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Abstract—The rapid growth in DNA and protein sequencing 
techniques over the last decade boosted the availability and 
scale of mutations data, and therefore the necessity of 
developing automated approaches to predict driver mutations 
arises. Identifying driver mutations is essential to better 
understand and measure cancer progression and thus enable 
proper diagnosis and targeted treatment of cancer. Here, we 
present a scalable machine learning based approach to identify 
driver missense mutations. The proposed approach builds on 
and expands our previously proposed framework. A group of 
independent parallel classifiers where each classifier handles a 
single set of features can be deployed. Then, a model fusion 
module combines the classifiers’ outputs to produce a final 
mutation label. Each classifier is trained and validated 
independently with its corresponding feature set. Feature sets 
undergo a feature selection process to filter out low 
significance features. In this paper, four protein sequence-level 
feature sets are leveraged, namely two amino acid indices 
(AAIndex1 and AAIndex2) feature sets, one pseudo amino acid 
composition (PseAAC) feature set, and one feature set 
generated using wavelet analysis. The proposed approach is 
extensible to consume new additional features with the 
minimal impact on the computational complexity due to the 
parallel design of its components. Experiments were performed 
to assess the performance of the proposed approach and to 
compare it with other similar approaches. 

Keywords: Cancer genome; driver mutation; passenger 
mutation 

I.  INTRODUCTION 

Cancer is one of the leading medical causes of mortality 
in both developing and economically developed countries 
[1]. Studies show that cancer is the second leading cause of 
death in the United States, after heart disease, and it 
accounted for 22.2% and 21.8% of all deaths in 2015 and 
2016, respectively [2]. Cancer is mainly caused by the 
accumulation of somatic mutations, a genetic alternation that 
is acquired by a cell and is passed to cells resulting from the 
division of the mutated cells, that occur over a period of time 
and result in increasing the fitness of some cells over their 
neighbor cells where they start proliferating and developing 
cancer [3][4]. There are two classes of genes whose 
mutations play a role in the progression of cancer, tumor-
suppressor genes and oncogenes. Mutations in tumor-
suppressor genes deactivate them and compromise their 
ability to protect cells from cancer and mutations in 
oncogenes will overactive them and develop tumor. Cancer 

genome studies revealed that not all somatic mutations in 
cancer genes play the same role. There are driver mutations 
that confer a selective growth advantage to the cancer cell 
and thus drive cancer progression, and passenger mutations 
that do not provide growth advantage. Passenger mutations 
were either present in the ancestor of the cancer cell when it 
acquired a driver mutation or may occur in the cancer cell 
because of the mutational processes. Although there is a 
general belief that passenger mutations are neutral, some 
recent research studies suggested that they may have a 
damaging effect on the cancer progression [5]. Passenger 
mutations are more common compared to driver mutations 
and it is estimated that 90% of somatic mutations are 
passenger mutations [6], which makes the identification of 
driver mutations more challenging.  

Current research shows a correlation between protein 
missense mutations, where a single nucleotide change results 
in a codon that codes for a different amino acid, and cancer. 
A study covering common solid tumors demonstrates that on 
average 33 to 66 genes with somatic mutations are expected 
to change their protein products with approximately 86% of 
these mutations leading to missense changes [4]. Another 
research work has demonstrated that missense mutations in 
the adenomatous polyposis coli (APC) are correlated with 
the tumorigenesis in the colon as well as extra-intestinal 
tissues [7]. 

In this paper, we present a machine learning-based 
framework to identify driver missense mutation in protein 
sequences. The proposed framework extends our previously 
proposed framework in [8] to support additional feature sets 
and to improve the feature selections process. Fig. 1 
illustrates the proposed framework which consists of 
multiple sequential components with the support for the 
parallel execution of activities within a component, which 
reduces the computational complexity and improves the 
scalability to support additional feature sets. First, the 
somatic mutation protein sequence is downloaded from 
GenBank [9], and the mutation sample is extracted from the 
protein sequence. The mutation sample can be represented by 
numerical numbers according to a predefined mapping 
scheme. Then, multiple feature sets are extracted from the 
protein sequence and its numerical representation. A feature 
selection approach is applied to each of the extracted feature 
sets to identify the optimal features to be used. The optimal 
feature sets are presented to a group of independent parallel 
classifiers. Finally, a model fusion technique is used to 
combine the classifiers’ outputs and label the mutation as a 
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driver or passenger mutation. The performance of the 
proposed framework is assessed and compared to existing 
techniques using the same mutation data set.  

The paper is organized as follows. Section II summarizes 
some of the existing research to identify driver somatic 
mutations. Section III describes the proposed framework. The 
experimental results and conclusion are presented in sections 
IV and V. 

II. RELATED WORK 

Several computational approaches have been proposed to 
automate the prediction of driver missense mutations. Some 
of these approaches rely on statistical methods to measure 
the frequency of mutation recurrence in a gene and compare 
it against a predefined statistical model to decide if they are 
driver mutations or not. MuSiC is an example of a tool that 
uses statistical tests to identify genes with driver mutations 
based on the mutation rate in a gene and it compares to an 
expected background mutation rate [10]. A survey of 

statistical approaches based on mutation recurrence rate can 
be found in [11]. 

There are approaches that leverage machine learning 
based techniques, where a set of features or attributes are 
extracted from the mutated sequence or gene to represent its 
characteristics, and then a machine learning model is trained 
to predict driver mutations based on the mutation 
characteristics. FATHMM is a mutation prediction approach 
that uses a group of Hidden Markov Models (HMMs) to 
capture the characteristics of protein sequences, then it can 
predict the impact of a mutation on the protein functionality 
and whether it is related to a specific disease or not [12][13].  
Another approach based on support vector machines (SVMs) 
was proposed in [14], where a support vector machine is 
trained using a set of 126 features capturing several aspects 
of the mutations. The used features include amino acid 
residue changes, substitution scoring metrics, and annotated 
features retrieved from public databases. CHASM is an 
approach, based on Random Forest, to predict driver 
missense mutations [15]. It leverages the COSMIC somatic 
mutation database for its feature set. Orchid is another 
example of machine learning based approaches. It is a 
software package built using python and uses a random 
forest classifier to analyze cancer mutations [16].  

III. PROPOSED FRAMEWORK 

A. Overview 

The proposed framework consists of a series of 
sequential components as illustrated in Fig. 1. The first 
component is the protein sequence collection and mutation 
sample extraction, where the mutated protein sequences are 
downloaded from GenBank [9] and a mutation sample is 
extracted from the mutated protein sequence according to the 
mutation location and a predefined mutation window size. 
The extracted mutation sample is processed by the feature 
extraction component, which uses N parallel modules to 
generate N feature sets, where N is the number of feature sets 
used. The feature selection component reads the N extracted 
feature sets and filters out those low significant features in 
each set, resulting in N selected feature sets. The next 
component is the classification component which contains a 
group of N parallel SVM-based classifiers. Each classifier is 
trained to handle one feature set from the previous feature 
selection component. The group of classifiers can be trained, 
validated, and run in parallel. Finally, a model fusion 
approach is applied to combine the scores from the N 
classifiers and to generate a final label for the sample (either 
a driver or passenger mutation).   

Four feature sets are used in this paper, setting N to 4. 
They are a wavelet analysis feature set, an amino acid index 
(AAindex1) feature set, an amino acid index (AAindex2) 
feature set, and a pseudo amino acid composition (PseAAC) 
feature set.  

The details of each component are described as follows. 

B. Input Data Format and Data Sets Used 

1) Input Data Format: In this study, the same input data 
format as the one used in [8] is adopted. It reads two inputs 

 
 

Figure 1. The proposed framework 
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for each somatic mutation input, namely the accession 
number of the mutated protein sequence using the NCBI 
RefSeq format and the mutation information which encodes 
the mutation location, old amino acid, and mutated amino 
acid (e.g., NP_001135977 R641W). 

2) Data Set: The benchmark data set provided by the 
authors of the CHASM system is utilized [14]. This data set 
contains driver mutations and passenger mutations. The 
driver mutations were previously identified as playing a 
functional role in oncogenic transformation, while the 
passenger mutations were synthesized using the procedure 
described in the CHASM system. A total of 2534 driver 
mutations and 2894 synthesized passenger mutations were 
used in our experiemnts. 

C. Protein Sequence Collection and Mutation Sample 
Extraction 

This component generates the mutation sample 
corresponding to the input mutation. First, the protein 
sequence corresponding to the input mutation accession 
number is retrieved using the Matlab bioinformatics toolbox. 
Next, a mutation sample containing 101 amino acids is 
generated from the protein sequence with 50 amino acids 
flanking either side of the mutation point. Fig. 2 illustrates a 
mutation sample. Each mutation sample contains two 
sequences, one representing the protein sequence before 
mutation and one representing the protein sequence after 
mutation. 

D. Feature Extraction 

The feature extraction component contains N modules 
that can run in parallel, one module per feature set. Each 
module reads the mutation sample amino acids sequence and 
generates the feature vector for its feature set. The fact that 
all modules within the component can run in parallel limits 
the component computational complexity of the feature 
extraction component to be bounded by the maximum 
computational complexity of the N modules and therefore 
the component can scale to handle additional feature sets 
without much impact on the computational complexity. Four 
modules are defined and used in our experiments, since four 
feature sets are proposed in this paper. We adopt three 
feature sets that were proposed in our previous work [8]. A 
new feature set is introduced in this paper (i.e., AAIndex2). 
They are defined as follows. 

1) Wavelet Features Module: Several approaches have 
been proposed to use wavelet analysis in DNA and protein 
sequence analysis [17]. This module utilizes wavelet 
analysis to capture that mutation sample charactrastics. 
First, it reads the amino acids sequence of the mutation 
sample before and after mutation, and represents it by a 
numerical sequence according to the mapping scheme 
defined in Table I [8]. Then, wavelet analysis using the 
Matlab wavelet toolbox with a continuous wavelet 
transform based on Gaussian wavelets function is applied to 
the resulting numerical sequence to generate the wavelet 
feature set. The scale vector has values from 1 to 101 with a 
step of 1, resulting a 101 by 101 wavelet coefficient matrix 
The wavelet power spectrum is calculated at each scale and 
thus a vector with 101 dimensions is generated, representing 
the wavelet feature set for the amino acid sequence. These 
steps are applied to the mutation sample before mutation 
and after mutation. A feature vector with 202 dimensions 
can then be obtained. 

TABLE I.  NUMERICAL REPRESENATION OF AMINO ACIDS 

Amino 
Acid 

Number 
Representation 

Amino 
Acid 

Number 
Representation 

A 65 L 76 

R 82 K 75 

N 78 M 77 

D 68 F 70 

C 67 P 80 

E 69 S 83 

Q 81 T 84 

G 71 W 87 

H 72 Y 89 

I 73 V 86 

 
2) Amino Acid Index – AAIndex1 Features Module: 

AAIndex1 is a set of 566 amino acid indices, where each 
index has 20 numerical values representing some 
physicochemical and biological properties of the 20 amino 
acids [18]. The module reads the mutation amino acids 
sequence and computes the average sequence value for each 
index in the AAIndex1 set. The number of dimensiones in 
the resulting feature vector is equal to the number of indices 
in the AAIndex1 set. It can be forulmated as follows. Let S 
be a protein sequence with L amino acids, each amino acid 
is 𝑆௜  where 1 ≤ 𝑖 ≤ 𝐿 , and let 𝑓௡(𝑆௜)  be the AAIndex1 
value for amino acid 𝑆௜ and index n. For an AAIndex set of 
N indicies, the feature vector is a vecotr of N values where 
each value Fn  corresponds to the nth index in AAIndex1 and 
can be represented as follows. 
 

 
Figure 2. A mutation sample 
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𝐹௡ =  
1

𝐿
෍ 𝑓௡(𝑆௜)

௅

௜ୀଵ

                                     (1) 

 
The above equation is applied to the amino acids sequence 
before mutation and after mutation. In our experiments, we 
used the first 544 indices only (N=544) and each protein 
sequence has 101 amino acids (L = 101), therefore the 
resulting feature vector has 1088 dimensions.  

3) Amino Acid Index – AAIndex2 Features Module: 
AAIndex2 is a collection of 94 matrices, where each matrix 
contains 210 numerical values that capture the similarity 
between amino acids pairs. Each matrix represents a 
similarity or a mutation matrix. This module reads the 
mutation sample amino acids sequence before and after 
mutation and computes the average similarity per sequence 
between the sequence before mutation and after mutation, 
resulting in a single numerical value per each similarity 
matrix. The operation can be represented mathematically as 
follows. Let Sb and Sa be the two protein sequences before 
and after mutation where each sequence has L amino acids, 
𝑆௕

௜  and 𝑆௔
௜   represent amino acids in Sb and Sa where 1 ≤

𝑖 ≤ 𝐿 , and let 𝑓௡(𝑆௕
௜ , 𝑆௔

௜ )  be the AAIndex2 value 
representing the similarity between the two amino acids 𝑆௕

௜  
and 𝑆௔

௜   at index n in AAIndex2. For a set AAIndex2 of N 
indicies, the feature vector is a vecotr of N values where 

each value Fn corresponds to the nth index in AAIndex2 and 
can be represented as follows 

 

𝐹௡ =  
1

𝐿
෍ 𝑓௡(𝑆௕

௟ , 𝑆௔
௟ )

௅

௟ୀଵ

                                 (2) 

 
Since the above equation is applied once to both the 
mutation sequences before and after mutation and 
AAIndex2 contains 94 indices (N = 9 4), therefore the 
resulting feature vector has 94 dimensions.  

4) Pseudo Amino Acid Composition Features Module: 
This module is responsible for computing the PseAAC 
feature set from the mutation sample to capture the sequence 
order information. It was originally proposed in [19] for 
protein cellular attribute prediction. The following 
parameters are used in our experiment, i.e., λ and ω are set 
to 10 and 0.05. The PseAAC values are computed from the 
mutation sample before and after mutations, resulting in a 
feature vector with 60 dimensions. More details about the 
computation of PseAAC can be found in [19]. 

E. Feature Selection 

The feature selection component consists of N identical 
modules, where each module is responsible for filtering out 
those low significant features in its corresponding feature set 
to reduce the dimensionality of the feature set and to increase 
the accuracy and performance of the framework. The steps 
applied to identify and filter out unnecessary features are 
identical for all modules. Four modules were employed in 
our framework as there are four feature sets. Since the 
approach proposed in our work in [8] was computationally 
expensive, here we propose an enhanced approach to 
improve the performance while not compromising the 
accuracy.  Fig. 3 illustrates the proposed feature selection 
process.  The process starts with applying chi-square on the 
feature vector to evaluate the correlation between the 
features and the class label, and then sort them in a 
descending order. Next, a fast-forward loop is used to iterate 
on the features by selecting the top X, initialized to one, 
ranked features with a step of S in each iteration, where S is 
set to an arbitrary value to control the speed of the loop. S 
was set to 5 in our experiments. After selecting the top X 

 
 

Figure 3. Feature selection process 
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Figure 4. Model fusion component 
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features, a classifier is used to evaluate the features and 
measure the increase or decrease in accuracy between the 
current iteration and the previous iteration. If there is a 
decrease in accuracy, the backward loop is activated, where 
the module iterates on the features backward one by one till 
it reaches X with the maximum accuracy. Then it stops and 
reports the top X features to the following component in the 
framework. Another case where the fast-forward loop can be 
terminated is when the gain in accuracy over the previous 
iteration is too small or close to zero. It is worth noting that a 
drawback of this approach is the risk of being trapped in 
some local maxima.  

F. Classification 

The classification component employs a group of N SVM-
based classifiers. Four classifiers are used in the current 
implementation to handle the four feature sets, where one 
classifier for the wavelet based features, one classifier for 
the AAIndex1 based features, one classifier for the 
AAIndex2 based features, and one for the PseAAC based 
features. Each feature vector generated by the feature 
selection component is passed to its corresponding 
classifier. Each classifier outputs a score to be processed by 
the model fusion component. Each classifier is trained and 
validated independently, and all classifiers run in parallel. 
The runtime for this component is not a function of the 
number of classifiers, and it is dependent on the classifier 
with the maximum runtime. The SVM-based classifiers are 
implemented using the LIBSVM library [20]. They use the 
radial basis function kernel, also known as the Gaussian 
kernel, as shown in Equation (3). Each SVM classifier can 
be tuned using two parameters,  and C. 

 

                              𝐾൫𝑥௜ , 𝑥௝൯ = 𝑒ఊฮ௫೔ି௫ೕฮ
మ

                            (3) 
 

G. Model Fusion 

The model fusion component reads the output scores from 
the classifiers and integrates them into a single score to 
generate a final mutation label, namely either a driver or a 
passenger mutation. This process is called late fusion. It has 
been utilized in bioinformatics [8][21] and multimedia [22] 
[23][24][25][26][27][28]. Logistic regression was proposed 
in our work [8] to integrate the output of multiple classifiers 
into one output. In the current framework, logistic regression 
is used to implement the model fusion component. Fig. 4 
illustrates the generalized implementation of the model 
fusion component implementation, where O1, O2, …, ON are 
the N classifiers output scores and 1 is the a bias unit. Since 
four classifiers are used in our implementation, N is set to 4. 
Additional details about the implementation of the logistic 
regression is available at [8].   

IV. EXPERIMENTS 

Experiments were carried out to apply to filter out those 
low significant features in each feature set and to evaluate 
the performance of the proposed framework. The data set 

used in the experiments consists of 2534 driver mutations 
and 2894 synthesized passenger mutations. Table II 
illustrates the parameters used for the SVM-based classifiers 
during our experiments. The two experiments are described 
as follows. 

The goal of the first experiment was to identify the 
minimum features that best represent each feature set. Four 
feature sets were used, wavelet features, AAIndex1 features, 
AAIndex2, and PseAAC features. First, the feature 
extraction component was applied to the driver and 
passenger mutations. Then, the feature selection component 
was used, and the selection process outlined in the previous 
section was applied to each of the extracted feature sets. The 
feature selection output summary is illustrated in Table III. 

The results indicate that there is no reduction in PseAAC 
feature set, suggesting that all features are highly significant 
and important. This is consistent with the findings reported 
in our previous work [8]. There was a reduction in the other 
feature sets, AAIndex1, AAIndex2, and wavelet, with 
AAIndex1 features reporting the highest reduction 
percentage, followed by the wavelet features, and then 
AAIndex2. It is worth noting that the data set used for the 
feature selection experiment is different from the one used in 
our previous study [8], which may help explain why a higher 
reduction in the wavelet features was reported in [8],  in 
addition to the fact that there is a difference between the 
current feature selection process and the one used in [8].  

In the second experiment, the proposed framework 
performance is assessed by using the features selected in the 
first experiment to train and validate the framework. First, 
the selected features were passed to the classification 
component, where four SVM-based classifiers were 
employed. Each classifier was trained and validated using a 
10-fold cross validation approach with one set of features. 
Then, the model fusion component reads the resulting four 
classifiers’ output scores and splits the scores to 90% for 
training and 10% for testing randomly. Since the four 
classifiers generate output scores during test folds only, then 
the mutations presented to the model fusion component per 
fold, to train and test, represented 10% of the original 
mutations data set. As a result, the model fusion was tested 
using 54 mutations during each fold. Three metrics were 
used to evaluate the performance of the model fusion 
component output, namely accuracy, F1, and MCC as 
described in [8]. The process of training and testing the 
model fusion component was repeated for 12 runs, and then 
we excluded two runs, i.e., the run with the highest score and 
the run with the lowest score. The average of the remaining 
ten runs is reported in Table IV.  

The results illustrated in Table IV indicate that the 
proposed framework slightly outperforms the results 
reported in [8].  Furthermore, the proposed enhancement to 
the feature selection process reduces the cost of feature 
selection without compromising the overall framework 
accuracy. Also, it is worth noting that since most activities in 
the proposed framework can run in parallel, it is possible to 
expand the implementation to consume additional features 
with the minimal runtime overhead.  
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TABLE II.  SVM-BASED CLASSIFIERS PARAMETERS VALUES 

Classifier C value  value 

Classifier 1 (Wavelet) 16 1 

Classifier 2 (AAIndex1) 4 0.25 

Classifier 3 (AAIndex2) 4 0.25 

Classifier 4 (PseAAC) 8 0.125 

 

TABLE III.  FEATURE VECTOR SIZE BEFORE AND AFTER FEATURE 
SELECTION 

Feature Set 
Extracted Feature 

Vector Size 
Selected Feature 

Vector Size 

Wavelet 202 126 

AAIndex1 1088 146 

AAIndex2 94 61 

PseAAC 60 60 

 

TABLE IV.  EXPERIMENTAL RESULTS 

Framework Accuracy F1 MCC 

Proposed Framework 0.9287 0.9165 0.8621 

Framework in [8] 0.9258 0.9154 0.8548 

 

V. CONCLUSION 

The recent advancement in cancer genome sequencing 
techniques has boosted the availability and the scale of caner 
genomics data as well as the challenging diversity found in 
cancer genomic abnormalities. Hence, there is a need for 
scalable computational solutions that analyze the large scale 
data and identify useful patterns to improve the quality of 
cancer diagnosis and treatment. In this paper, a machine 
learning based framework to automatically detect driver 
mutations is proposed. The proposed framework builds on 
and enhances our previous framework to improve the driver 
mutation detection performance and to reduce the 
computational cost. It consists of a series of sequential 
components that perform the protein sequence data 
collection and mutation sample extraction, feature extraction, 
feature selection, classification, and model fusion. The 
current implementation of the framework leverages four 
types of features (wavelet, AAIndex1, AAIndex2, and 
PseAAC features). In addition, since the design of the 
framework supports running parallel operations within some 
of its components, it enables adding new features with the 
minimal impact on the computational complexity. 
Experimental results indicate that the proposed framework 
outperforms other approaches. In the future work, we will 

explore new feature sets and other model fusion techniques 
to further enhance the performance of the framework. 
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