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Abstract  
Deep Neural Networks (DNNs) are best known for being the state-of-the-art in Artificial 
Intelligence (AI) applications including natural language processing (NLP), speech processing, 
computer vision, etc. In spite of all recent achievements of deep learning, it has yet to achieve 
semantic learning required to reason about the data. This lack of reasoning is partially imputed to 
the boorish memorization of patterns and curves from millions of training samples and ignoring 
the spatiotemporal relationships. The proposed framework puts forward a novel approach based 
on variational autoencoders (VAEs) by using the potential outcomes model and developing the 
counterfactual autoencoders. The proposed framework transforms any sort of multimedia input 
distributions to a meaningful latent space while giving more control over how the latent space is 
created. This allows us to model data that is better suited to answer inference-based queries, 
which is very valuable in reasoning-based AI applications.   

Keywords: Variational autoencoder (VAE), Variational inferencing, Counterfactual machines, 
Amortization, Gaussian processes 

1. Introduction 
Often in real-world applications such as multimedia, NLP, and medicine, large quantities of 
unlabeled data are generated every day. This surge in data gives rise to the challenging semantic 
gap problem (Lin, Shyu & Chen, 2012; Chen, Lin & Shyu, 2012; Zhu & Shyu, 2015; Sadiq, Yan, 
Shyu, Chen & Ishwaran, 2016) which is to reduce the gap between high level semantic concepts 
and their low level features (Sadiq, Tao, Yan & Shyu, 2017a; Sadiq, Zmieva, Shyu & Chen, 
2018; Yan, Chen, Sadiq & Shyu, 2017). Despite rigorous research endeavors, this remains one of 
the most challenging problems in information sciences where we have overwhelming quantities 
of all sorts of fast, complex, heterogeneous and unstructured data. To handle such data, 
conventionally we have been utilizing descriptive models that try to find deterministic features 
and build probabilistic models (Chen & Kashyap, 1997; Chen, 2010; Lin, Shyu & Chen, 2013; 
Sadiq et al., 2017b). However, the problem with discriminative models is that they, generally, 
estimate a hyperplane. For example, when categorizing images of cats and dogs, data points on 
one side of the hyperplane are categorized as cats and everything on the other side as dogs. 
Discriminative models follow a condition in logistic regression that relaxes the computation of a 
joint probability 𝑝ሺ𝑥, 𝑦ሻ to a conditional probability 𝑝ሺ𝑦|𝑥ሻ which is much easier to calculate 
because it maps directly to the hyperplane that divides between two clusters. This problem gets 
exacerbated in deep learning models due to the increase in dimensionality and boorish 
memorization of patterns. Mere rotations or color-inversions in the trained images can easily 



confound very deep neural networks even though the modified images share the same semantics 
and structures as the original images (Hosseini & Poovendran, 2017).  

Recently, there has been a growing concern of this shortcoming, resulting in a soaring interest in 
Knowledge Representation and Reasoning (KRR) (Liu, 2017) and reasoning based deep learning 
(Andreas, Rohrbach, Darrell & Klein, 2016; Santoro et al., 2017). We believe that the next 
generation of AI systems will need to have the ability to understand problems at a deeper level 
rather than just based on memorization of data. However, discriminative models fail completely 
in inferencing problems because they do not capture the underlying relationships in the input 
space. Figure 1 shows how the addition of an adversarial noise can completely fool the 
classification while the L2 loss between the original and modified images was minimal. The 
discriminative models considered them as identical images while producing completely different 
results. All images were classified with 99.9% confidence.  

 

Figure 1. Classification results produced by state-of-the-art deep learning models, but fooled by 
simple noising up of the images (Nguyen, Yosinski & Clune, 2015) 

There has been a growing interest to uncover such deep representations by mapping the observed 
data to latent spaces (Blei, Ng & Jordan, 2003; Neal, 2000; Roweis, 2003; Lei & Rinaldo, 2015; 
Koren, Bell & Volinsky, 2009). Thus, for reasoning applications, we have to look into generative 
models such as Variational Autoencoders (VAEs) (Kingma, Mohamed, Rezende & Welling, 
2014) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014).  This paradigm 
shift in training machine learning methods uses latent relationships and generative models and 
has proven to be successful in inferring relationships (Makhzani, Shlens, Jaitly, Goodfellow & 
Frey, 2015; Wetzel, 2017). Inference based training can open access to some interesting AI 
reasoning applications including: (1) Aiding users in understanding their surroundings or social 
media content (AI: ‘Mike just sent you a picture from his vacation in Thailand’; Human: ‘Great, 
is he at the beach?’; AI: ‘No, on a mountain’). (2) Aiding in decision making based on 
surveillance data (Human: ‘Did anyone enter this room last week?’; AI: ‘Yes, several instances 
found’; Human: ‘Were any of them carrying a black bag?’). (3) Health and safety applications 
(Human: ‘Can you see the baby in the baby monitor?’; AI: ‘Yes, I can’; Human: ‘Is he sleeping 
or playing?’). (4) Search and rescue missions (Human: ‘Is there smoke in any room around 
you?’; AI: ‘Yes, in room B6’; Human: ‘Look for people in room B6’).  



Extending our previous work in semantic representation (Chen, Shyu & Kashyap, 2000; Chen, 
Zhu, Lin & Shyu, 2013; Yan, M. Chen, Shyu & Chen, 2015; Zhu, Lin, Shyu & Chen, 2011; Li, 
Chen, Shyu & Furht, 2002; Chen, Sista, Shyu & Kashyap, 1999; Chen, Rubin, Shyu & Zhang, 
2006; Chen, Shyu, Zhang & Kashyap, 2001), here we propose a generative model that becomes 
the source for multimedia based inferencing frameworks. The proposed model implies the 
structure on the latent space in generative models and can be used for clustering, latent space 
arithmetic, semantic hashing and dimensionality reduction to make information retrieval faster. 
We can also use the proposed generative VAE with semi supervised learning to get very close to 
the state-of-the-art performance. Similar methods such as in (Makhzani et al., 2015) reported 
with good performance with MNIST data while using10 labels instead of 5000 labels.  

The rest of the paper is organized as follows, Section 2 describes the previous work done in 
generative models. The foundations of VAEs and statistical inferencing are presented in Section 
3 to get an understanding of knowledge representation with the generative models. Section 4 
provides the details about the proposed framework and performs the experiments in Section 5. 
Section 6 concludes the findings of this paper and identifies the future opportunities to extend 
this work.  

2. Previous Work 
Without statistical inferencing, we are simply confined to the bounds of our data and cannot infer 
new knowledge that extends beyond our data. Statistical inferencing in the reasoning paradigm is 
the process of generating conclusions about a population from a noisy and complicated sample. 
Until recently, deep generative models, such as Restricted Boltzmann Machines (RBMs), Deep 
Belief Networks (DBNs) and Deep Boltzmann Machines (DBMs) were trained primarily by 
Markov Chain Monte Carlo (MCMC)-based algorithms (Hinton, Osindero & Teh, 2006; 
Salakhutdinov & Hinton, 2009). In these approaches the MCMC methods compute the gradient 
of log-likelihood which becomes more imprecise as training progresses. This is because samples 
from the Markov Chains are unable to mix between modes fast enough. In recent years, 
generative models have been developed that may be trained via direct back-propagation and 
avoid the difficulties that come with MCMC training.  

Some notable mentions of the existing methods include Knowledge-Based Artificial Neural 
Network (KBANN) (Towell, 1990), a hybrid learning method that leverages domain-knowledge 
and maps reformulated knowledge theories into neural networks. KBANNs proclaim promising 
results on biological applications with shallow encoding rules. Others have combined neural 
networks with Markov logic networks by learning the weights of the probabilistic logic clauses 
(Lippi & Frasconi, 2009). This technique requires structured equation modeling of background 
knowledge (e.g., bioinformatics and time-series forecasting) that suffers from the assumptions of 
model correctness and feature distributions. Bayesian Deep Learning (BDL) (Wan & Yeung, 
2016) improves not only the perception tasks such as understanding of content (e.g., from text or 
image) but also the inference/reasoning tasks using principled probabilistic frameworks. 
However, BDL necessitates prior distribution information and assumes Gaussianity that restricts 
the input datasets and consequently restricts the applications. GANs (Radford & Chintala, 2015) 
are able to train the Question-Answering (QA) models but still lack the relationships between the 
black box features. Other noteworthy mentions include Memory Networks by Facebook AI 
Research (Sukhbaatar, Weston & Fergus, 2015), Neural Turing Machines by Google DeepMind 
(Graves, Wayne & Danihelka, 2014), and Watson by IBM (Gliozzo, Biran, Patwardhan & 



McKeown, 2013). These large architectures do promise the reasoning capability, but they are 
proprietary systems that are not intended for public release. Our primary target is to propose a 
novel generalized open-source framework that imbeds the spatio-temporal data collinearities in 
the neural networks and activates the data flow invariant to sparsity and imbalance in the data. 
There are several other methods offering improvements on various dimensions such as the rate-
distortion theory perspective presented in β-VAEs (Burgess et al., 2018). Their approach 
represents variational factors of data under a modified Evidence Lower Bound (ELBO) bound by 
a β condition. It creates the disentangled representations of the latent variables without a 
considerable loss in the reconstruction accuracy.  

Another variant of the VAEs was proposed in (Dilokthanakul, 2016), where a Gaussian mixture 
was used as the prior distribution. This is helpful in performing uncluttered unsupervised 
clustering without over-regularization of the generative model. Walker, Doersch, Gupta & 
Hebert (2016) proposed a pixel-level dense trajectory prediction of given data frames. These 
frames were taken from a moving video scene where the algorithm estimates the changes over 
the time duration of one second using a conditional variational autoencoder setup. Another 
interesting approach was proposed by Sønderby, Raiko, Maaløe, Sønderby & Winther (2016) 
where a recursive inference model called the Ladder Variational Autoencoder was proposed. 
Their model corrects the generative distribution by using likelihood approximations. Their 
predictive log-likelihood claims superiority over the bottom-up inference in conventional VAEs. 

 

3. Variational Autoencoders 
Variational autoencoders (VAEs) are related to an unsupervised learning model called 
autoencoders. VAEs are used to learn a lower-dimensional feature representation from the 
unlabeled training data. The input data 𝐱 is converted to a latent space vector 𝐳 by a mapping 
function 𝑝ሺ𝐳|𝐱ሻ. The encoder can take many forms, but neural networks usually outperform all 
other methods in learning the complex mapping functions. The hidden space 𝐳 is usually smaller 
than 𝐱 to avoid trivial solutions and serves as a form of dimensionality reduction as well. Then, 𝐳 
represents the most important features in 𝐱 that can capture meaningful factors of the variation in 
data. The latent feature representation 𝐳 is utilized to reconstruct the original data by decoding 
them using an identical network to the encoder called the decoder to get the same dimensionality 
as 𝐱, thus the term autoencoder – encoding itself. The data likelihood 𝑝ሺ𝐱ሻ is defined as taking 
the expectation over all possible values of 𝐳, which is continuous, and the expression with the 
latent space 𝐳 can be obtained. 

𝑝ఏሺ𝐱ሻ ൌ ׬  𝑝ఏሺ𝐳ሻ 𝑝ఏሺ𝐱|𝐳ሻ𝑑𝑧                                                 (1) 

However, we are unable to take the gradient and maximize the likelihood 𝑝ሺ𝐱|𝐳ሻ for every 
possible value of 𝐳 because the integral is intractable. Here, 𝑝ఏሺ𝐳ሻ is a simple Gaussian prior, 
𝑝ఏሺ𝐱|𝐳ሻ is a decoder neural network, and 𝜃 are the distribution parameters of the encoder and 
decoder. Similarly, the posterior density also becomes intractable due to the intractable data 
likelihood 𝑝ఏሺ𝐱ሻ in the denominator. 

   

𝑝ఏሺ𝐳|𝐱ሻ ൌ ௣ഇሺ𝐱|𝐳ሻ௣ഇሺ𝐳ሻ

௣ഇሺ𝐱ሻ
                                                     (2) 



The solution that will enable us to learn this model is to define an additional encoder network 
𝑞థሺ𝐳ሻ, with a different set of parameters 𝜙, that approximates 𝑝ఏሺ𝐱|𝐳ሻ, in addition to the decoder 
network modeling 𝑝ఏሺ𝐱|𝐳ሻ. This allows us to derive a lower bound on the data likelihood that is 
tractable and can be optimized. Since we are modeling a probabilistic generation of data in 
variational autoencoders, the encoder and decoder networks are probabilistic. Our encoder 
network 𝑞థሺ𝐳ሻ with parameters 𝜙 will output a mean 𝜇ሺ𝐳|𝐱ሻ and a diagonal covariance Σሺ𝐳|𝐱ሻ. 
This will be the direct output of our encoder network. A similar method can be performed for the 
decoder network 𝑝ఏሺ𝐱ො|𝐳ሻ which is going to start from 𝐳 and outputs the mean 𝜇൫𝐱ොห𝐳൯ and 

diagonal covariance Σ൫𝐱ොห𝐳൯ as shown in Figure 2(a). 

 

 

Figure 2. (a) Process of variational autoencoders where the latent space is sampled from a 
Gaussian distribution. (b) Process of bringing the mean and covariance of the latent space 
closer to ~N (0,1) by reducing the KL-Divergence or raising the ELBO. 

 

3.1  KL-Divergence 

It is important to note that dimensionality reduction by latent space representation works only if 
the inputs are highly correlated, for example, images from the same domain or texts from the 
same corpus. If completely random inputs are given each time while training an autoencoder, it 
will not be able to create a sound latent representation. This is because the encoded latent space 
will not cover the entire 2-D latent space and will have a lot of gaps in its output distribution. 
Hence, if we enter some values that the encoder has not fed to the decoder during the training 
phase, weird looking output images will be generated. This can be overcome by constraining the 
encoder output to have a random distribution, i.e., ~𝑁ሺ0,1ሻ, when producing the latent 
code. Thus, KL divergence is used as a weighted sum on some similarity measure to add the 
constraint on the latent space to match a normal distribution ~𝑁ሺ0,1ሻ as shown in Figure 2(b).  



𝐷௄௅ሺ𝑝ሺ𝐳|𝐱ሻ || 𝑞ሺ𝐳ሻሻ  ൌ ∑ 𝑝ሺ𝐳|𝐱ሻ௜ log ௣ሺ𝐳|𝐱ሻ೔

௤ሺ𝐳ሻ೔
 ௜                                    (3) 

Here, 𝑝ሺ𝐳ሻ is the original latent distribution and 𝑞ሺ𝐳ሻ is the normal distribution ~𝑁ሺ0,1ሻ. Using 
variational inferencing, the Kullback-Leibler divergence can be reduced to the following  

𝐾𝐿൫𝑞ሺ𝐳ሻ || 𝑝ሺ𝐳|𝐱ሻ൯ ൌ 𝐸௤ ൬log ൬ 
𝑞ሺ𝐳ሻ

𝑝ሺ𝐳|𝐱ሻ ൰൰                             (4) 

𝐾𝐿ሺ𝑞ሺ𝐳ሻ||𝑝ሺ𝐳|𝐱ሻሻ  ൌ  𝐸௤ ሾlog 𝑞ሺ𝐳ሻሿ െ 𝐸௤ ሾlog 𝑝ሺ𝐳| 𝐱ሻሿ                 (5)    

It is a distance measure between distributions (Hoffman, Blei, Wang & Paisley, 2013). However, 
𝑝ሺ𝐳|𝐱ሻ cannot be calculated. Thus, applying the power of logarithms to Equation (5) transforms 
it into: 

𝐾𝐿ሺ𝑞ሺ𝐳ሻ ||  𝑝ሺ𝐳|𝐱ሻሻ  ൌ  െሺ𝐸௤ሺlog൫𝑝ሺ𝐱, 𝐳ሻ൯ െ 𝐸௤൫log൫𝑞ሺ𝐳ሻ൯൯ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ ൅ log 𝑝ሺ𝐱ሻถ                (6) 

The first two terms on the right hand side are equivalent to maximizing the ELBO, which only 
requires to calculate the joint distribution 𝑝ሺ𝐱, 𝐳ሻ. Please note that the third term does not involve 
𝑞 and thus this distribution can be ignored because it is just a number in optimizing the 
variational distribution. There is, however, always a trade-off between how accurately the latent 
space can fit into the desired Gaussian shape and how well informative new data can be 
generated.  
 

3.2 Reparameterization 

Autoencoders are generally simpler to train because we simply have to backpropagate the 
reconstruction loss across the weights of the network. However, VAEs are not as simple to 
optimize because the sampling operation is not differentiable. This means that the gradients from 
the reconstruction error cannot be propagated to the encoder. The reparameterization trick is to 
stretch the encoded standard deviation with an additional random noise as shown in Figure 3. 
This is equivalent to random but becomes a linear equation. 

𝑧ሺ௜ሻ ൌ 𝜇ሺ௜ሻ ൅ 𝜎ሺ௜ሻ ⨀ 𝜀௜                                                     (7) 

𝜀௜ ~ 𝑁ሺ0,1ሻ                                                              (8) 

Here, 𝑖 represents the batch and 𝜀௜ is the random noise that helps us backpropagate the network. 
With the reparametrized form, we changed 𝑞ሺ𝑧|𝜃, 𝐱ሻ → 𝑞ሺ𝜃, 𝐱, 𝜀ሻ. 

 
Figure 3. Complete process of a vanilla VAE using reparameterization 

 



4. Framework 
In this paper, a novel object correlation model that uses VAE for feature translation to the latent 
space is proposed (as illustrated in Figure 4). We start with our minibatch 𝐗௜ that is passed 
through the encoder network which can be a Convolutional, Bi-LSTM or a fully-connected 
network depending on the data type. Two vector outputs 𝜇ఏ and ∑  ఏ (i.e., the mean and the 
covariance matrix) can be obtained. After applying the reparameterization trick, we sample the 
actual latent stochastic representation of the image 𝐳|𝐱. The 𝐾 dimensional latent encoding is 
decoded using the decoder network, which is similar to the encoder network, to get the replica of 
our minibatch 𝐗௜. The network trains in three steps. The first part is the reconstruction phase 
where we train the VAE to reproduce the minibatch 𝐗௜ using the L2 loss and Adam optimizer. 
The 𝐾-dimensional latent vector obtained from the first phase is called 𝐳஼. The second phase is 
to train and produce the counterfactual latent representation denoted by 𝐳். The counterfactual 
latent encodings are produced by our proposed Shallow Randomized Backpropagation (ShRB) 
networks. The ShRB networks, explained in the next subsection, allows us to produce Gaussian 
versions of the original latent encoding with the capability to manipulate the latent space. The 
final step is to backpropagate on the loss of these two counterfactual terms and train the encoder 
to minimize the KL divergence between 𝐳௖ || 𝐳். There will be two losses. The first one is the 
reconstruction loss to train the horizontal pass of the variational autoencoder; while the second 
one is the KL loss that will help train the ShRB networks. 

 

Figure 4. The proposed counterfactual autoencoder framework 

 



4.1 Shallow Randomized Backpropagation (ShRB) 

It is interesting to note that VAEs are very bad at disentangling and separating the clusters or 
subgroups of data in the hidden space. Thus, we propose an unsupervised subgrouping method, 
called Shallow Randomized Backpropagation (ShRB) networks, which completely removes the 
subsampling / pooling layers and maximizes the diversity of the hidden space variables. The 
ShRB networks primarily takes the latent space created by VAEs and additionally separates the 
variance of the feature covariance matrix by sampling the features of the minibatch. The ShRB 
networks create disjoint Gaussians. That is, each latent dimension 𝑧௞ ∈ 𝐾 is trained on each 
ShRB network.  

Suppose that each ShRB network is represented by the function 𝑓መሺ ሻ, and 𝑧௞ is the univariate 
continuous valued outcome vector, and 𝜀 is the error term. Then for an 𝑖௧௛ input batch 𝐗௜ and the 
latent vector z, the goal is to closely predict the latent vector 𝑧௞.  

If 𝑓መሺ𝐗ሻ predicts 𝑧 ൌ 𝑓଴ሺ𝐗ሻ ൅ 𝜀, where 𝑓መሺ𝐗ሻ is the predicted z, and 𝑓଴ሺ ሻ is the learned functions, 
then 

𝑃𝐸ሺ𝑓ሻ ൌ  𝔼ℒ𝔼𝐗,௭ ൣ 𝑧 െ 𝑓መሺ𝐗ሻ ൧
ଶ
                                                     (9) 

ൌ 𝜎ଶ ൅  𝔼𝐗 ሾ 𝜇̂ሺ𝐗ሻ െ  𝑓଴ሺ𝐗ሻሿଶ    ሽ  𝐵𝑖𝑎𝑠.                   

൅ 𝔼ℒ,𝐗 ൣ 𝜇̂ሺ𝐗ሻ െ 𝑓መሺ𝐗ሻ  ൧
ଶ

  ሽ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒                         (10) 

Here, 𝑃𝐸() is the prediction error, 𝔼ℒ is the expectation over the learning dataset, 𝔼𝐗,௭ represents 
the expectation over the test dataset, and  𝜇̂ሺ𝐗ሻ ൌ  𝔼ℒሾ𝑓መሺ𝐗ሻሿ. The first term 𝜎ଶ is the internal 
noise and this is the lower bound on the generalization error. The second term 𝔼𝐗 ሾ 𝜇̂ሺ𝐗ሻ െ
 𝑓଴ሺ𝐗ሻሿଶ is the bias, described as the difference between the true predictor and the mean of the 

learned predictor. The final term is the variance 𝔼ℒ,𝐗 ൣ 𝜇̂ሺ𝐗ሻ െ  𝑓መሺ𝐗ሻ  ൧
ଶ
, described by the 

difference between the predictor and its mean value. It is basically a mean-squared error 
decomposition.  There are two observations from this. The prediction error for each predictor is 
always bigger than the averaged predictor and the amount is equal to the variance. Thus by 
taking the average, we can completely remove the variance, and it drops to zero. Moreover, if 
our original predictor is unbiased, then taking the average of it will also be unbiased. Hence, it is 
in some ways a very effective predictor, taking an average of an unbiased high variance predictor 
and turns it into a stable and accurate ensemble learner. In cases where we have high 
dimensional latent spaces, then the perturbation would not be enough to decorrelate the 
predictors and to reduce the variance. Thus, we further sample from the feature set and pass only 
1/3rd of the features for every sample. This is another form of randomization in the process to 
reduce the variance.   

 

4.2 Tensor Slicing and Conversion to Gaussian  

We assume that 𝑧ଵ, … , 𝑧௄ are all independent latent vectors, thus giving us only a diagonal 
variance matrix. Instead of calculating 𝑂ሺ𝑛ଶሻ computations, we trade the complexity for the bias 
and calculate only 𝑂ሺ𝑛ሻ steps through variational approximation. This is done by slicing the 
latent tensors and estimating them individually through the ShRB networks. By this approach, 
we know that we do not estimate the true Gaussian nature of the latent tensor, but we will get the 



best answer under the complexity constraints that the application can tolerate.  The tensors need 
to be sliced along each dimension of the latent vector 𝐳 such that, given the vector 𝐳 ∈  𝑅ଵൈ௄ the 
notation 𝑧௞ ∈ 𝑅௄ denotes the k-th dimension of 𝐳. Each predicted 𝑧௞ is scaled between 0 and 1 
values using sigmoid activation and converted to Gaussian using probabilities to z-score 
transformation activation.  

׬ 𝑒ିሺ𝐱ሻమ
𝑑𝑥 

௭
ିஶ ൌ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ 𝑝 ሻ                                            (11) 

0.5 ൅ ׬  𝑒ି௧మ
𝑑𝑡 

௭
଴ ൌ 0.5 ൅ ଵ

ଶ
 √𝜋 erfሺ𝑧ሻ                                     (12) 

 

 

4.3  CounterFactual Approach 

Conventionally in VAEs, almost all methods attempt to force the latent variable to match a 
normal distribution ~𝑁ሺ0,1ሻ. This approach forces a distribution that brings the latent vector 
mean towards zero, imbalancing the underlying data relationships such that, the outliers and 
imbalanced data points are also conditioned to be generated under a zero mean restriction. Our 
proposed counterfactual approach takes the original latent variable distribution as a prior and 
generates a counterfactual Gaussian of the latent variable 𝐳 without forcing any prior conditions 
on it. This allows us to learn a latent distribution that allows better disentanglement between each 
latent vector along all dimensions. Formally, let ሼሺ𝐱ଵ, 𝐳ଵሻ, … , ሺ𝐱௜, 𝐳௜ሻሽ denote the minibatches 
where 𝐱௜is a minibatch and 𝐳௜ represents the latent vector for that minibatch. After learning the 
latent representation, we call the non-transformed 𝐳௜ as 𝐳௜,஼ (where C indicates no 
transformation) and the ShRB estimated latent vector 𝐳ො௜ is denoted by 𝐳ො௜,் (where T represents 
being transformed). Our goal is to train on the loss incurred by the differences between 𝐳௜,஼  and 
𝐳ො௜,். The loss is defined as  

𝜏ሺ𝐱ሻ  ൌ  𝔼ሾ𝐳௜,்|𝐱௜  ൌ  𝐱ሿ െ 𝔼ሾ𝐳௜,஼|𝐱௜  ൌ  𝐱ሿ                             (13) 

Equation (12) relies on what is so-called the counterfactual framework or the potential outcomes 
model (Neyman, Dabrowska & Speed, 1990). In this framework, one models what an individual 
vector would look like if it were generated as a Gaussian although the observed vector is non-
Gaussian. This modification allows us to use a broader set of distributions as priors for the latent 
code as follows 

1. Preserves the distribution giving better manifold; 
2. Removes the gaps between the latent representations; 
3. We can switch to the variance as a loss function and get the maximized separation;  
4. It does not matter how high dimensional we treat each 𝑧௞  individually; and 
5. It can be scaled without affecting the Gaussian conversion. 

5. Experiments and Results 
In this section, we perform several experiments using the proposed Counterfactual Autoencoders 
and the MNIST and Fashion MNIST datasets. One of the advantages of using the ShRB 
networks is that they create disjoint estimates of the sliced latent dimensions. For example, in 
any given image, some ShRB networks will see the top part of an image while other ShRB 
networks will see the bottom part of it. Based on what each ShRB network sees, it will create a 



different set of 𝜇 and 𝜎 estimates for each 𝑧௞ ∈ 𝐾. This increases variability in the 𝒛 estimates 
and gives us the benefit of scalability and the ability to manipulate the z-space easily.  

5.1 Performance Comparison 

The experiment was compared with the original VAE (Kingma et al., 2014) and a comparative 
approach called the Maximum-mean discrepancy VAEs (Zhao, Song & Ermon, 2017). The 
results of the comparison are shown as below 

 
 
Figure 5: The learned latent space manifold for MNIST dataset using (a) MMD VAE (b) Vanilla 
VAE and (c) the Proposed Counterfactual Autoencoder. Also illustrated are the learned manifold 

for Fashion MNIST data compared between using (d) MMD VAE (e) Vanilla VAE and (f) the 
proposed Counterfactual Autoencoder 

 
While comparing the learned manifold spaces, we see a near circular 2-D Gaussian shape with 
good disentanglement achieved by the proposed counterfactual autoencoder in Figure 5(c). The 
learned manifold depicts sharp transitions between data points indicating that the coding space is 
filled and contains no gaps. By contrast, Figures 5(a) and 5(b) illustrate the coding space of the 
MMD and vanilla VAE with almost similar architectures to that of the proposed counterfactual 
autoencoder. However, it can be observed that the two methods roughly match the shape of a 2-
D Gaussian distribution and there are several gaps in the manifold. These points map to no data 
and end up creating garbage data. The methods were not able to capture the manifold as good as 
the counterfactual autoencoder. Similar observation is found when comparing the three methods 
when trained on the Fashion MNIST dataset as illustrated in Figures 5 (d), (e) and (f). The 
Fashion MNIST dataset is more ambiguous than MNIST, thus we see bizarre distributions for 



MMD and vanilla VAE. Whereas the proposed counterfactual autoencoders achieves perfect 2D 
Gaussian shape with good disentanglement between classes.  
 

 
         
Figure 6. Random data generation between the conventional VAEs, MMD VAEs and the 
proposed Counterfactual autoencoder. All methods were allowed to train up to 20 epochs and 
then the results were sampled from the trained decoders for MNIST (a) using vanilla VAEs, (b) 
using MMD VAEs and (c) the proposed Counterfactual Autoencoder. Similar samples were 
generated for the Fashion MNIST dataset trained on (d) vanilla VAE, (e) MMD VAE and (f) the 
Proposed Counterfactual Autoencoder. 
 
To evaluate the generative capability of the three models, it can be observed that the proposed 
counterfactual autoencoders generate clear and disentangled data over the entire latent space. 
The other two compared methods either produce incomplete or mixed representations that are 
cluttered together. We only trained the models with only 2-Dlatent spaces for observational 
purposes, but the model is scalable to any number of higher dimension latent spaces.    
   



 
Figure 7. The training loss as compared between the proposed Counterfactual-Autoencoder and 
vanilla VAE 
 
Figure 7 illustrates the training loss between the proposed method and the conventional VAE 
over the MNIST data. It should be noted that the training loss is an indicator of the 
reconstruction loss only and does not translate to other aspects of the generative models. 
Although the training losses of vanilla VAEs were lower than the proposed counterfactual 
autoencoders (called CF in Figure 7), their latent spaces were very entangled and are not very 
useful for data generation.  

           

Figure 8. The hidden space manifold for MNIST data generated after 50 epochs 

 

Figure 8 shows the learned manifold over the MNIST data for the proposed method. Images 
were generated by uniformly sampling the Gaussian percentiles along each hidden code 
dimension 𝒛 in the 2-D Gaussian space. Sharp transitions in the coding space indicate that the 
images generated by interpolating within z lie on the data manifold with a good precision.  



6. Conclusion and Future work 
Deep Learning puts forward some of the most sophisticated machine learning solutions to the 
current state-of-art Artificial Intelligence (AI). However, these methods are based on a 
monolithic approach of being confined within the data. This results in an array of non-
interpretable and high dimensional features that cannot be reasoned or used in any methodical 
framework. In spite of all the success and power of Deep Neural Networks (DNNs), AI is still far 
from how a human analyzes the data. The answer may lie in an inference-based approach that 
looks at the problem in a reduced heuristics space, like humans, and uses the power of the latent 
space arithmetic to put 2 and 2 together. Current reasoning frameworks are either too narrow or 
require too much human assistance that renders them un-scalable. In this paper a novel approach 
called counterfactual autoencoders is proposed that regularizes hidden space representations 
using randomized shallow learners and trains the generative network using a counterfactual loss. 
The proposed approach transforms the hidden representations to near perfect Gaussians with 
good disentanglement and provides wide-ranging control to manipulate and explore the latent 
space. This provides us with opportunities to use the Counterfactual Autoencoder in order to 
solve semantic learning, reasoning and inferencing problems. The algorithm was tested only on 
the prior mentioned two datasets, but the proposed framework’s capability can be easily 
extrapolated to other multimedia datasets. As a future prospect, further specific use-cases will be 
explored and presented in upcoming publications. 
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