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Abstract— This paper initially describes how an inferred 
context-free (stochastic) grammar can be used to verify 
command transmissions and serve as a hedge against a 
successful cyber-attack. The remainder of the paper addresses 
a computational problem not amenable to closed-form 
solution; namely, the hard real-time (~57 usec) synthesis of a 
desired waveform through the adaptive modification of a 
carrier wave. This effectively increases the signal to noise ratio 
– ensuring better UAV communications. Here, the modulation 
of the primary waveform is under user control and is of strictly 
positive amplitude. The primary waveform induces a 
secondary waveform having delayed leading and trailing edges 
and expanded rise and fall times. There is, in general, a direct 
relation between the period of the primary waveform and the 
amplitude of the secondary waveform. The relation between 
the primary and secondary waveforms may be characterized 
by trigonometric functions or even interpolating polynomials. 
However, response time will be minimized where the primary 
waveforms are discretized and stored in the form of array-
based cases. The tertiary (target) wave may be any periodic 
trigonometric function, but is taken to be a simple sine wave 
without loss of generality. The task of the adaptive program is 
to minimize ||s(t) – g(t)||2, where f(t)  g(t) and f(t) is the 
primary waveform at time t, g(t) is the secondary waveform at 
time t, and s(t) is the tertiary waveform at time t. A 
computationally efficient algorithm is provided for solving this 
task in real time. Moreover, an evolutionary program (EP) is 
provided for automatic case acquisition. Primary waveforms 
are mutated in accordance with a normal distribution. 
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I.  INTRODUCTION 
The goal of this paper is define a technique to cyber-

secure UAVs and UAV swarms, which are subject to 
jamming and hijacking, in some instances. Methodological 
descriptions will follow. One advantage, provided by 
autonomy, is that the known commands sent to and from 
UAVs are well-defined. In fact, although one cannot know a 
priori exactly what command was intended, one can create a 

grammar, or qualitative technique, for delimiting the space 
of communication sequences. The idea is that the 
subsequences that are received can be used to delimit the 
interpretation of those, which are garbled. While a Monte 
Carlo analysis would be of use here, the autonomous design 
allows for the use of a stronger predictor – the context-free 
grammar as applied to sentential forms. 

For example, the command, “drone 1 go left, drone 2 go 
right, drone 3 go up, and drone 4 go ????” could be a 
sentential form of the grammar if and only if drone 4 was 
ordered to go down. Otherwise, the grammar would specify, 
“drone i and 4 go {left, right, up}”, i ≠ 4. The grammar can 
reduce the ambiguity in the interpretation by often reducing 
the number of possible interpretations of a distorted 
transmission. Transmissions are not uniformly distorted. 
Thus, the packets, which are received can be used to 
associatively reduce the ambiguity – like fitting one piece in 
a puzzle enables a chain of pieces to be fit. A stochastic 
grammar can also be induced [1]. Here, there may be more 
than one sentential alternative ; and, each can be ascribed a 
probability. The product of the probabilities is then 
interpreted to imply the chance of an erroneous reception. 

Context-free grammars can be inductively inferred 
through the use of heuristics [2] [3]. They are not going to 
provide stand-alone cybersecurity. Rather, they are part of a 
mix of tools, which collectively provides cybersecurity. 
Semantic randomization is another such tool [4] – [6]. 

A related quantitative technique can be devised to 
minimize ambient noise and overcome relatively low-power 
jamming. The qualitative and quantitative techniques are 
additive. Taken together, these techniques vie against the 
hijacking of a UAV(s). 

The quantitative adaptive technique involves the rapid 
real-time minimization of 2|| ( ) ( ) ||s t g t− , where 

( ) ( )f t g t→  and f(t) is the primary waveform at time t, g(t) 
is the secondary waveform at time t, and s(t) is the tertiary 
waveform at time t [7]. The inverse waveform, 1 ( )g t−  gives 

( )f t and is computed using a table lookup – so it always 



exists. The use of a table lookup will serve to enhance the 
performance of the system. Different memory management 
schemes may be used to randomize the representation of the 
primary waveform, but all have an associated de-
convolution penalty – making them less of an option. One 
possibility is to make use of Denning’s cache concept 
whereby the most frequently used (MFU) primary 
waveforms are retrieved in their de-convolved form. Less 
frequently used (LFU) waveforms are stored in a hierarchy 
of convolved forms and are de-convolved (one level) upon 
reference. The basis for “aging” the cache is an assigned 
penalty function for de-convolution. That penalty function is 
determined by the cost or metric for the inconvenience of 
having asynchronous discontinuities (spikes) in the 
synthesized continuous target function (i.e., tertiary 
waveform). The use of sparse matrix techniques for 
convolving the primary waveform, while providing for 
much better utilization of the memory space, will slow the 
system down in view of the need for additional address 
calculations (de-convolution). The use of numerical 
quadratures such as trigonometric functions or collocating 
polynomials would be similar. 
 

II. EXPECTATION-DRIVEN RECEIVERS 
This section will provide a brief illustration of the use of 

an inferred stochastic grammar. Again, the purpose served 
by such a memory is to delimit garbled text by providing a 
context for its likely interpretation. A stochastic likelihood 
may also be provided. Here, any likelihood below a set 
squelch is dismissed as garbled. However, this does not 
insure that all above squelch are valid. For this reason, we 
do not advocate stochastic verification for most domains of 
interest. 

To begin, it may be assumed that linguistic 
communications do not fit a static template, but rather 
evolve – just as our use of English does to a greater or lesser 
extent. The evolution of any grammar of higher order than 
regular (e.g., context-free) requires a heuristic approach [2] 
[3]. Consider the following sentential forms, which would 
be obtained from recorded conversations between the user 
and the drone(s) as well as drone to drone conversations. 
 

1. Drone 1 go left. 
2. Drone 2 go right. 
3. Drone 3 go up. 
4. Drone 4 go down. 
5. Drone 1 and 4 go left. 
6. Drone 1, 2, and 4 go right. 
7. Drone 2 and 3 go up. 

 
These sentential forms may be randomized [4] to 

produce the following sets, where set mnemonics may or 
may not be properly named, depending on the 
implementation. 

 
• Number = {1, 2, 3, 4} 
• Direction = go {left, right, up, down}. 

A context-free grammar randomizes the sentential forms 
through the use of the randomized sets. Note that the 
optimal allocation of sets and elements is generally not 
deterministic and involves search, which is rendered 
tractable, in general, through the use of heuristics. Here is 
such a grammar, which is not necessarily unique: 
 

S  Drone A 
A  Number Direction | Number and Number 
Direction | Number, Number, B 
B  Number, B | and Number Direction 

 
Next, every received instruction can be tested for 

conformity with this grammar. This adds credence, but not 
certainty that what is received is what was sent. Although 
still subject to error, this error is generally far less than that 
associated with the use of parity bits. For example, the 
following sentential forms would be deemed to be 
erroneous. 
 

1. Go left Drone 2. 
2. Drone 1 go right 3 go left. 
3. Drone 3, and 4 go up. 

 
Notice however that there is nothing to preclude 

repetition of numbers as in, “Drone 1 and 1 go left.” This 
can be handled by a higher-order, or context-sensitive 
grammar (e.g., the classic n n na b c  problem), but this adds an 
unnecessary level of complexity. It is unnecessary because it 
requires more computational time, stronger heuristics, and 
does little to increase cybersecurity as a tradeoff. Rather, it 
is recommended not to be included; and, if it need be 
included, use production rules – e.g., as follows. 

 
•  ( , )  ( , )Number i j i i∀ ¬   

 
The use of stochastic grammars would involve assigning 

each context-free production (i.e., including each or’d 
production) a probability of being fired. Then, a sentential 
form found to be in the grammar would have the product of 
the applied productions as its probability. The more 
common the production, the higher its ascribed probability 
(e.g., using a simple machine learning algorithm to find for 
this). Then, the computed probability represents the 
likelihood of a sentential form being the one that was 
transmitted. Again, we don’t recommend the use of 
stochastics here because it vies against the reception of 
valid, albeit infrequently transmitted, sentential forms. 
However, there can be application-specific domains, where 
this is useful because the validity squelch is known to vary 
with the situational context and because anything less likely 
can be attributed to a cyber-attack. 



One more thing is to consider the possibilities for error 
correction (e.g., analogous to Gray codes, which may be 
used for bit corrections). Here again, while it is possible to 
produce a meaningful error message, it is eminently more 
practical to ask for a retransmission. For example, “Go left 
Drone 2” would use the S production to produce the error 
message, “Missing Drone Number”. The erroneous 
sentential form, “Drone 1 go right 3 go left” would use the 
A production to produce the error message, “Unexpected 
End of Command”. The erroneous sentential form, “Drone 
3, and 4 go up” would use the A production to produce the 
error message, “Missing Drone Number”. These errors 
provide likely evidence of an attempt to hijack a drone. 
Even though transmission may not be possible, this 
information is valuable for it can trigger an organic mission 
recovery program, which may bring the UAV(s) back into 
secure communication range (e.g., through the use of GPS 
in a non-denied environment). 

III. SYNTHESIZED WAVEFORMS 
Figures 1 thru 4 depict an exemplary discretized grid 

showing the primary waveform (F) in red and the secondary 
(lower) waveform (G) in blue. Figure 5 shows the tertiary 
waveform (S) in green and the secondary waveform again in 
blue. Note that only primary waveforms need be stored in 
primary memory – allowing for the depictions. The mesh 
size is governed by the memory requirements as well as the 
tolerance for error. That is, the less the tolerance for error, 
the finer the mesh size and the concomitantly greater the 
memory requirements; while, the runtime remains 
practically invariant due to the use of random addressing on 
the memory bus. Of course, the use of a finer mesh size 
implies that a greater number of array references will be 
needed to retrieve a primary waveform of the same duration. 
This problem can be mitigated to some extent through the 
use of anticipatory caching; whereby, a limited number of 
primary waveforms are pre-fetched and cached for a coarser 
mesh size in anticipation of being referenced as discussed 
above. The best mesh size is hardware dependent and thus 
must be chosen experimentally. 
 

 
 

Figure 1. A Dirac Impulse Primary Waveform 

 
 

Figure 2. Effect of Increasing the Primary Pulse Width 
 

 

 
 

Figure 3. Effect of Varying Primary Edge Fall Rate 
 
 

 
 

Figure 4. Effect of Varying Primary Edge Rise Rate 
 
 

 
 

Figure 5. A Tertiary Waveform Approximated by a Secondary One 



IV. A HARD REAL-TIME ADAPTIVE ALGORITHM 
In this section, we present an adaptive algorithm for 

generating the tertiary waveform using the secondary 
waveform as impulsed by the primary waveform. Again, the 
algorithm was designed to operate under hard real-time 
constraints. It is tacitly assumed that the effects of 
sequential secondary pulses are context free; although, using 
a k-limited table-driven approach, the effects of say all pairs 
of sequential secondary waveforms (e.g., k=2) may be 
similarly stored and indexed (see below); albeit, at 
exponential space requirements that are ( !)O k . Thus, 
delimited k=2 “look-back” serves as a practical maximum 
contextual value. 

It should be noted that this algorithm allows for the 
ready maintenance and extension of the primary-secondary 
waveform pairs as a consequence of the case-based 
methodology used. It follows that the case pairings can be 
automatically acquired through a random exploration and 
feedback loop (Figure 6). 

There is a need to uniformly explore the space of 
primary waveforms. That is, one must set a squelch where, 

2 2| , || ( ) ||  and |  || ( ) ||g g G s t g g s t gδ δ′ ′∀ ∈ − > − ≤ , 
where δ  is a suitably chosen threshold constant. If the two-
norm is less than or equal to this constant, then we say that 
the secondary impulse response is already covered by the 
case base. Otherwise, the primary-secondary waveform 
pairs are saved in the case base. If this constant is chosen to 
be too close to zero, then the case base will grow to be too 
large and either not cover the desired primary waveform 
space, or require excessive memory and/or a coarser mesh 
size – all of which would be undesirable. Conversely, if this 
constant is chosen to be too large, then the case base may 
still cover the desired primary waveform space, but it will 
necessarily be limited in the number of basis waveforms that 
it can acquire and, as a consequence, tend to fit the tertiary 
function with spikes above the desired function, followed by 
spikes below it (i.e., great volatility), which is deemed to be 
undesirable. Again, the threshold constant, δ , needs to be 
chosen experimentally. 

Next, a unified algorithm is presented, which will (a) 
synthesize a target tertiary waveform, (b) use one or more 
co-processors to effect Gaussian mutations of the best 
primary waveform to evolve a new one and save it in the 
case base whenever the value of δ  is exceeded by all of the 
existing case base, and (c) interlace the synthesis of the 
target tertiary waveform with the synchronized test of a 
secondary waveform impulsed by a mutated primary 
waveform. The periodic variance in the synthetic tertiary 
waveform can be automatically ignored by a properly 
designed receiver, which can be synchronized by a train of 
reference pulses. The co-processor(s) are allowed to run 
until g ′  is found, or they are preempted by the arrival of a 
new problem. The justification here is that successful 
discovery is some decreasing exponential function of time 

in as much as the mutation function is not uniformly 
distributed (i.e., it is normally distributed). Thus, there is a 
better chance of discovery, given limited resources, if one 
pages out the old problem and pages in the new. The old 
problem may be cached and subsequently paged in (subject 
to the limitations imposed by thrashing) whenever a 
processor resource is freed. A time-stamp mechanism is 
used to expunge the oldest problems where called for by 
limitations in storage space. The approach taken here is thus 
seen to be unique in that it interlaces a hard real-time 
adaptive wave generator with an evolutionary case-based 
acquisition system, which learns to better model the tertiary 
waveform over time! The essential pseudo-code for this 
algorithm follows. 
 

 
 

Figure 6. Conceptual Evolutionary Acquisition of Primary-
Secondary Waveform Pairings 

 
1. Start: 

2. Label all secondary waveforms with the amplitude 

of their spike. 

3. Store these amplitudes in an array such that each 

amplitude is paired with its defining secondary 

waveform and thus with a primary waveform as 

well. The amplitudes are stored as intervals; so for 

example, instead of say amplitudes of 1, 2, 3, … 

one would store these amplitudes as [0.5, 1.5), [1.5, 

2.5), [2.5, 3.5), and so on to facilitate pattern 

matching. (The behavior approaches continuity as 



the number of primary functions tends towards a 

very large number.) 

4. L1: Compute the projected amplitude needed at 

time, t+1 to approximate the known tertiary 

waveform (i.e., using the tail of the preceding 

secondary one for a starting point). Reference the 

array with this value to retrieve the index of the best 

primary waveform. 

5. Generate the primary waveform. 

6. Apply the associated secondary waveform and 

measure its effect. 

7. If 2|| ( ) ||s t g δ− ≥ , when the next synchronized 

reference pulse wakes up the co-processor, generate 

g ′  using a normally distributed mutation (see 

section III). 

8. Else If the cache is empty, then goto L2 

9. Else when the next synchronized reference pulse 

wakes up the co-processor, retrieve the youngest 

problem from cache and generate g ′  using a 

normally distributed mutation. 

10. If 2|  || ( ) ||g s t g δ′ ′− ≥ , then time-stamp and 

cache the problem 

11. Else save the solution in the case base 

12. If the cache is full, implement a Least-Recently-

Used (LRU) memory management policy, which is 

based on the time stamps. 

13. L2: Poll the interrupt vector. 

14. Goto L1. 

15. End. 
 

V. THE MUTATION ALGORITHM 
In its simplest form, this algorithm operates on the 

assumption that the state space wherein the solution lies has 
few local maxima. In the search for the single global 
maxima, the algorithm makes an implicit assumption that 
climbing the hill that it is currently on will lead to the 
desired result. This occurs by initializing the primary 
waveform to a random configuration and thereafter 
continuously varying this waveform based on a normal 
distribution around the current definition. The distribution is 
used to determine such parameters as pulse width, 
amplitude, and rates of rise and fall on the leading and 
trailing edges. Exploration in this manner takes place in 
rounds. The pseudo-code for this algorithm follows. 
 
1. Start: 

2. Initialize the best primary waveform wbest to one having 

minimal 2|| ( ) ||s t g− , or to a random continuous 

waveform if the case-base is empty. Initialize the 

normal distribution di to the flattest distribution 

available, d0. Set found-better to False. 

3. Repeat i times.  

a. Vary each defining coordinate in the primary 

waveform according to di, creating primary 

waveform wtemp. 

b. Test this primary waveform according to the 

evaluation formula, 2( ) || ( ) ||f g s t g′ ′= −  

c. If f(wtemp) < f(wbest) 

        i. Set wbest ← wtemp 

        ii. Set found-better to True. 

d. Goto step 3a. 

 

4. If (found-better = True) 



    a. di ← di+1 (decrease the st. dev of the normal) 

    b. Set found-better to False  

    c. Goto step 3. 

Else  

    If (di = d0)  

        a. Return wbest  

        b. Exit 

     Else 

         a. di ← di-1 (increase the st. dev of the normal) 

         b. Set found-better to False  

        c. Goto step 3. 

5. End. 

A. Simulation Results 
Three trails were conducted as follows [8]. Trial 1:  a 

random primary waveform is tested against 100 strategies – 
(10, 100 and 1000) waveforms are tested during a cycle. The 
new waveforms generated during a cycle are based on the 
waveform of the best performer against the 100 strategies 
found. These waveforms are varied from the best performer 
according to a normal distribution. If during the course of a 
cycle a primary waveform out-performs the best performer, 
it is declared the best performer, and the normal distribution 
is set to be tightened on the next cycle. If however, no 
primary waveform outperforms the best performer, after an 
entire cycle, the normal distribution is then relaxed on the 
following cycle. The normal distribution is tightened by 
decreasing the standard deviation, and loosened by 
increasing the standard deviation of the normal. The normal 
distribution is initially set to the loosest (most like a uniform 
distribution) standard deviation. There are 8 different normal 
distributions utilized in Trial 1. Their standard deviations are 
as follows: [92, 64, 45, 32, 23, 16, 11, 8]. If a better weight 
set is found while utilizing the tightest distribution, that 
distribution is maintained for the following cycle. The trial 
terminates when no new best performer is discovered using 
the most relaxed normal distribution. 

Trial 2:  Tests are conducted in a manner similar to Trial 
1. After a new best performer is discovered, the normal 
distribution is set to be tightened to the highest level possible 
(i.e., standard deviation of 8). In Trial 1, distributions are 
increased by only a single level after such an event. 

Trial 3:  Tests are conducted in a manner similar to Trial 
1. There are only 4 different normal distributions utilized in 

Trial 3. Their standard deviations are as follows [96, 32, 16, 
8]. 
 

B. Tabular Results 
The results of these trials have been published in [8]. 

They are reproduced in Table 1. 
 

Table 1. Results from Testing Different Parameters of the Algorithm 
 

 
 

C. Cybersecurity 
Compromised codes can be found by testing a function 

for equality with the source version stored in an immutable 
repository. Code executions can be tested and periodically 
compared with immutable executions. The number of such 
executions is proportionate to the amount of security that 
can be had. The system can repair itself if a cyber-attack 
occurs. The repository comprises firmware, which holds the 
original unadaultered functions. The system can be restarted 
to an earlier point and the involved functions restored to 
validity. The repository may only be written to with the 
permission of a capability access model. 
 

VI. CONCLUSION 
Signals are filtered through the use of an inferred 

stochastic grammar. Noise and jamming signals are 
effectively removed through the use of an expectation-driven 
receiver. Cybersecurity also entails maximizing the signal to 
noise ratio. Evolutionary methods have generally not been 
compatible with hard real-time systems. This paper also 
presents a new case-based approach that combines hard real-
time adaptive algorithms with evolutionary programs 
capable of modifying and/or augmenting the case base in real 
time through the use of one or more co-processors (for 
maximal efficiency). These techniques are expected to find 
application in adaptive optics, correcting for frequency drift 
in cellular transmissions, and in boosting signal gain through 
the improved cancellation of ambient noise or cyber 
jamming. Applications such as these will serve to enhance 
military network operations (e.g., ForceNet). 
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