. It uses a
pre-trained bidirectional Long Short-Term Memory (LSTM)
network with 400 hidden units in each direction. The method
extracts acoustic features using the OpenSMILE toolkit [36].
Overall 6,669 low-level acoustic features such as MFCC
and fundamental frequencies are extracted and then reduced
to 50 dimensions using PCA. The output of this tools is
the time labels with ‘speech’ or ‘non-speech’ tags used to
calculate the speaker activity detection (SAD) and speaker
change detection (SCD). To attribute each occurrence of
speech to a specific speaker, the output of Noisemes is fed
into a diarization tool called DiarTK [34].

C. DiarTK Diarization

DiarTK is an open source non-parametric clustering and
re-alignment method from the DiViMe library [34]. It con-



tains a set of algorithms which were designed to automat-
ically detect and label speaker turns in naturalistic audio
recordings. DiarkTK works on the principle of agglomera-
tive information bottleneck clustering [37] which is a bottom
up clustering approach based on conditional distribution of
data.

Speaker Activity Detection (SAD)

Speaker Change Detection (SCD) and Diarization

0 100 200 300 400 500 600

Figure 5. A reference sample case study shows the SAD, SCD and
Diarization scores with timing.

The diarization step helps us learn vocal turn taking
patterns in child and adult speech. The DiarTK model is
imported in the virtual machine as a C++ open source
toolkit. At the end of the process, the resulting clusters
correspond to identified speakers with their vocal occur-
rences and durations of their speech. The estimated final
diarization output is shown in Figure 5. We extract this
speaker information and use in a Synthetic Random Forest
to train the final prediction model that estimates ADOS-2
Calibrated Severity Scores (CSS).

D. Synthetic Random Forest

Random forests were chosen as the final classification
stage of the framework because of their ability to handle
very high dimensional spaces. The metrics from Noisemes
and DiarTK are converted into a table of features containing
vocalization frequency and duration. We use this data to
train a synthetic random forest with three-way interactions
and 1000 replications to predict the ADOS-2 CSS score.
The random forest is implemented as an aggregation of
ntree number of trees, usually in thousands, and each tree
is grown by bootstrapping a randomly sampled vector mtry
from the complete dataset. Each tree in the random forest
collection is grown non-deterministically with a two-stage
method i.e. bootstrapping and random variable selection
resulting in substantially de-correlated trees. Each tree is
grown to contain nodesize samples in the terminal node.

The forest is built by growing the trees based on a
random vector 6; such that the tree predictor h(x,6y)
represents a predicted probability specified by the class,
ranging from O to 1. Thus, the vector ) contains the
predicted probabilities of the outcome variable Y. The final

b Variable Importance for the speaker profiles
036

0.2

S
i
R

’
0.1
-0.17 -0.18
- -0.24
-0.26

s
&

04
1
Spkr1
Spkr2
Spkr3
Spkr4
Spkr5
Spkré
Spkr7
Spkr8
Spkr9
Spkr10

Figure 6. Variable Importance Metric illustrating the reciprocity of
correlation between vocalization and SA.

predictions are defined as the unweighted average over the
collection of predictor trees as shown in Equation (3), where
h(x;0),k = 1,..,ntree are the collection of the tree
predictors and x represents the observed input variable vector
of length mtry with the associated i.i.d random vector 6.

ntree

h(x) = (1/ntree) > h(x; 0). 3)

k=1

As k — oo, the Law of Large Numbers ensures
Exy(Y —h(X))? = Exy(Y — Eg(X;0))?, (4

where 6 represents the predicted probabilities of the outcome
variable averaged over ntree trees. The convergence in
Equation (4) implies that the random forests do not overfit.

Synthetic features are calculated using out-of-bag (OOB)
data to avoid overfitting. To guarantee that error rates and
variable importance are regularized, same sized bootstrap
draws are performed on all trees in the construction of the
synthetic forest. The variable importance metric of the vocal
turn-taking is shown in Figure 6.

IV. EXPERIMENT AND RESULTS

Many of the symptoms associated with ASD affect a
person’s social communication, usually with verbal and
vocal cues. Easily recognizable vocal symptoms of ASD
includes difficulty in conversation, talking at length, and
having an unusual tone of voice. In our study, vocal and
verbal cues from 33 children having ASD were collected
and analyzed using the pipeline proposed in section III.

The study was structured to perform ADOS-2 evaluations
by a clinical diagnostician in a 12 ft x 15 ft x 10 ft room
equipped with a ceiling mounted microphone (Figure 2a).
In addition, the examiner and parent each wore a Pivothead
1080 HD 8MP point of view (PoV) video-recording camera
in the form of eyeglasses. The examiners presented the
children with a series of toys and activities and created op-
portunities to engage in social interactions. The information
about each child’s social behaviors were recorded (e.g., eye
contact, language used, gestures, and social reciprocity) as
well as restricted and repetitive behaviors and interests (e.g.,



physical repetitive behaviors such as hand flapping, playing
with toys in specific ways, repetitive routines, and insistence
on sameness). The children were rated on a variety of
symptoms in each of these domains and receive a calibrated
severity score (CSS) ranging from 1 indicating little to no
symptoms of ASD to 10 i.e. high level of symptoms.
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Figure 7. Prediction of ADOS-2 social affect symptom severity based
on vocal turn-taking produced by deep learning models indicates a high
correlation with R?=0.402.
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Figure 8. Linear model fitted on the predicted vs True values indicates
an R? of .402 and a p-value of 0.6 x 1075,

In this paper, we expanded the objective measurements
of social communication by using raw audio data from the
ADOS-2 sessions and perform automatic diagnosis of ASD
severity. Audio signal of the assessments were processed us-
ing the proposed pipeline providing automated vocalization
detection and yielding child and adult vocal initiation counts
and turn counts within conversational vocal blocks. The
10 detected profiles are ’'Background’, ’Speech’, ’Speech
Non-English’, "Mumble’, ’Singing’, ’Singing with Music’,
’Music’, "Human non-speech’, *’Cheer’, and *Crowd’.

The framework extracts 20-dimensional Mel-frequency
Cepstral Coefficients (MFCC) with Cepstral Mean Normal-
ization (CMN). Since we only utilize MFCC features, frames
containing brief bursts of vocalizations such as “shouts”,
”blips” are classified by considering the surrounding signal
patterns in the frame. The Noisemes classifier produces
top-5 hypotheses for classification and considers a frame
for speech only if the corresponding hypotheses appear in
the target 17 Noiseme classes. This allows for running the
entire examination audio without much pre-processing. The
Noisemes class labels are fed to the diarization system for

profile detection. Few of the diarized classes were often
confused due to the close proximity of these utterances. Vo-
calizations such as “mumble” was confused as “speech” and
’singing”, “speech non-English” was confused with “crowd”
etc. However some of the confusions were unexpected and
difficult to explain such as “Cheer” and “Human non-
speech” was sometimes confused with “background” etc.
”Background” accounts for sounds such as children playing
with toys, door closing and sounds from other physical
objects.

The classified profiles were tabulated for their vocal
occurrence counts and duration of speech and subsequently
fed to the Synthetic Random Forest. The final estimated
ADOS-2 SA scores versus the ground truth are shown in
Figure 7. The proposed framework achieves highly accurate
predictions with a high coefficient of determination with the
ground truth. Figure 8 shows a strong linear relationship
between the predicted and true CSS SA class labels.

A. Comparison with Other Methods

As a comparative baseline, we contrast the proposed
framework with other common machine learning methods.
The compared methods were provided with the same objec-
tive measures i.e. vocal turn-taking and vocalization dura-
tions to predict the ADOS-2 SA scores. It was observed that
even when identical objective measures were used, the mod-
eled fit lacked objectivity and produced imprecise results.
The predicted S'A scores of each model were compared to
true SA scores using a linear regression fit in a leave-one-
out cross validation fashion. Table I presents the fit summary
for each of the compared estimators. The general trend is
that the prediction accuracy increases with more complicated
estimators. It was observed that Nearest Neighbor and Naive
Bayes did not perform much better than plain linear regres-
sion. Introducing Random Forests produced only a slight
improvement over simple linear regression whereas using
the synthetic random forest, in the proposed pipeline, with 3-
way interactions and parameter tuning performs much better.
Support vector machines (SVM) using the linear kernel
achieved a test frame R? of 0.21 which was among the best
but nearly half of the proposed framework.

An indication of significant association between SA and
S A is the p-value. The p-value for each model tests the null
hypothesis and a low p-value (< 0.05) indicates that the
two variables are significantly related. While some methods
were close to o the p-value was significant in only SVM
and the proposed method. F-statistic is another predictor of
correlation between the predicted and true labels with values
further from 1 indicate stronger relationship. In the proposed
framework, F-statistic was 20.84 which is relatively larger
than 1 given the size of our data. AIC and BIC are both
penalized-likelihood criterion used to compare non-nested
models, which ordinary statistical tests cannot do. A lower
value of AIC and BIC indicates closeness to the true model.



Table T
PERFORMANCE COMPARISON WITH OTHER COMMON MACHINE LEARNING REGRESSION METHODS.

Methods R-sq F-statistic | P-value | Log-Likelihood | AIC BIC Conf. Int. Lo | Conf. Int. Hi
Linear Regression 0.061 | 1.993 0.161 -77.262 158.5 | 161.5 | -0.011 0.621
Nearest Neighbor 0.087 | 2.960 0.095 -76.786 157.6 | 160.6 | -0.058 0.672
Naive Bayes 0.111 | 3.90 0.057 -72.221 156.7 | 159.7 | -0.011 0.721
Random Forest 0.162 | 9.7 0.062 -74.239 152.5 | 155.5 | 0.141 0.766
Support Vector Machines | 0.215 | 8.518 0.006 -74.285 152.6 | 155.6 | 0.169 0.955
Proposed Pipeline 0.402 | 20.84 0.6e-5 -69.80 143.6 | 146.6 | 0.442 1.154

Since the sample size is relatively small, the proposed
pipeline achieves only slightly lower values of AIC and BIC
but still lower than the rest.

V. CONCLUSION

Autism is increasingly prevalent in the United States with
increased concentration in ethnic minority and low-resource
populations. Early diagnosis of ASD is the key to control,
treat, and mitigate the symptoms. However, due to myriad
of reasons children are not diagnosed until 4 years of age. In
this paper, an automatic machine learning based approach is
proposed to detect audio regimes that directly estimate ASD
Severity Social Affect scores. This approach can help im-
prove diagnostic accuracy and mitigate ethnic and economic
disparaites in ASD diagnosis. The speaker activity and
speaker change are used on a frame-by-frame level to diarize
the vocal turn-taking in the audio signal. These features
are used to train a synthetic random forest and predict
the outcome scores. The proposed model achieves state-
of-the-art performance in predicting ADOS-2 symptoms.
Comparative analyses with other machine learning methods
indicate that the proposed method not only achieves better
R? but also sharper confidence intervals. Future research
directions include a unified recording device and software
toolkit for automatic speech processing developed by the
LENA Foundation.
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