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In the past decades, we have witnessed an explosion of multimedia data, especially with

the development of social media websites and blooming popularity of smart devices. As
a result, multimedia semantic concept mining and retrieval whose objective is to mine

useful information from the large amount of multimedia data including texts, images,

and videos has become more and more important. The huge amount of multimedia data
and the semantic gap between low-level features and high-level semantic concepts have

made it even more challenging. To address these challenges, the correlations among the

classes can provide important context cues to help bridge the semantic gap. Meanwhile,
many real-world datasets do not have uniform class distributions while the minority

instances actually represent the concept of interests, like frauds in transactions, intru-
sions in network security, and unusual events in surveillance. Despite extensive research

efforts, imbalanced concept retrieval remains one of the most challenging research prob-

lems in multimedia data mining. Different from existing frameworks regarding concept
correlations among labels, this paper presents a novel concept correlation analysis model

using the correlation between the retrieval scores and labels. Experimental results on the

TRECVID benchmark datasets demonstrate that the proposed framework can enhance
imbalanced concept mining and retrieval even with trivial scores from the minority class.

Keywords: Imbalanced data; Multimedia big data; Multimedia semantic retrieval; Rare

class mining; Concept correlation; Information integration

1. Introduction

The class imbalance problem has attracted significant research efforts in data min-

ing and information retrieval [1][2][3][4][5][6]. Large amounts of data have skewed

class distributions since the events of interests occur infrequently in many real-world

big datasets. In such datasets, classes with fewer data instances are called minority

classes; while those have more data instances are defined as majority classes. Most

classifiers often bias towards the majority classes since they are usually modeled by

exploring data statistics and thus can hardly retrieve correct results from the mi-

nority classes. However, the minority instances are usually the most important ones

in the fields of risk management, rare disease in diagnosis, metal fatigue detection,

as well as multimedia concept retrieval which is one of the centric research tasks in
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Fig. 1. Positive to Negative (P/N) Ratios for some rare concepts

content-based information retrieval [7][8][9][10][11][12][13].

Although researches have paid extensive efforts on the class imbalance problem,

rare concept retrieval remains one of the most challenging problems in multimedia

data [14][15][16][17][18][19][20]. Many concepts are often correlated, either positively

or negatively. Some concepts co-occur rarely like cow and sea; while others co-occur

more frequently such as bird and sky. Such correlations can provide important

context cues to help detect the concepts [21][22][23][24][25][26]. While inter-concept

correlations have been recently used to tackle the issue, the very small number

of training instances in the minority class makes the task of correlation detection

hard and often lead to unsatisfied concept retrieval results. Different from those

enhancement models that only consider the correlations among concepts, we present

a very different correlation analysis strategy considering the correlation between

concept labels and retrieval scores. Even with trivial scores from minority classes,

the proposed framework can enhance rare concept retrieval.

The main contribution of this paper is the design of an efficient multimedia rare

concept retrieval model. This paper focuses on efficient imbalance concept mining

in a large-scale dataset, namely the TREC Video Retrieval (TRECVID) dataset

[27] which includes a lot of videos collected from the Internet and other sources by

National Institute of Standards and Technology (NIST). Many concepts are consid-

ered imbalanced as shown in Figure 1). As mentioned previously, some concepts are

extremely rare like “Cigar Boats” which contains only four keyframes (video shots),

making semantic information retrieval a big problem. The average P/N (positive

to negative) ratio of the TRECVID data is only 0.003. By constructing a seman-

tic concept hierarchy and using concept correlations, a novel imbalanced concept

retrieval model is proposed in this paper. Experimental results on TRECVID 2015

semantic indexing (SIN) data set demonstrate that the proposed framework gives

promising performance, comparing to several state-of-the-art approaches.

The rest of this paper is organized as follows. In the next section, related work



March 27, 2017 8:26 WSPC IJSC2017

Correlation-Assisted Imbalance Multimedia Concept Mining and Retrieval 3

on rare class mining is introduced and various types of correlations are discussed

as well. In Section 3, a hierarchy is built using the inter-concept correlations. Sec-

tion 4 describes a novel idea of enhancing imbalanced concept detection using the

correlation between the retrieval scores and labels. Section 5 shows how to setup

the framework and compares the results of the proposed system on the TRECVID

dataset. Finally, Section 6 draws the conclusion and identifies future research direc-

tions.

2. Related work

In this section, we first introduce some kinds of correlation coefficients for differ-

ent types of data. Next, some recent approaches on imbalance data classification

are discussed and divided into two directions. We also include how to build the

hierarchies for classes as part of the related work.

2.1. Correlation coefficients

In general, the correlation coefficient, known as the cross-correlation coefficient,

is a quantity that gives the statistical relationships between two or more random

variables or observed data values. Based on the nature of the input data, inter-

concept correlations can be divided into four different kinds including nominal,

ordinal, interval, and ratio.

When measuring using a nominal scale, one simply names or categorizes the

responses. The input data for the nominal scale are put into classes without any

structure or order. Considering a dataset of hair colors including labels brown,

black, gray, red, etc. There is no distance between brown and black, nor a distance

between gray and red. A sub-type of nominal scales with only two categories is

called “dichotomous” (like male and female). All categories in nominal scales have

no overlap and none of them has any numerical significance. Therefore, they can be

also seen as kinds of names or yes/no labels.

Similar with nominal scales, ordinal scales are typically measures of non-numeric

concepts like satisfaction, happiness, discomfort, etc. However, the differences be-

tween them is not really known. For instance, it is typically unknown whether the

difference between “Very Happy” and “Happy” is the same as the difference be-

tween “So-so” and “Unhappy”. Therefore, ordinal scales can only interpret a gross

order but not the relative positional distances. Besides, the best way to determine

the central tendency on a set of ordinal data is to use the mode or median rather

than the mean from an ordinal set since the “mean” value is always undetermined.

The third, interval scales, which we are most familiar with, are numeric scales in

which we know not only the order, but also the exact differences between the values

and thus the realm of statistical analysis on such data opens up, which is to say the

intervals having the same interpretation throughout. The Fahrenheit temperature

is considered the classic example data in this category. While 10 degrees plus 10

degrees is 20 degrees, 20 degrees is not twice as hot as 10 degrees since Fahrenheit
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temperature do not have a true zero point, even if one of the scaled values happens

to carry a zero value (0 degree, not absolute zero). Therefore, with interval data,

we can add and minus, but cannot multiply or divide.

Lastly, ratio scales are kind of ultimate nirvana because they tell us about the

order, the exact value between units, as well as an absolute zero which allows for

a wide range of both descriptive and inferential statistics to be applied. Therefore,

different from interval scales, the multiply and divide operators can also be applied.

One common example of ratio scales is the height, since we can always say one object

is twice as tall as another. The summary of the operations and scale measures is

shown in Table 1.

Table 1. Summary of Data Types and Scale Measures

Operations Nominal scales Ordinal scales Interval scales Ratio scales

Frequent distribution Y es Y es Y es Y es

Mode Y es Y es Y es Y es

Median Y es Y es Y es Y es

Mean No Y es Y es Y es

Plus No No Y es Y es

Minus No No Y es Y es

Multiple No No No Y es

Divide No No No Y es

2.2. Imbalanced data classification

Recently, imbalanced data classification techniques fall into two categories includ-

ing sampling-based and algorithm-based. Sampling-based approaches are the most

popular classification algorithms for imbalanced data sets. Among them, downsam-

pling (undersampling) and oversampling methodologies have received significant

research efforts to counter the classification of imbalanced datasets and presented

the viewpoints on the usefulness of undersampling versus oversampling [28], though

sometimes they are conflicting. While the sampling ideas are straightforward, they

have proven good performance on imbalanced data classification.

Downsampling is to select a part of the majority data instances to build a model

with a similar number of positive samples. The main advantage of undersampling

is its efficiency as it uses only a subset of the data instances in the majority class;

while many data instances in the majority class are ignored, but this may lead

to information lost. To overcome the disadvantage of downsampling, Liu et al.

proposed two algorithms to overcome this deficiency [29]. The first one is “Easy

Ensemble” which trains classification models using several sample subsets from the

majority class, and then integrates the outputs of those models to produce the final

predication results. The second promoted one is “Balance Cascade” which trains

the classification models sequentially. In each step, the majority class data instances
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that are correctly classified by the current trained models are removed from the next

round. Although downsampling is somewhat efficient as it uses only a subset of the

majority class, many data instances in the majority class are ignored and may result

in the loss of information.

Comparatively, the idea of oversampling is to somehow generate more positive

data instances to make the data set balanced. One easy way is to simply copy

data instances in the minority class, which may lead to overfitting. Zhang et al.

[30] presented an improved oversampling approach based on the synthetic minority

oversampling technique (SMOTE). First, the data distribution of the minority class

is used to estimate whether different types of data instances are overlapped. In the

next step, synthetic data instances are generated in different classes when the classes

overlap significantly with each other. In addition, the weights are increased for those

positive samples that are far from the borderline. Though SMOTE is an enhanced

oversampling approach which could generate data instances not existing in the

original minority class, overfitting remains as a potential problem in oversampling.

Another direction of solving imbalanced data classification is to use the

algorithm-based approaches. Researchers use them to optimize the performance

of learning algorithms on unseen data to address the class imbalance problem. One

algorithm-based approach is cost-sensitive learning which tries to maximize the loss

functions associated with a dataset to improve the classification performance. It is

motivated by the observation that most real-world applications do not have uniform

costs for misclassifications. The actual costs associated with each kind of errors are

typically unknown, so these methods need to determine the cost matrix based on

the data and apply it to the learning stage. Shifting the bias of a machine to favor

the minority class is a similar idea with cost-sensitive learning [31].

The algorithm of GASEN (Genetic Algorithm based Selective Ensemble Net-

work) has been proven to be a very effective way to select a subset of neural networks

to form an ensemble classifier or a regressor of an enhanced generation ability. Che

et al. provided an improved solution of GASEN to handle the class-imbalance prob-

lem and tested GASEN on dozens of datasets to find that there is some potential for

improving GASENs performance on class-imbalance learning [32]. Machine learning

algorithms, such as genetic programming (GP), can also generate biased classifiers

when the data sets are imbalanced. Bhowan et al. used new fitness functions in the

GP learning process and empirically showed a better performance by the evolved

classifiers on both minority and majority classes [33]. Though these studies have

shown their potentials in improving the classification performance on imbalanced

data, they are far from extensive or systematic.

2.3. Hierarchical models

Many research efforts have been paid on organizing the hierarchies for semantic

concept retrieval and event detection. Most of them use inter-concept correlations

to build the hierarchies. Wang et al. [34] proposed a hierarchical context model to
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systematically integrate feature level context, semantic level context, and prior level

context for accurate and robust event recognition in surveillance videos. A compre-

hensive model that can integrate contexts from all three levels simultaneously was

built. In [35], the authors presented a large-scale video event classification system

with a large number of event categories mined automatically from YouTube video

titles and descriptions using Part-of-Speech parsing tools, with constraints derived

from WordNet hierarchies. To solve the problem of multi-class object detection, the

authors proposed a boosted multi-class object cascade that only splits one class ob-

ject from the upper-level cascade when building the sub-cascades [36], which reduces

the number of classifiers in each stage. Vreeswijk et al. [37] analyzed the differences

between the images labeled at varying levels of abstraction and the union of their

constituting leaf nodes.

Recently, some researchers find that inter-concept correlations can help re-rank

the concept detection scores on event detection. The selection of event-specific con-

cepts based on the similarity to a textual event description had shown to yield ef-

fective event detection results without positive examples [38]. Tao et al. [39] showed

that inter-concept associations including both positive and negative correlations can

be used to bridge the semantic gap and enhance the performance of semantic con-

cept detection in multimedia data [40][41][42][43]. The concept-concept association

information integration and multi-model collaboration framework were proposed to

enhance high-level information retrieval from multimedia big data.

3. Building hierarchies for datasets

3.1. Conditional probability calculation

Although the inter-concept connection information has been proposed to enhance

semantic concept retrieval results, most of them utilize the hierarchical relationship

from the data provider [44] for combining the classes to generate reorganized hierar-

chies. For instance, if a dataset contains labels “apple”, “banana”, and “fruit”, the

data provider may give a note “apple imply fruit”. In such case, the data instances

with the label “apple” would be automatically added to the label “fruit”. However,

many other kinds of relationships are not that straightforward and relationships

generated manually may lead to biases and not suitable for big datasets.

In this paper, we first build a hierarchical model for all concepts based on con-

ditional probabilities generated from the training set. Here we define Cparent as

a parent concept and Cchild as a child concept. Let P (.) be the probability, then

C+
parent denotes the positive collection of Cparent; whereas C+

child represents the pos-

itive collection of Cchild. If Cparent is the parent of Cchild, the appearance of Cchild
should imply the appearance of Cparent. As an example, if a video shot contains

the concept “car”, it definitely includes the concept “vehicle” as well, unless the

ground truth is incorrect. In this example, “car” is a child concept while “vehicle”

is a parent concept. The probability of Cparent appearing increases if Cchild appears,

and the probability of Cparent appearing decreases if Cchild does not appear. This
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Fig. 3. Parent/Child relationship examples 2.

conditional probability can be computed by Equation (1).

P (C+
parent|C+

child) =
P (C+

parent and C+
child)

P (C+
child)

. (1)

3.2. Bottom-up organization

In real-world, some concept pairs have the parent-child relationship (like “sky” and

“sun”). This kind of inter-concept relationships should also be considered. In addi-

tion, since the concept labels in multimedia datasets are usually manually decided

by the volunteers or by some automatic labeling techniques, the ground truth is not

always correct. Therefore, a threshold of 0.9 is set to determine whether two con-

cepts have the parent/child relationship, which is represented as P (C+
parent|C+

child)

> 0.9.

Next, the hierarchy model of all concepts is built from the leaf nodes (in a

bottom-up manner) using all the parent-child concept pairs generated and filtered.

If a concept has no child but at least one parent, it is considered as a leaf node and

is added to the initial model. The following step shows the example of including

the “direct” parent nodes for the “whale” leaf node. A whale is a cetacean, a mam-
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mal, and an animal as well. With the fact that the appearance of a whale implies

the appearance of a cetacean and “cetacean” implies “animal”, these two concept

pairs also have the parent-child relationship. Thus, “whale” is first included as a

child node and then followed by “cetacean”, “mammal” , and “animal”. If a parent

concept has no parent like “animal” in this case, it will be finally considered as a

root (head) node. These operations are shown in Figure 2 and Figure 3.

After finding out all the qualified parent-child concept pairs, we can combine the

branches into a tree and thus find the siblings of the child concepts as given in Figure

4 and Figure 5. Different tree structures would be generated from different datasets,

even from different subsets of a dataset. In the aforementioned example, if the

concept “mammal” is removed, “animal” could be the direct parent of “cetacean”

in the updated hierarchy. In general, the more concepts included, the more complete

the model would be. Though the hierarchy model can never be perfect, it is suitable

for the particular dataset on which it based.
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4. Prediction score enhancement for rare concept retrieval

4.1. Score-based correlation generation

As mentioned in related work, most previous research including the aforemen-

tioned conditional probability approaches calculates the inter-concept correlations

and builds the hierarchical structures using the label information in the training

data, i.e., the appearance or non-appearance of the concepts. One main problem of

using such information to leverage the retrieval scores is the correlation coefficients

among rare concepts, and correlation coefficients between imbalanced concepts and

balanced concepts are usually weak. Suppose that we calculate the correlation be-

tween a common concept with 10,000 instances and a rare concept with 10 instances,

the correlation coefficient will be small and even one wrong label for the rare concept

in the training set will lead to a big mistake in inter-concept correlation calculation

and thus cause wrong results.

Another issue is that high correlations between concepts do not necessarily lead

to the high correlation between the concepts and the detection (prediction) scores,

especially for rare concepts since the quality of scores from imbalanced concepts is

often worse than those from the balanced concepts. This is caused by the nature of

the original dataset (with a skewed distribution) and directly using rare concepts’

correlation information for score integration may even downgrade the original re-

sults. For instance, the concept “hurricane” should have a positive correlation with

the concept “disaster”. However, with the bad prediction scores, the concept “hurri-

cane” does not really help the retrieval of the concept “disaster” in the imbalanced

dataset.

There are only 6 out of the total of 137,272 video shots that include the concept

“cow” in the TRECVID dataset. This raises the third issue: the detection scores

of rare concepts themselves can be relatively imprecise. Most of the classifiers can-

not get acceptable prediction scores for these rare concepts albeit with such a big

training data set. To solve these three issues, we propose a model to integrate the

prediction scores of the rare concepts using the Pearson correlation coefficients from

both the label and score information for score enhancement in this paper.

The Pearson product-moment correlation coefficient [45], denoted by ρ (or r),

measures the strength of a linear association between two variables X and Y , and is

widely used as a measure of the degree of the linear dependence between X and Y .

It attempts to draw a line of best fit through the data of two variables, and ρ (or r)

indicates how far away all these data points are to this line of best fit. The ρ (or r)

values are between +1 and -1 (inclusive), where +1 is a total positive correlation,

0 is no correlation, and -1 is a total negative correlation. Let cov(X,Y ) and E be

the covariance and expectation of X and Y , σX and σY be the standard deviations

of X and Y , and µX and µY be the mean values of X and Y . For a population, we
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Fig. 6. Top ten related concepts that support the rare concept “cow”.

have the following:

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
; where (2)

cov(X,Y ) = E{[x− E(x)][(y − E(y)]} = E(xy)− E(x)E(y);

σX =

√√√√ 1

N

N∑
i=1

(xi − µX)
2
;

σY =

√√√√ 1

N

N∑
i=1

(yi − µY )
2
;

µX =
1

N

N∑
i=1

xi;

µY =
1

N

N∑
i=1

yi.

Here we define CT as the label information of an imbalanced (target) concept,

and let SR be the prediction score of a support (related) concept which can be either

a balanced concept or imbalanced one. Take “cow” as a target concept. In order to

enhance the prediction score of the rare concept “cow”, all ρ(CT ,SR) are calculated
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and ranked. In the equation, T is the concept “cow” and R = 1, 2, · · · , N and N is

the number of concepts. The top ten related concepts are shown in Figure 6, which

means the prediction scores of these concepts are helpful to enhance the prediction

score of the concept “cow”.

As shown in Figure 6, the top ten related concepts are “Herbivore”, “Ruminant”,

“Mammal”, “Quadruped”, “Wild Animal”, “Vertebrate”, “Animal”, “Animal Pens

And Cages”, “Sea Mammal”, and “Cattle”, respectively. Clearly, most of them are

reasonable at the first glance, expect “Sea Mammal”. Nevertheless, the shapes of

some sea mammals are similar to those of the cows. Especially, one common kind of

sea mammal, manatee, is also known as “sea cow”. This highlights another advan-

tage of the proposed framework, which can find the potentially related concepts.

Figure 6 also implies that the prediction score of the concept “cow” itself is imprecise

and thus will not be integrated for the enhancement.

4.2. Negative-related concepts

After ranking top ten related concepts by their correlation values and building a

hierarchy as shown in Figure 6, it can be further expanded using the hierarchical

models built in Section 3. For a target concept CT , if a related concept CR is

connected to it, its parent will also be added to the model. In this example, since

“Quadruped” is connected to “cow”, “Animal” would be included as well. However,

since “Animal” is already included based on the ranked scores, we don’t need to

add it again as shown in Figure 6. In this paper, CT is a rare concept. Afterward,

the scores of the top ten related concepts are used to train an integration model

using a discriminant analysis classifier.

As discussed earlier, some concepts such as “sky” and “shark” rarely co-occur,

which can also provide important context cues to help detect the concepts. Take

the aforementioned example, the top ten concepts that have a negative relation-

ship with “cow” are “Hospital”, “Bomber Bombing”, “Fear”, “Factory”, “Sports

Car”, “Disgust”, “Handshaking”, “Airplane Landing”, “Black Frame”, and “Net-

work Logo”. Here, these 10 concepts are not simply irrelevant to “cow” as they look

like, but they also have relatively strong negative relationships. That is, if “Hospi-

tal” appears in a testing frame, “cow” is very unlikely to appear in the same frame.

Therefore, the opposite numbers of scores from those negative-related concepts can

be integrated in the enhancement framework.

4.3. Score integration

To train the integration model, 5 different kinds of popular algorithms are used,

including Support Vector Machine (SVM) [46][47], Naive Bayes (NB) [48], Random

Forest (RF) [49][50], Logistic Regression (LR) [4][51][52], and Discriminant Analysis

Classifier (DAC) [51][52][4].

A Support Vector Machine (SVM) is a discriminative classifier formally defined

by a separating hyperplane to classify the dataset so that the geometric margin is
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Fig. 7. The proposed framework.

maximized. A “Naive Bayes” (NB) is a classification technique based on the Bayes’

Theorem with an assumption of independence among predictors. A Random Forest

(RF) is a meta estimator that fits a number of decision tree classifiers on various

sub-samples of the dataset and uses averaging to improve the predictive accuracy

and control over-fitting. Logistic Regression (LR) is another predictive analysis and

a kind of generalized linear model. It can be used to conduct when the dependent

variable is binary just like in our case. Instead of just predicting binary-valued

labels in linear regression, logistic regression uses a different hypothesis class to

predict the probability that a given example belongs to the positive (e.g., fraud)

class versus the probability that it belongs to the negative (e.g., non-fraud) class

by a logistic function. Discriminant Analysis Classifier (DAC) assumes that the

data from different classes are generated based on different Gaussian distributions.

In the training phase, the fitting function calculates the parameters of a Gaussian

distribution for each class; while in the testing stage, the trained classifier finds the

class with the smallest misclassification cost.

4.4. Workflow

The proposed framework includes a training stage as well as a testing stage as shown

in Figure 7. The testing dataset is first split into three parts, including a training set,

a validation set, and a testing set. In the training phase, the training set conditional

probabilities are calculated to build a hierarchical model for all concepts from the

training label information.

Next, for all the validation video shots and N concepts, N concept detection
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models are trained such that for each video shot, the nth model outputs a score

measuring the likelihood that concept n exists in that video shot. For this part, all

kinds of classifiers can be employed to generate different prediction scores, which

may lead to different score-based correlations from the same dataset. That is, for

the same CT (like “cow”) in the TRECVID dataset, different hierarchies can be

generated based on different classifiers applied. In the aforementioned example,

ten score vectors of the positively related concepts and ten score vectors of the

negatively related concepts are put together to train an integration model.

In the testing step, each testing video shot of the target concept is plugged into

all concept detection models to generate the corresponding testing scores for the

related concepts chosen. These scores are then input to the trained score integration

model to generate a new set of re-ranked scores. Please note that the scores of the

target concept may or may not be used, as shown in Figure 6, depending on whether

they are chosen in the training phase or not. Finally, the new output scores are

evaluated.

5. Experiments and Results

5.1. Dataset

In the experiment, the IACC.1.A and IACC.1.B datasets are chosen from the seman-

tic indexing (SIN) task of the TRECVID 2015 benchmark [53], which aims to detect

the semantic concept contained within a video shot. The task assign IACC.1.A as

the training dataset and IACC.1.B as the testing dataset. There are several chal-

lenges for the SIN task, such as data imbalance, scalability, and the semantic gap

[54][55] as mentioned earlier.

The TRECVID conference series encourage research in information retrieval and

provide a huge number of videos for training, and there are more than 300 hours

in IACC.1.A and IACC.1.B datasets. By extracting keyframes from each video

shot, totally 262,911 training data instances are generated. We further divide the

IACC.1.B dataset into a validation set with 68,663 data instances and a testing set

with the same number of data instances [56].

In this dataset, totally 346 concepts are given, including many popular semantic

concepts like “Face”, “Vehicle”, and “Violent” which are common and appear in

many research papers. The list of concepts and the detailed explanations can be

found in [27]. In this paper, we download the detection scores from the DVMM

Lab of Columbia University [57] for all video shots, who ranked the first several

years in the TRECVID competition. The TRECVID 2015 training labels are also

utilized to increase the number of ground truth in the negative association selection

component. The proposed multimedia big data mining system is tested using some

of the results from our previous work as shown in [45][58].
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5.2. Evaluation metrics

The average precision (AP) value, a widely used metric in the multimedia concept

retrieval domain, is used in the evaluation. For a given concept, Pre(i) indicates

the precision of the ith data instance in the ranking list. ψ is for the number of

the retrieved data instances; while Gn is for the total number of data instances

containing that concept in the database. Min(Gn, ψ) indicates the smaller value

of Gn and ψ. The average precision at ψ (i.e., AP@ψ) is defined in Equation (3).

By generating the AP values for all the target rare concepts and calculating the

mean value of them, the mean average precision (MAP) value is used to capture

the ranking information.

AP@ψ =

ψ∑
i=1

Pre(i)× rel(i)
Min(Gn, ψ)

, (3)

where rel(i) =

{
1, if instance i is positive;

0, otherwise.

5.3. Experimental results

Since we target on imbalanced concept retrieval in this paper, 20 most rare con-

cepts with an average P/N ratio of 0.0001 are chosen. Among the video shots in

the testing dataset, each of them have no more than 10 video shots in the dataset.

These 20 concepts are: “Car Crash”, “Cigar Boats”, “Crustacean”, “High Security

Facility”, “Helicopter Hovering”, “Cetacean”, “Military Buildings”, “Rpg”, “Pris-

oner”, “Police Truck”, “Colin Powell”, “Earthquake”, “Oil Drilling Site”, “Rescue

Helicopter”, “Dolphin”, “Security Checkpoint”, “Fire Truck”, “Whale”, “Cows”,

and “Yasser Arafat”.

The experimental results are shown in Table 2. The “Baseline” one is calculated

using the raw scores directly from the classifiers in [57]. Though the scores here were

the best prediction scores, it still performs bad on rare concept retrieval because of

the extremely skewed distributions. As mentioned in Section 4.3, we use different

classifiers including Support Vector Machine (SVM), Naive Bayes (NB), Random

Forest (RF), Logistic Regression (LR), and Discriminant Analysis Classifier (DAC)

to re-rank those scores. “LL” is for label-label correlations, which means only using

the correlations calculated by the label information in the training dataset. Com-

paratively, “SL” stands for score-label correlations, which is the main contribution

of this paper.

The results clearly show that if the target concepts are extremely rare, using

only correlations calculated by the label information from the training dataset does

not help and can even downgrade the results. Table 2 shows that we achieve a better

score enhancement when using the information generated by the score-label correla-

tions, in comparison with that using the label-label correlations for every classifier.
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Table 2. Experimental results.

Framework MAP10 MAP20 MAP50 MAP100 MAP200 MAP500

Baseline 0.0446 0.0438 0.0312 0.0318 0.0322 0.0302

SVM (LL) 0.0125 0.0125 0.0125 0.0125 0.0130 0.0130

SVM (SL) 0.0167 0.0167 0.0167 0.0088 0.0088 0.0090

NB (LL) 0.0056 0.0142 0.0142 0.0124 0.0124 0.0124

NB (SL) 0.0056 0.0146 0.0146 0.0113 0.0132 0.0137

RF (LL) 0.0375 0.0408 0.0297 0.0215 0.0215 0.0215

RF (SL) 0.0426 0.0460 0.0401 0.0417 0.0417 0.0417

LR (LL) 0.0234 0.0309 0.0335 0.0278 0.0256 0.0230

LR (SL) 0.0467 0.0532 0.0554 0.0551 0.0535 0.0529

DCA (LL) 0.0532 0.0577 0.0554 0.0485 0.0462 0.0436

DCA (SL) 0.1130 0.1130 0.0856 0.0733 0.0711 0.0614

Proposed 0.1321 0.1101 0.0916 0.0885 0.0850 0.0681

Albeit with the imprecise raw scores on rare concepts, the proposed framework can

successfully re-rank and enhance the results as can be seen from Table 2.

Since the Naive Bayes (NB) approach is based on applying the Bayes’ theorem

with strong independence assumptions between the attributes, which is not true in

our case (inter-concept correlations), it performs the worst. Furthermore, because

of the nature of Random Forrest (RF) (i.e., random tree selected), we run it three

times and the results are averaged. Our proposed framework is presented in the

“Proposed” column which also includes information from negative correlations. It

uses the correlations found in Section 4.2 and integrates the scores from those

negative-related concepts.

6. Conclusions and future work

Rare concept retrieval is a challenge task due to the nature of the imbalanced

datasets. Since the data instances in the majority class usually overshadows those

in the minority class, it is hard to get acceptable retrieval results when the target

concept is a rare concept. In this paper, we propose a score re-rank system using

the label-score correlations to leverage the semantic concept retrieval task from the

video shots. Our experimental results clearly show the effectiveness of the proposed

framework and how it can successfully enhance the prediction scores of the rare

concepts.

The label-score correlations also work like inference rules which can provide a

clue for how to define a rare concept. Suppose we have the data of an unknown kind

of “animal”, using the proposed framework can help find the relationships between

several known animals and concepts with it. Considering the “cow” example, we

can now better answer the question of what is a “cow”. Similarly, we can somehow
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define a new concept, a new species, or a new object, even though we do not know

what it is now. This kind of definitions is very helpful to the fields of information

retrieval and knowledge discovery, which can be further investigated as the future

work. Another research direction is to find an efficient way to build larger concept

hierarchies. When we have thousands of concepts in a dataset, the trees will be

much more complicated and thus more research efforts are needed.
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