
Cyber-Secure UAV Communications using Heuristically Inferred Stochastic
Grammars and Hard Real-Time Adaptive Waveform Synthesis and Evolution

Stuart H. Rubin1, William K. Grefe1, Thouraya Bouabana-Tebibel2, Shu-Ching Chen3, Mei-Ling Shyu4, and
Kenneth S. Simonsen1

 1Space and Naval Warfare Systems Center Pacific, San Diego, CA 92152-5001, USA
2Ecole Nationale Supérieure d'Informatique, LCSI Laboratory, ALGERIA

3Florida International University, School of Computing and Information Sciences, Miami, FL 33199, USA
4University of Miami, Department of Electrical and Computer Engineering, Coral Gables, FL 33124, USA

1{stuart.rubin, william.grefe, kenneth.simonsen}@navy.mil, 2t_tebibel@esi.dz, 3chens@cs.fiu.edu, 4shyu@miami.edu

Abstract— This paper initially describes how an inferred
context-free (stochastic) grammar can be used to verify
command transmissions and serve as a hedge against a
successful cyber-attack. The remainder of the paper addresses
a computational problem not amenable to closed-form
solution; namely, the hard real-time (~57 usec) synthesis of a
desired waveform through the adaptive modification of a
carrier wave. This effectively increases the signal to noise ratio
– ensuring better UAV communications. Here, the modulation
of the primary waveform is under user control and is of strictly
positive amplitude. The primary waveform induces a
secondary waveform having delayed leading and trailing edges
and expanded rise and fall times. There is, in general, a direct
relation between the period of the primary waveform and the
amplitude of the secondary waveform. The relation between
the primary and secondary waveforms may be characterized
by trigonometric functions or even interpolating polynomials.
However, response time will be minimized where the primary
waveforms are discretized and stored in the form of array-
based cases. The tertiary (target) wave may be any periodic
trigonometric function, but is taken to be a simple sine wave
without loss of generality. The task of the adaptive program is
to minimize ||s(t) – g(t)||2, where f(t)  g(t) and f(t) is the
primary waveform at time t, g(t) is the secondary waveform at
time t, and s(t) is the tertiary waveform at time t. A
computationally efficient algorithm is provided for solving this
task in real time. Moreover, an evolutionary program (EP) is
provided for automatic case acquisition. Primary waveforms
are mutated in accordance with a normal distribution.

Keywords – Adaptive Programming, Case-Based Reasoning,
Evolutionary Programming, Expectation-Driven Receiver,
Grammatical Inference, Hard Real-Time Systems, Waveform
Analysis and Synthesis

I. INTRODUCTION
The goal of this paper is define a technique to cyber-

secure UAVs and UAV swarms, which are subject to
jamming and hijacking, in some instances. Methodological
descriptions will follow. One advantage, provided by
autonomy, is that the known commands sent to and from
UAVs are well-defined. In fact, although one cannot know a
priori exactly what command was intended, one can create a

grammar, or qualitative technique, for delimiting the space
of communication sequences. The idea is that the
subsequences that are received can be used to delimit the
interpretation of those, which are garbled. While a Monte
Carlo analysis would be of use here, the autonomous design
allows for the use of a stronger predictor – the context-free
grammar as applied to sentential forms.

For example, the command, “drone 1 go left, drone 2 go
right, drone 3 go up, and drone 4 go ????” could be a
sentential form of the grammar if and only if drone 4 was
ordered to go down. Otherwise, the grammar would specify,
“drone i and 4 go {left, right, up}”, i ≠ 4. The grammar can
reduce the ambiguity in the interpretation by often reducing
the number of possible interpretations of a distorted
transmission. Transmissions are not uniformly distorted.
Thus, the packets, which are received can be used to
associatively reduce the ambiguity – like fitting one piece in
a puzzle enables a chain of pieces to be fit. A stochastic
grammar can also be induced [1]. Here, there may be more
than one sentential alternative ; and, each can be ascribed a
probability. The product of the probabilities is then
interpreted to imply the chance of an erroneous reception.

Context-free grammars can be inductively inferred
through the use of heuristics [2] [3]. They are not going to
provide stand-alone cybersecurity. Rather, they are part of a
mix of tools, which collectively provides cybersecurity.
Semantic randomization is another such tool [4] – [6].

A related quantitative technique can be devised to
minimize ambient noise and overcome relatively low-power
jamming. The qualitative and quantitative techniques are
additive. Taken together, these techniques vie against the
hijacking of a UAV(s).

The quantitative adaptive technique involves the rapid
real-time minimization of 2|| () () ||s t g t− , where

() ()f t g t→ and f(t) is the primary waveform at time t, g(t)
is the secondary waveform at time t, and s(t) is the tertiary
waveform at time t [7]. The inverse waveform, 1 ()g t− gives

()f t and is computed using a table lookup – so it always

exists. The use of a table lookup will serve to enhance the
performance of the system. Different memory management
schemes may be used to randomize the representation of the
primary waveform, but all have an associated de-
convolution penalty – making them less of an option. One
possibility is to make use of Denning’s cache concept
whereby the most frequently used (MFU) primary
waveforms are retrieved in their de-convolved form. Less
frequently used (LFU) waveforms are stored in a hierarchy
of convolved forms and are de-convolved (one level) upon
reference. The basis for “aging” the cache is an assigned
penalty function for de-convolution. That penalty function is
determined by the cost or metric for the inconvenience of
having asynchronous discontinuities (spikes) in the
synthesized continuous target function (i.e., tertiary
waveform). The use of sparse matrix techniques for
convolving the primary waveform, while providing for
much better utilization of the memory space, will slow the
system down in view of the need for additional address
calculations (de-convolution). The use of numerical
quadratures such as trigonometric functions or collocating
polynomials would be similar.

II. EXPECTATION-DRIVEN RECEIVERS
This section will provide a brief illustration of the use of

an inferred stochastic grammar. Again, the purpose served
by such a memory is to delimit garbled text by providing a
context for its likely interpretation. A stochastic likelihood
may also be provided. Here, any likelihood below a set
squelch is dismissed as garbled. However, this does not
insure that all above squelch are valid. For this reason, we
do not advocate stochastic verification for most domains of
interest.

To begin, it may be assumed that linguistic
communications do not fit a static template, but rather
evolve – just as our use of English does to a greater or lesser
extent. The evolution of any grammar of higher order than
regular (e.g., context-free) requires a heuristic approach [2]
[3]. Consider the following sentential forms, which would
be obtained from recorded conversations between the user
and the drone(s) as well as drone to drone conversations.

1. Drone 1 go left.
2. Drone 2 go right.
3. Drone 3 go up.
4. Drone 4 go down.
5. Drone 1 and 4 go left.
6. Drone 1, 2, and 4 go right.
7. Drone 2 and 3 go up.

These sentential forms may be randomized [4] to

produce the following sets, where set mnemonics may or
may not be properly named, depending on the
implementation.

• Number = {1, 2, 3, 4}
• Direction = go {left, right, up, down}.

A context-free grammar randomizes the sentential forms
through the use of the randomized sets. Note that the
optimal allocation of sets and elements is generally not
deterministic and involves search, which is rendered
tractable, in general, through the use of heuristics. Here is
such a grammar, which is not necessarily unique:

S  Drone A
A  Number Direction | Number and Number
Direction | Number, Number, B
B  Number, B | and Number Direction

Next, every received instruction can be tested for

conformity with this grammar. This adds credence, but not
certainty that what is received is what was sent. Although
still subject to error, this error is generally far less than that
associated with the use of parity bits. For example, the
following sentential forms would be deemed to be
erroneous.

1. Go left Drone 2.
2. Drone 1 go right 3 go left.
3. Drone 3, and 4 go up.

Notice however that there is nothing to preclude

repetition of numbers as in, “Drone 1 and 1 go left.” This
can be handled by a higher-order, or context-sensitive
grammar (e.g., the classic n n na b c problem), but this adds an
unnecessary level of complexity. It is unnecessary because it
requires more computational time, stronger heuristics, and
does little to increase cybersecurity as a tradeoff. Rather, it
is recommended not to be included; and, if it need be
included, use production rules – e.g., as follows.

• (,) (,)Number i j i i∀ ¬

The use of stochastic grammars would involve assigning

each context-free production (i.e., including each or’d
production) a probability of being fired. Then, a sentential
form found to be in the grammar would have the product of
the applied productions as its probability. The more
common the production, the higher its ascribed probability
(e.g., using a simple machine learning algorithm to find for
this). Then, the computed probability represents the
likelihood of a sentential form being the one that was
transmitted. Again, we don’t recommend the use of
stochastics here because it vies against the reception of
valid, albeit infrequently transmitted, sentential forms.
However, there can be application-specific domains, where
this is useful because the validity squelch is known to vary
with the situational context and because anything less likely
can be attributed to a cyber-attack.

One more thing is to consider the possibilities for error
correction (e.g., analogous to Gray codes, which may be
used for bit corrections). Here again, while it is possible to
produce a meaningful error message, it is eminently more
practical to ask for a retransmission. For example, “Go left
Drone 2” would use the S production to produce the error
message, “Missing Drone Number”. The erroneous
sentential form, “Drone 1 go right 3 go left” would use the
A production to produce the error message, “Unexpected
End of Command”. The erroneous sentential form, “Drone
3, and 4 go up” would use the A production to produce the
error message, “Missing Drone Number”. These errors
provide likely evidence of an attempt to hijack a drone.
Even though transmission may not be possible, this
information is valuable for it can trigger an organic mission
recovery program, which may bring the UAV(s) back into
secure communication range (e.g., through the use of GPS
in a non-denied environment).

III. SYNTHESIZED WAVEFORMS
Figures 1 thru 4 depict an exemplary discretized grid

showing the primary waveform (F) in red and the secondary
(lower) waveform (G) in blue. Figure 5 shows the tertiary
waveform (S) in green and the secondary waveform again in
blue. Note that only primary waveforms need be stored in
primary memory – allowing for the depictions. The mesh
size is governed by the memory requirements as well as the
tolerance for error. That is, the less the tolerance for error,
the finer the mesh size and the concomitantly greater the
memory requirements; while, the runtime remains
practically invariant due to the use of random addressing on
the memory bus. Of course, the use of a finer mesh size
implies that a greater number of array references will be
needed to retrieve a primary waveform of the same duration.
This problem can be mitigated to some extent through the
use of anticipatory caching; whereby, a limited number of
primary waveforms are pre-fetched and cached for a coarser
mesh size in anticipation of being referenced as discussed
above. The best mesh size is hardware dependent and thus
must be chosen experimentally.

Figure 1. A Dirac Impulse Primary Waveform

Figure 2. Effect of Increasing the Primary Pulse Width

Figure 3. Effect of Varying Primary Edge Fall Rate

Figure 4. Effect of Varying Primary Edge Rise Rate

Figure 5. A Tertiary Waveform Approximated by a Secondary One

IV. A HARD REAL-TIME ADAPTIVE ALGORITHM
In this section, we present an adaptive algorithm for

generating the tertiary waveform using the secondary
waveform as impulsed by the primary waveform. Again, the
algorithm was designed to operate under hard real-time
constraints. It is tacitly assumed that the effects of
sequential secondary pulses are context free; although, using
a k-limited table-driven approach, the effects of say all pairs
of sequential secondary waveforms (e.g., k=2) may be
similarly stored and indexed (see below); albeit, at
exponential space requirements that are (!)O k . Thus,
delimited k=2 “look-back” serves as a practical maximum
contextual value.

It should be noted that this algorithm allows for the
ready maintenance and extension of the primary-secondary
waveform pairs as a consequence of the case-based
methodology used. It follows that the case pairings can be
automatically acquired through a random exploration and
feedback loop (Figure 6).

There is a need to uniformly explore the space of
primary waveforms. That is, one must set a squelch where,

2 2| , || () || and | || () ||g g G s t g g s t gδ δ′ ′∀ ∈ − > − ≤ ,
where δ is a suitably chosen threshold constant. If the two-
norm is less than or equal to this constant, then we say that
the secondary impulse response is already covered by the
case base. Otherwise, the primary-secondary waveform
pairs are saved in the case base. If this constant is chosen to
be too close to zero, then the case base will grow to be too
large and either not cover the desired primary waveform
space, or require excessive memory and/or a coarser mesh
size – all of which would be undesirable. Conversely, if this
constant is chosen to be too large, then the case base may
still cover the desired primary waveform space, but it will
necessarily be limited in the number of basis waveforms that
it can acquire and, as a consequence, tend to fit the tertiary
function with spikes above the desired function, followed by
spikes below it (i.e., great volatility), which is deemed to be
undesirable. Again, the threshold constant, δ , needs to be
chosen experimentally.

Next, a unified algorithm is presented, which will (a)
synthesize a target tertiary waveform, (b) use one or more
co-processors to effect Gaussian mutations of the best
primary waveform to evolve a new one and save it in the
case base whenever the value of δ is exceeded by all of the
existing case base, and (c) interlace the synthesis of the
target tertiary waveform with the synchronized test of a
secondary waveform impulsed by a mutated primary
waveform. The periodic variance in the synthetic tertiary
waveform can be automatically ignored by a properly
designed receiver, which can be synchronized by a train of
reference pulses. The co-processor(s) are allowed to run
until g ′ is found, or they are preempted by the arrival of a
new problem. The justification here is that successful
discovery is some decreasing exponential function of time

in as much as the mutation function is not uniformly
distributed (i.e., it is normally distributed). Thus, there is a
better chance of discovery, given limited resources, if one
pages out the old problem and pages in the new. The old
problem may be cached and subsequently paged in (subject
to the limitations imposed by thrashing) whenever a
processor resource is freed. A time-stamp mechanism is
used to expunge the oldest problems where called for by
limitations in storage space. The approach taken here is thus
seen to be unique in that it interlaces a hard real-time
adaptive wave generator with an evolutionary case-based
acquisition system, which learns to better model the tertiary
waveform over time! The essential pseudo-code for this
algorithm follows.

Figure 6. Conceptual Evolutionary Acquisition of Primary-
Secondary Waveform Pairings

1. Start:

2. Label all secondary waveforms with the amplitude

of their spike.

3. Store these amplitudes in an array such that each

amplitude is paired with its defining secondary

waveform and thus with a primary waveform as

well. The amplitudes are stored as intervals; so for

example, instead of say amplitudes of 1, 2, 3, …

one would store these amplitudes as [0.5, 1.5), [1.5,

2.5), [2.5, 3.5), and so on to facilitate pattern

matching. (The behavior approaches continuity as

the number of primary functions tends towards a

very large number.)

4. L1: Compute the projected amplitude needed at

time, t+1 to approximate the known tertiary

waveform (i.e., using the tail of the preceding

secondary one for a starting point). Reference the

array with this value to retrieve the index of the best

primary waveform.

5. Generate the primary waveform.

6. Apply the associated secondary waveform and

measure its effect.

7. If 2|| () ||s t g δ− ≥ , when the next synchronized

reference pulse wakes up the co-processor, generate

g ′ using a normally distributed mutation (see

section III).

8. Else If the cache is empty, then goto L2

9. Else when the next synchronized reference pulse

wakes up the co-processor, retrieve the youngest

problem from cache and generate g ′ using a

normally distributed mutation.

10. If 2| || () ||g s t g δ′ ′− ≥ , then time-stamp and

cache the problem

11. Else save the solution in the case base

12. If the cache is full, implement a Least-Recently-

Used (LRU) memory management policy, which is

based on the time stamps.

13. L2: Poll the interrupt vector.

14. Goto L1.

15. End.

V. THE MUTATION ALGORITHM
In its simplest form, this algorithm operates on the

assumption that the state space wherein the solution lies has
few local maxima. In the search for the single global
maxima, the algorithm makes an implicit assumption that
climbing the hill that it is currently on will lead to the
desired result. This occurs by initializing the primary
waveform to a random configuration and thereafter
continuously varying this waveform based on a normal
distribution around the current definition. The distribution is
used to determine such parameters as pulse width,
amplitude, and rates of rise and fall on the leading and
trailing edges. Exploration in this manner takes place in
rounds. The pseudo-code for this algorithm follows.

1. Start:

2. Initialize the best primary waveform wbest to one having

minimal 2|| () ||s t g− , or to a random continuous

waveform if the case-base is empty. Initialize the

normal distribution di to the flattest distribution

available, d0. Set found-better to False.

3. Repeat i times.

a. Vary each defining coordinate in the primary

waveform according to di, creating primary

waveform wtemp.

b. Test this primary waveform according to the

evaluation formula, 2() || () ||f g s t g′ ′= −

c. If f(wtemp) < f(wbest)

 i. Set wbest ← wtemp

 ii. Set found-better to True.

d. Goto step 3a.

4. If (found-better = True)

 a. di ← di+1 (decrease the st. dev of the normal)

 b. Set found-better to False

 c. Goto step 3.

Else

 If (di = d0)

 a. Return wbest

 b. Exit

 Else

 a. di ← di-1 (increase the st. dev of the normal)

 b. Set found-better to False

 c. Goto step 3.

5. End.

A. Simulation Results
Three trails were conducted as follows [8]. Trial 1: a

random primary waveform is tested against 100 strategies –
(10, 100 and 1000) waveforms are tested during a cycle. The
new waveforms generated during a cycle are based on the
waveform of the best performer against the 100 strategies
found. These waveforms are varied from the best performer
according to a normal distribution. If during the course of a
cycle a primary waveform out-performs the best performer,
it is declared the best performer, and the normal distribution
is set to be tightened on the next cycle. If however, no
primary waveform outperforms the best performer, after an
entire cycle, the normal distribution is then relaxed on the
following cycle. The normal distribution is tightened by
decreasing the standard deviation, and loosened by
increasing the standard deviation of the normal. The normal
distribution is initially set to the loosest (most like a uniform
distribution) standard deviation. There are 8 different normal
distributions utilized in Trial 1. Their standard deviations are
as follows: [92, 64, 45, 32, 23, 16, 11, 8]. If a better weight
set is found while utilizing the tightest distribution, that
distribution is maintained for the following cycle. The trial
terminates when no new best performer is discovered using
the most relaxed normal distribution.

Trial 2: Tests are conducted in a manner similar to Trial
1. After a new best performer is discovered, the normal
distribution is set to be tightened to the highest level possible
(i.e., standard deviation of 8). In Trial 1, distributions are
increased by only a single level after such an event.

Trial 3: Tests are conducted in a manner similar to Trial
1. There are only 4 different normal distributions utilized in

Trial 3. Their standard deviations are as follows [96, 32, 16,
8].

B. Tabular Results
The results of these trials have been published in [8].

They are reproduced in Table 1.

Table 1. Results from Testing Different Parameters of the Algorithm

C. Cybersecurity
Compromised codes can be found by testing a function

for equality with the source version stored in an immutable
repository. Code executions can be tested and periodically
compared with immutable executions. The number of such
executions is proportionate to the amount of security that
can be had. The system can repair itself if a cyber-attack
occurs. The repository comprises firmware, which holds the
original unadaultered functions. The system can be restarted
to an earlier point and the involved functions restored to
validity. The repository may only be written to with the
permission of a capability access model.

VI. CONCLUSION
Signals are filtered through the use of an inferred

stochastic grammar. Noise and jamming signals are
effectively removed through the use of an expectation-driven
receiver. Cybersecurity also entails maximizing the signal to
noise ratio. Evolutionary methods have generally not been
compatible with hard real-time systems. This paper also
presents a new case-based approach that combines hard real-
time adaptive algorithms with evolutionary programs
capable of modifying and/or augmenting the case base in real
time through the use of one or more co-processors (for
maximal efficiency). These techniques are expected to find
application in adaptive optics, correcting for frequency drift
in cellular transmissions, and in boosting signal gain through
the improved cancellation of ambient noise or cyber
jamming. Applications such as these will serve to enhance
military network operations (e.g., ForceNet).

ACKNOWLEDGEMENTS

Stuart would like to acknowledge the assistance of Professor
Thouraya Tebibel, Professor Shu-Ching Chen, Professor
Mei-Ling Shyu, and our Chief Engineer, William Grefe.
Stuart would also like to extend his thanks to the Office of
Naval Research (ONR) for providing financial backing for
this research with the support of Ken Simonsen. He also
extends thanks to division head Ayax Ramirez and branch
heads Jamie Lukos and Joanna Ptasinski. Finally, a special
thanks to patent attorney Eric J. Anderson. This work was
produced by U.S. government employees as part of their
official duties and is not subject to copyright. It is approved
for public release with an unlimited distribution.

REFERENCES
[1] K.S. Fu, Syntactic Pattern Recognition and Applications.

Englewood Cliffs, NJ: Prentice-Hall Advances in Computing
Science and Technology Series, 1982.

[2] R. Solomonoff, A New Method for Discovering the
Grammars of Phrase Structure Languages, Proc. Int. Conf.

Information Processing, UNESCO Publishing House, Paris,
France, pp. 285-290, 1959.

[3] R. Solomonoff, A Formal Theory of Inductive Inference,
Inform. Contr., pp. 7 1-22 and 224-254, 1964.

[4] S.H. Rubin and T.-B. Tebibel, “NNCS: Randomization and
informed search for novel naval cyber strategies,” in Recent
Advances in Computational Intelligence in Defense and
Security, Studies in Computational Intelligence, R.
Abielmona et al. (eds.) vol. 621, Springer International
Publishing, Switzerland, pp. 193-223, 2016.

[5] S.H. Rubin, Cyber-Secure Bootstrapped Two-Level Natural
Language Mediated Knowledge-Based Systems of Systems
for the Spiral Development of Autonomous Software, NC No.
104882, recd. 24 Oct. 2016.

[6] S.H. Rubin, Cyber-Secure Natural Language Based Learning
Intelligent System Shells, NC No. 104782, recd. 12 Oct.
2016.

[7] S.H. Rubin, Hard Real-Time Adaptive Waveform Synthesis
and Evolution, U.S. Patent No. 7,623,410, 24 Nov. 2009.

[8] S.H. Rubin, Randomization for Cyber Defense, Patent
Disclosure, NC 103845, 28 Oct. 2015.

	I. INTRODUCTION
	II. EXPECTATION-DRIVEN RECEIVERS
	III. SYNTHESIZED WAVEFORMS
	IV. A HARD REAL-TIME ADAPTIVE ALGORITHM
	V. THE MUTATION ALGORITHM
	A. Simulation Results
	B. Tabular Results
	C. Cybersecurity

	VI. Conclusion
	ACKNOWLEDGEMENTS
	References

