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Abstract—The evolution of information science has seen an
immense growth in multimedia data, specially in the case of
CCTYV live stream capture. The tremendously large volumes of
multimedia data give rise to a particularly challenging problem
called the outlier events of interest detection. In the wake of
growing school shootings in the United States, there needs
to be a rethinking of our security strategies regarding the
safety of children at school utilizing multimedia data mining
research. This paper proposes a novel method to identify faces
of interest using live stream CCTV data. By integrating the
adversarial information, the proposed framework can help
imbalance facial recognition and enhance rare class mining
even with trivial scores from the minority class. Experimental
results on the Faces in the Wile (FIW) dataset demonstrate
the effectiveness of the proposed framework with promising
performance. The proposed method was implemented on
a low powered Nvidia TX2 for real-time face recognition.
The proposed framework was benchmarked against several
existing state-of-the-art methods for accuracy, computational
complexity, and real-time power measurement. The proposed
method performs very well under the power and complexity
constraints.

Keywords-Face recognition; Rare class mining; Low pow-
ered; Realtime multimedia.

I. INTRODUCTION

The evolution of information science has seen an immense
growth of data, which has attracted many researchers to the
field of multimedia data mining. In many real-world mul-
timedia applications, massive quantities of data are highly
imbalanced. Large volumes of multimedia data are generated
everyday, which gives rise to a particularly challenging
problem called the outlier events of interest detection. These
outlier events occur very infrequently and the detection of
these events is an interesting research problem. Despite
rigorous research endeavors, outlier detection remains one
of the most challenging problems in information science,
particularly for multimedia data.

Among them, outlier event mining from the imbalanced
data has gained more attentions as lots of applications do not
have uniform class distributions [1]. That is, the majority of
the cases belong to some classes (i.e., the majority classes)
and far fewer data instances belong to the minority classes.
The minority classes, however, represent the outlier cases of
interest, like unusual events in surveillance, disaster events,
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Figure 1: Adversarially generated images to capture key markers
of the target faces

intrusion detection, etc. Most classifiers are modeled by
exploring data statistics. As a result, they may be biased
towards the majority classes and show very poor classifica-
tion accuracy results on the minority classes, which is one
of the centric research tasks in content-based information
retrieval [2], [3]. To overcome this challenge, a lot of effort
has been put into Scale Invariant Feature Transform (SIFT)
and Histogram of Oriented Gradients (HOG) based feature
detectors [4]-[7]. Other methods try to increase the ratio of
positive and negative data (for example, video frames) to
improve the classification accuracy for automatic labeling
and to build the correlations between the labeled concepts
to utilize the underlying predictors [8]-[10].

In the wake of recent school shootings, there has been a
rethinking of our strategies regarding the safety of children at
school. Deep learning is at the forefront of face recognition,
however, deep learning models require a substantial amount
of computing power in order to perform face recognition.
Moreover, they require a large number of training samples



for each suspect in order to classify them correctly. Thus the
need is to develop a face recognition system that can

1) Work with a minimal number of annotated photos
2) Cheap and compact to be deployed at scale

3) Low powered so can use 9volts

4) Able to work online and offline

The rest of this paper is organized as follows. In Section
2, previous work on facial recognition and outlier target of
interest classification are discussed. Section 3 describes a
novel idea of reducing the method complexity in outlier or
rare face detection using the proposed Reduced RESNets.
Section 4 shows the experiment and compares the results
of the proposed system on the Labeled Faces in the Wild
(LFW) data set. Finally, Section 5 draws the conclusions and
lays out directions for future research.

II. PREVIOUS WORK

All face recognition methods depend upon retrieving and
comparing available faces in the databases to seek a possible
suspect match. However, with the tremendous increase in
the data size, the complexity and cost of the data storage
and retrieval for multimedia research and applications have
also increased tremendously [1], [11], [12]. How to store
and index multimedia data in various media types including
video, audio, image, text, etc. for efficient and effective data
retrieval has drawn a lot of attention [13]-[15]. To solve
this problem, multimedia data is labeled with respect to
their real high-level semantic meanings such as “Person”,
“Boat”, and “Football’. These labels are often referred
to as “concepts” or ‘“semantic concepts” [16], [17]. The
foremost challenge in this research domain is to reduce
the gap between the low-level features [18], [19] and high-
level semantic concepts [19]-[22], i.e., to build a connection
between the different meanings and conceptions formed by
different representation systems.

Previous work on adversarial training at scale has pro-
duced encouraging results, showing strong robustness to
(single-step) adversarial examples (Goodfellow et al., 2015;
Kurakin et al., 2017b). Yet, these results are misleading, as
the adversarially trained models remain vulnerable to simple
black-box and white-box attacks. The results by Kurakin et
al. [23] suggest that adversarial training can be improved by
decoupling the generation of adversarial examples from the
model being trained. Compared to IcGAN [24], their model
demonstrates an advantage in preserving the facial identity
feature of an input. This is because their method maintains
the spatial information by using activation maps from the
convolutional layer as a latent representation, rather than
just a low-dimensional latent vector as in IcGAN.

It can be seen that DeepFool [25] estimates small pertur-
bations in their generators. On the ILSVRC2012 challenge
dataset, the average perturbation is one order of magnitude
smaller compared to the fast gradient method. Adversarial

training caused a slight (less than 1%) decrease of accuracy
on clean examples in our ImageNet experiments. This differs
from the results of adversarial training reported previously,
where adversarial training increased accuracy on the test
set (Goodfellow et al., 2014; Miyato et al., 2016b;a). One
possible explanation is that adversarial training acts as a
regularizer. For datasets with few labeled examples where
overfitting is the primary concern, adversarial training re-
duces the test error. It is noteworthy to see that when using
Jacobian Clamping on MNIST, CIFAR-10, and STL-10
samples, reducing the number of discriminator steps does not
reduce the score, but it more than halves the wallclock time
[26]. Therefore, all zero-risk linear classifiers are not robust
to adversarial perturbations. Unlike linear classifiers, a more
flexible classifier that correctly captures the orientation of the
lines in the images will be robust to adversarial perturbation,
unless this perturbation significantly alters the image and
modifies the direction of the line [27].

The authors in [28] trained a robust network against
PGD adversaries, that will be robust against a wide range
of attacks. This classic attack model allows the adversary
to only solve problems that require at most polynomial
computation time. They employ an optimization-based view
on the power of the adversary as it is more suitable in
the context of machine learning. A multi-step adversarial
training [29] shows an improvement on white box accuracies
from the previous state-of-the-art, from 1.5% to 3.9%. They
further improve the white box accuracy from the adversarial
training baseline showing an improvement from 3.9%
to 27.9%. Adversarial logit pairing also improves black
box accuracy from the MPGD baseline, going from 36.5%
to 47.1% . Adversarial logit pairings in [30] forces the
explanations of a clean example and the corresponding
adversarial example to be similar. This is essentially a prior
encouraging the model to learn logits that are a function
of the truly meaningful features in the image (position of
cat ears, etc.) and ignore the features that are spurious (off-
manifold directions introduced by adversarial perturbations).

III. THE PROPOSED FRAMEWORK

Conventional real-time facial recognition systems com-
pute and match all faces in the camera view sequentially. But
sometimes we are only interested in identifying a few labeled
suspects. In these situations, we don’t need to compare and
match everyone so these systems can be implemented at
scale. Our proposed method performs Adversarial training
for preemptive identification of suspects entering schools.
The basic framework design is shown in Figure 2. The
framework has 4 novel characteristics

1) Reduced Complexity Residual Network

2) Adversarial training samples

3) Low power Implementation on Nvidia Tx2

The Reduced ResNet network proposed in this paper is
inspired from the Deep Residual Learning ResNet from
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Figure 2: Framework diagram of the proposed low powere facial recognition system
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Figure 3: Pipeline diagram of the hardware implementation of the proposed framework, on the Nvidia Jetson TX2

Micrososft [31]. Our empirical results indicate that the
residual network is well suited for facial recognition, and
with proper data conditioning and establishing a pipeline
around the network can significantly reduced the filters and
number of layers. More details are presented in Section I[V.A.
The training dataset was derived from three independent
datasets, i.e. the LFW dataset [32] and the VGG dataset [33],
with a total of 2 million images. Let us define each person
in the dataset as P = {1,2,..., K'}. We are working with
a training set {(X;,Y;)|X; € REXWx3y, ¢ pHXW for
all i = 1,...,7} consisting of Z three-channel RGB images
(X;), with uniform sizes H x W along with the true labels
(Y;) for each person. Then, for the k*" query i.e. the k"
individual in the repository, we have a given subset of images
Z(¥) that fit the response to that query, and a set F(*) that
represents a list of faces in those images. Let the final set
of descriptors for the subset of faces in F() as D), and
individual descriptors as d") € D@ j =1, ..., |DW|. | D]
is a subset of the set D). D = Ufil D) represents the set
of descriptors from all K=7695 individuals in our dataset.
One of our primary assumptions is that the pixels of each
image are independent and identically distributed that follow
a categorical distribution. Using this assumption we can
define a Residual CNN network that performs multinomial
logistic regression. The network determines the features
from the input layer and consequently provides classification

score using filtering for each label. We can thus model the

network as associative functions corresponding to L layers

with parameters denoted by W = [w™), w®) .., w®), that

is
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The classification score of a pixel x for a given class ¢

is obtained from the function f.(x; W), which is the cth

component of f(z; W). Using the softmax function, we can
map this score to a probability distribution:
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For the training of the network, i.e. learning the optimal
parameters W*, the cross-entropy loss is used, which mini-
mizes the KL-divergence between the predicted and the true
class distribution:
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Figure 4: Network design comparison of the proposed Reduced
ResNet. Left: the residual network with 34 parameter layers (3.6
billion FLOPs) as a reference. Right: the proposed network with 28
parameter layers (2.8 billion FLOPs). Table 2 shows more details
and other variants.

where z;; € R?* stands for the jth pixel of the ith training
image and y;; € P is its ground-truth label for an individual
person. The hyper-parameter A > 0 is chosen to apply
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Figure 5: Basic architecture of the Generative Adversarial Net-
works used to generate adversarial images for facial recognition

weighting for the regularization of the parameters (i.e.,
Lo-norm of W. At inference, a probability distribution is
predicted for each pixel via softmax normalization, defined
in Equation (2), and the labeling is calculated based on the
highest class probability. The final list of faces in our dataset
contains a 128-bit vector converted from each face image.

A. Generative Adversarial Networks

Generative adversarial networks (GANs) are a type of
artificial intelligence that makes use of the generator that
synthesizes data, and the discriminator that uses the same
data to determine whether the input is real. A target face can
mislead the conventional classifiers by trivial non-random
perturbations to only a few features of the face that otherwise
looks very similar to the original face. This degrading
process is caused by max-pooling [34] which applies a filter
to the input volume and outputs the maximum number in
every sub-region that the filter convolves around.

We use a multi-domain feature translation that takes an
input image X, and generates an output image Y; condi-
tioned on the target domain label ¢, G(X,c) — Y. The
discriminator produces probability distributions over both
sources and domain labels, S : X — {Ssqc(z, Sas(X))}
To make the generated images indistinguishable from the
real images, we adopt an adversarial loss as follows.

Eadv =Ex [logssrc(X)]+
Ech[log(l = Ssre(G(X, 0))],

where G generates an image G(X, ¢) conditioned on both
the input image X; and the target domain label ¢, while
the discriminator S tries to distinguish between real and
fake images. In this paper, we refer to the term Sg,..(X)
as a probability distribution over sources given by S. The
generator GG tries to minimize this objective, while the
discriminator S tries to maximize it.

Another auxiliary classifier on top of S imposes the
domain classification loss when optimizing both .S and G.
This loss is defined as

“4)

Lo = Ex e [*IOQSclS(CqX)]a )

Real
Fake



Figure 6: Portability comparison of the TX2 computing package

where the term S (¢’|X) represents a probability distribu-
tion over domain labels computed by S. On the other hand,
the loss function for the domain classification of fake images
is defined as

L, = Ex [-10gSus(c|G(X, )], 6)

In order to preserve the content of ths input images while
changing only the domain-related part of the inputs, we
apply a cycle consistency loss [24] to the generator

Erec = EX,C,C’ [||X - G(G(Xa C)a Cl)Hl]’ (7)

where G takes in the translated image G(X,c¢) and the
original domain label ¢’ as input and tries to reconstruct
the original image X. Finally, the objective functions to
optimize GG and S are written as

ED = _»Cadv + )\cls£le (8)

EG == 7£adv + )\CZS‘C(J;S + )\recﬁrec (9)

where ;s and \... are hyper-parameters for domain clas-
sification and reconstruction losses, respectively. We use
Acs = 1 and Aec = 10 in all of our experiments.

B. Low Power Deep Learning

Conventional deep learning methods are computationally
very demanding and require significant efforts to cut down
their demands while keeping the accuracy reasonably high.
We utilize the Nvidia Jetson TX2 platform for the realization
because it is made for manufacturing, industrial, and retail
product, ranging from commercial drones to hardware for
artificially intelligent cities. The size comparison of the TX?2
GPU is illustrated in Figure 6 while its basic specification
are listed in Table L.

Table I: The basic components of TX2 hardware/software
kit versus the previous TX1

Module | Description
GPU Pascal
CPU 64-bit Denver 2 and A57 CPUs
Memory 8 GB 128 bit LPDDR4 58.4 GB/s
Storage 32 GB eMMC
Wi-Fi/BT 802.11 2x2 ac/BT support
Video Encode | 2160p @ 60
2160p @ 60

Video Decode 12 bit support for H.265, VP9

1.4 Gpix/s up to 2.5 Gbps per lane
50mm x 87mm, 400-pin Compaitible
Board to Board connector

Camera

Mechanical

The basic design pipeline is shown in Figure 3 where
all processing components and device controllers are made
to ubiquitously share the 128-bit wide memory bus arbi-
tration and system memory. Since the TX2 kit consists of
several components, the pipeline was designed to minimize
the memory overhead by turning off all unused ports and
devices. The onboard 640x480 24fps camera continuously
captures streaming video that is passed to the OpenCV2
Multimedia acceleration Engine to be decoded and later
buffered. The video stream is directly passed to the dual
128 CUDA core Pascal GPU where our Reduced Resnet
model aligns, crops and encodes all faces in the given
frame. The landmarks are converted to 128-bit vectors for
each face-encoding and stored in the buffer. The dual 2GHz
CPUs then fuse the adversarial data samples to the deep
feature comparator and detect the suspects. The final video
is encoded with the bounding boxes of the classified faces
and displayed using the display head port.

IV. EXPERIMENT & RESULTS

The proposed framework was implemented in Python
using parallel and distributed (CPU+GPU) design practices
specific to Nvidia TX2 SDK. Our implementation was GPU
optimized and utilized CPU for specific tasks. We also
performed data augmentation in the form of adversarial
data generation that transfers styles of target domains while
keeping the facial integrity in place. Rather than training
a model to perform a fixed translation (e.g., brown-to-
blond hair), which is prone to over fitting, we train our
model to flexibly translate images according to the labels of
the target domain. This allows our model to learn reliable
features universally applicable to multiple domains of im-
ages with different facial attribute values. Our experiments
with proposed framework shows that the robustness attained
to adversarial data augmentation improves the recognition
accuracy while keeping the overall model computationally
reasonable for small and low powered devices. Obtaining
real time performance of facial recognition systems is an
important consideration for mobility. The following sections
talk about different aspects of the experiment design and



Table II: Comparing the various depths of the Residual
Networks and how they compare to the original network

layer output 27-layer 34-layer 50-layer
name size
covl | 112x112 | X732 7x7.64.stride 2
stride 2
3x3 max pool, stride 2
conv2x 56x56 [TXT.64]
[3x3,32] [3x3,64] [3x3,64]
X6 X6 [1x1x256]
x3
[1x1,128]
[3x3,64] [3x3,128] [3x3,128]
conv3x 28x28 6 8 [1x1x512]
x4
[1x1,256]
[3x3,128] | [3x3,256] [3x3,256]
convax | ldxl4 X6 x12 [1x1x1024]
X6
[1x1,512]
[3x3,256] | [3x3,512] [3x3,512]
conv3x | 7x7 X7 X6 [1x1x2048]
x3
acg pool, acg pool,
1x1 128-d fc, 1000-d fc,
softmax softmax
FLOPS 2.8x10% | 3.6x10% [ 3.8x10°

compare results with other state-of-the-art face recognition
models.

A. Architecture Comparison

We evaluate our proposed 27 layer Reduced Resenet
against the 34-layer and 50-layer residual networks proposed
in [31]. See Table 1 for detailed architectures. The two 27-
layer and 34-layer residual network as shown in Figure 4
shows similar baseline architectures, but Table II indicates
almost 10 GFlops computation reduction in performance
measures. We replaced the loss layer with loss metric and
made the network considerably smaller by limiting the
number of filters per layer by one-half as shown in Figure
4. Moreover, the batches were increased from 5x5 to 35x15
and the number of iterations were chosen to be 10000.
The pooling layer was reduced from 1000 dimensions to
128 dimensions softmax. The Reduced Resnet network
starts training with random weights and employs a cross
entropy loss that assigns all the target individuals to mutually
exclusive regions. This allows us to run the face recognition
on a cheap low powered Nvidia Tx2 that can be mounted
on CCTV cameras for real time facial threat alert systems.

B. Power Comparison

Power was compared using industry standard Watt-Hour
meters with precision upto milli-Watts. The Nvidia TX2
system ships with a 19V 4.74A power supply with 90W
max throughput. The device’s input voltage ranges from +9V
to +15V DC while the TX2 Module’s power consumption
is between 6.5W to 18W, dependending on the NVPModel
configuration. The various power models supported by TX?2

Table III: Nvidia TX2 various NVPModels for fine tuning
of the power consumption

Mode | Mode Name Denver 2 ARM A57 | GPU Freq
0 Max-N 2@2GHz 4@2GHz 1.30 Ghz
1 Max-Q 0 4@1.2GHz | 0.85 Ghz
2 Max-P Core-All | 2@1.4GHz | 4@1.4GHz | 1.12 Ghz
3 Max-P ARM 0 4@2GHz 1.12 Ghz
4 Max-P Denver 2 0 1.12 Ghz

Table IV: Power Comparison for real-time face detection

Method Power (Watt-Hour)
Eigen Faces [35] 231
HAAR Cascades [36] 255
Deep Face [37] 414
Open Face [38] 476
Face Net [39] 511
Red-ResNet (Proposed) 17.6

are listed in Table III. The arbitrary carrier consumption,
i.e., draw of peripheral ports, were limited to 5W max.
Our testbed was running on Max-N mode at full clock
modes. The PC used in the comparison was running an
Intel Xeon(R) CPU E5-2687W v4 @ 3.00GHz 48 core
64bit with 64GB of memory and two Titan Xp PCIe/SSE2
GPUs. Some face recognition models did not consume
any GPU capability while others ran completely on GPUs
thus ramping up their power requirements. The final power
consumption comparison is shown in Table IV. We can
observe from the comparison that the TX2 board achieve
several times less power consumption due to its purpose
built architecture and low powered processing units.

C. Accuracy comparison

We evaluate our proposed framework under the LFW
face verification protocols where around 6000 validation
face pairs are computed to tell if they are from the same
person. The LFW dataset is a standard benchmark in face
recognition research. The identities in our neural network
training data does not overlap with the LFW identities.
The LFW has 13,233 images from 5,750 people and this
experiment provides 6,000 pairs broken into ten folds. The
accuracy in the restricted protocol is obtained by averaging
the accuracy of ten experiments. The data is separated into
ten equally-sized folds and each experiment trains on nine
folds and computes the accuracy on remaining testing fold.
We achieve a mean accuracy of 97.52% under this protocol.
Comparisons with previous works on mean accuracy shown
in Table V. With the usage of DIL, we are the model has
an accuracy of 99.38% on the standard Labeled Faces in the
Wild benchmark. This is comparable to other state-of-the-art
models and means that, given two face images, it correctly
predicts if the images are of the same person 99.38% of the
time.



Table V: Face Verification Accuracy on LFW Dataset

Face Recognition Technique | Model Accuracy
Eigen Faces [35] 60.19%
KNN + GPCA [40] 76.12 %
HAAR Cascades [36] 80.52%
Open Face [38] 92.92%
TL Joint Bayesian [41] 96.33%
GaussianFace [42] 95.5%
Deep Face [37] 97.35%
DeepID [43] 99.15%
Face Net [39] 99.64%
Red-ResNet (Proposed) 97.52%

V. CONCLUSION

CCTV cameras are being used for facial detection systems
that doesn’t consider adversarial cases i.e. to trick machine
vision algorithms into perceiving them as something com-
pletely different from who they are. The proposed model
shows how a simple inclusion of self generated adversarial
images can overcome this challenge. GANs are very good
at creating realistic adversarial examples, which end up
being a very good way to train Al systems to develop a
robust defense against suspects attempting to fool facial
recognition systems. The framework uses common face style
transfer elements to generate variations of the same person’s
face to enhance the predictions. It is challenging to obtain
reasonable classification accuracy when the target is rare,
since the data instances in the majority classes usually
overshadow those in the minority classes. In this paper, a
novel framework is proposed to enhance facial recognition.
The experimental results on a multimedia big data set clearly
show the effectiveness of the proposed framework and how it
can successfully enhance the prediction scores of the chosen
rare faces. In the future, the co-existence of multiple tree
hierarchies when building them will be considered.
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