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Abstract—The public health infrastructure delivers proper
health care services as part of the basic needs of the general
population. The health care system in the United States is rapidly
changing in order to provide a better and convenient healthcare
system to the public. Unfortunately, this comprehensive expand
has also given rise to healthcare frauds in recent years where
losses surge up to $1.8 billion in the country. Organizations
such as the Center for Medicare Services (CMS) have started
providing accesses to comprehensive medical big data to promote
the identification of healthcare frauds as an important research
topic. In this paper, we will use the Patient Rule Induction
Method (PRIM) based bump hunting method to identify the
spaces of higher modes and masses to indicate the peak anomalies
in the CMS 2014 dataset. By applying our framework, we can find
a way to observe anomalies, which can be attributed to frauds in
legal medical practices or other interesting insights in the CMS
dataset. This will enable us to characterize the attribute space
and explain the events incurring losses to the medicare/medicaid
program. The proposed framework is compared with several
methods to illustrate the efficiency and effectiveness of the
proposed framework for fraud detection.

I. INTRODUCTION

As defined by WHO, the highest attainable standard of
health is a fundamental right of every human being [1]. There-
fore, the public health systems are related to all the population
and can be defined as “all public, private, and voluntary
entities that contribute to the delivery of essential public health
services within a jurisdiction” [2]. The goal of healthcare
systems is to cure as many patients as possible in a reasonable
and affordable way. However, the treatment process requires
not only medicines and medical facilities but also the services
of physicians and other medical staffs. All these necessities are
highly valuable and thus very likely unaffordable for individual
patients to pay the cost by themselves. Therefore, medical
insurance plans are involved to spread the financial burden
among all attendees in the network so that the medical system
can work more functionally.

On the other hand, misuse or fraudulent activities exist in
any insurance system. Estimated by the FBI, 3% to 10% of
all insurance billings are frauds [3]. For example, from the
$604 billion of total healthcare insurance costs in 2013 [4],
the fraudsters can steal $18 to $61 billion in one year. To
avoid such a huge waste of public resources, it is urgent
and necessary for the government to find an effective way
to detect fraudulent activities and then prevent them from
happening. However, due to the complexity of the human body,

specialized physicians are trained to acquaint only parts of it
so that they can give diagnosis and treatment to the patients
accordingly and properly. As a result, the treatment plans
and procedures can vary dramatically for whom specializes
in different fields, which brings more difficulty on how to
identify fraudulent claims.

In order to assist in fraudulent healthcare insurance claim
detection, The Center for Medicare and Medicaid Services
(CMS) has recently began to release the dataset of claims,
called Medicaid Dataset [5], which records various medical
procedures performed by each medical service provider in the
U.S. and the corresponding average amount paid for these
drugs, facilities, and treatments. Although there are several
existing approaches that focus on information retrieval [6]-
[18] and data mining [19]-[31], they do not target medical
data, especially for big data. Thus, it is helpful as a basis
for developing a fraudulent claim detection system to identify
fraudulent information from such medical big data.

Any medical financial system becomes inefficient when it
is maliciously and wastefully used. For example, if the use of
Urology can be regulated, over $125 million are estimated to
be saved [32]. This could potentially endanger the patients who
require the same medical resources which were wasted. To
standardize the process, when the regulations might be broken
is required to be determined. Therefore, the anomaly detection
methods can be applied to the Medicaid dataset to detect
abnormal behaviors or bad manners of certain physicians,
compared to his or her peers [33].

As a specific type of machine learning method, an anomaly
detection method [34] can generate an outlier subset from the
general set so that those physicians who behave differently
from the average can be identified. Please note that it can
be more practical when the detected subset is used as a
reference since there is no guarantee that all the physicians in
the detected outlier subset have actually practiced maliciously.
Hence, the further investigation is necessary. In general, one or
several statistics of physician behaviors are calculated and then
the machine learning method is applied to determine which
physicians are the outliers. If a physician is identified as an
outlier, he could have provided medical services maliciously
or wastefully or have belonged to a special case. For the for-
mer situation, the physician behaved aberrantly with possible
fraudulent and wasteful use of healthcare insurance, which can
be verified by further scrutiny in the practicing habits.



Given a multi-dimensional target function, bump hunting
can be applied in order to detect its specific input regions
with the most possible related smaller target value. The bump
hunting process is performed based on the identification of
the intrinsic structure of the target function in an unsuper-
vised way, instead of calculating all the target values in the
input space. This identification process can be regarded as a
density estimation problem with joint probability densities, as
a clustering problem, as a pattern recognition problem, and/or
as an anomaly detection process. Since the outliers of the
physicians can be modeled as the ones with extreme values
among several statistics, bump hunting is applied to discover
the possible fraud in the datasets. The fraud is regarded as
a kind of bump so it can be detected by the corresponding
algorithms. Therefore, the source of insurance loss can be
found and then prevent them from happening in the future.

In this paper, we develop a novel fraudulent medical in-
surance claim detection framework based on Patient Rule
Induction Method (PRIM), where abnormal behaviors of the
physicians are detected. Our main contributions are shown as
follows.

1) We present a novel approach of using PRIM in detecting
medicare fraud and also fraud in general. To the best of
our knowledge, PRIM has only been used in the medical
domains, specifically in cancer data bump hunting, and
this is the first time this method has been applied to for
fraud detection;

2) The proposed PRIM framework is part of our ongoing
research to develop a cross-validated PRIM regression
model that extends the existing method from handling
only survival cases to also perform general cross-
validated regression;

3) We find a new way to characterize the medicare dataset
to protrude fraud anomalies. Normalized predictor func-
tions such as ANOVA and Conditional Probability of
the charged prices are used in a 1-Rule setting to
characterize the input space;

4) The experimental results show our fraud detection
framework can effectively shrink the target subset and
the detected physicians have a much higher probability
than average performing frauds.

The rest of the paper is organized as follows. Section II
introduces the CMS dataset, previous work of fraud detection,
and the bump hunting method. Section III discusses the
methodology of our approach to fraud detection based on the
CMS dataset and Section IV illustrates the experimental results
of our method. In the end, Section V concludes our work and
contributions.

II. RELATED WORK

A. CMS Dataset

CMS has released its Medicaid datasets for three years, from
2012 to 2014. For each year, there are eight datasets published,
recording different aspects of the data in the medical treatment
process. Since our fraud detection is designed to distinguish

1600
1400
1200

1000

800
600
400
200
0
o
=

ETIS320XQuwx
cTX=zzzs+Fz200

Fig. 1. The average submitted charge amounts of anesthesia for procedures
on eyelid in various states

the outliers of physicians, those datasets related to other
medical service providers are irrelevant, which leaves us three
most interested datasets: Physician and Other Supplier Data,
Prescriber Data, and DMEPOS Data, recording the statistics
of treatment, drug use, and medical equipment use from
each physician. For each piece of data in those big datasets
of interest, the identity of the physician, his or her gender,
whereabouts, specialized field and type, service number, the
average submitted charge amount, the average allowed amount
in Medicare, and the average standard amount in Medicare are
recorded.

Furthermore, if we summarize the average Medicare pay-
ment in different states, we can find an obvious difference
between the states. For example, as shown in Fig. 1, the
average submitted charge amount of anesthesia around the
United States is $2034.40; while the average amount of Florida
is $852. Therefore to gain more granularities, fraud detection
should be considered state by state to avoid the influence of
medical expense differences among states. Furthermore, since
Florida has recently suffered severely from several high profile
fraudulent malpractices, the focus of this paper is to deal with
the state of Florida only. The proposed framework and the
experimental results shown in Section IV will reflect the results
respectively.

B. Fraud Detection based on the CMS Dataset

Since fraudulent and wasteful use of medical insurance
leads to the serious waste of public resources, many researches



on medical insurance fraud detection have been proposed
based on these CMS datasets. In paper [35], the physician
education background is analyzed to determine how he or she
should practice with the 2012 CMS dataset. Their study takes
into consideration the medical school tuition, education pro-
cedures, possible anomalies, geographical analysis combined
with the nationwide school procedure charges, and payment
distributions. Therefore, the correlation of the education back-
grounds and the physician behaviors can be deducted and used
as the evidence to detect who fraudulently and wastefully used
the insurance system.

Furthermore, the variability of data in the CMS dataset (big
data) can be analyzed alone to detect the fraud activities. [32]
proposes a possible approach to perform the detection at the
Urology field. The number of patient visits is shown to have
a strong correlation with the Medicare reimbursement, which
is helpful in fraud detection.

Since the CMS dataset does not provide the label of
the fraudulent healthcare providers, the anomaly detection is
processed in an unsupervised way. However, Chandola et al.
use the fraudulent provider label primarily from the Texas
Office of Inspector Generals exclusion database and use a
semi-supervised method to detect the frauds [36]. Specifically
for the frauds in treatments, typical treatment profiles are used
to be compared to what the physicians have provided.

C. Patient Rule Induction Method (PRIM)

Patient Rule Induction Method (PRIM), initially introduced
by Fisher and Friedman in 1999 [37] and extended by J.
Dazard et. al [38], implements a unified treatment of the
”Bump Hunting” task in Survival, Regression and Classifica-
tion (SRC) settings in a high-dimensional space. This frame-
work is part of our ongoing research to develop a regression
model for the PRIMsrc survival framework. PRIM generates
the decision rules to delineate a region by recursively peeling
non-bump regions from the result and thus the remaining
subsets are regarded as bumps. The detected region, called
target region R, might be disjointed but with a locally larger or
smaller target function value than its average over the whole
space, in the input space with a high dimension. The detail
implementation of the extended PRIM is given in Algorithm
1.

PRIM uses one or more low-dimensional hyper-rectangles
to indicate the approximation of the target region R, whose
edges should be parallel to the axes of the input space.
Each hyper-rectangle is called a “box” and is defined by the
conjunction of several restrictions on the inputs. Therefore, po-
tential fraudulent physicians can be bounded in the identified
bump regions.

As shown in Fig. 2a, the target function f(z) is a regression
function in p = 1. The solution region R (shown in red)
corresponds to an interval where f(x) assumes larger average
values than over the entire support. Meanwhile, Fig. 2b illus-
trates an example where the target function is a joint density
probability function pdf (1, 22) simulated from a mixture of
bivariate normal distributions in p = 2. In higher-dimensional

pdf(x,.%,) . -

x+fz

(a) (b)
Fig. 2. Examples of target region(s) of PRIM with different dimensions [38]

Algorithm 1 PRIM

Require: the training dataset .#; and a maximal box {B}
containing it R

Ensure: a sequence of boxes {B,,} identifying all outliers

1: forme {1,..,M} do
2:  Generate a box Bm containing all training data in .%,,
32 forle{l,..,L} do
4 top-down peeling: Generate a box Bfn by conduct-

ing a stepwise attribute selection
5: bottom-up pasting: Expand the box Bfn along any
face (pasting) as long as the resulting box maintains
a higher box mass than the initial B,
6: Stop the peeling loop when a minimal box support
B L of B L reaches a minimum box support 0 < 3y <
1, expressed by the user as a fraction of the data, i.e.,
i < bo
end for
Given a sequence of nested boxes {B }, where L is the
estimated number of peeling/pasting steps with different
numbers of observations in each box. Call the next box

Biy1- R
9:  Remove the data in box B,, from the training dataset:
wg/ﬂm-ﬁ-l = ofm\Bm

10:  Stop the covering loop when running out of data or
when a mmnnal number of observations remains within
the last box B M, Where the final box support B v < Bo

11: end for

spaces, it is not uncommon to find a solution region R that
can be complex and possibly disjointed.

III. METHODOLOGY
A. Framework

Empirical data indicates that the state of Florida is the
hotbed of healthcare frauds. This was ensured by the recent
high profile cases caught in South Florida. Therefore, the
data will most definitely hold fraudulent outliers and medical
payment scammers. In our proposed framework, we begin by
formulating a conditional probability of the drug, equipment,
or service appearing in the prescription given by a physician
belonging to a specific area of medicine.



Pr(Area, N Prescription, )

TABLE I
CONVERSION RANGES AFTER Z-SCORE NORMALIZATION

Pr(Area, |Prescription, ) =

(D

Pr(Prescription, )

This derived attribute calculates, for example, if a physician
prescribes eye drops to a patient, how likely the physician is an
ophthalmologist. A lower value of the conditional probability
indicates a higher likelihood that the medical treatment is a
fraudulent flag or an improper prescription.

It is challenging to identify fraud in certain cases when
common prescriptions are overused and there exists homo-
geneity in the prescriptions. Therefore, we calculate the mean
of that specialist’s treatment areas and evaluate ANOVA to
prove that the mean value is consistently biased. The ANOVA
test is performed to prove the statistical significance against the
hypothesis that if a medical specialist is consistently charging
similar prices against all his/her patients, then this may be
a plausible indication towards a fraud. The F-score in the
ANOVA test is calculated using Equation (2a) and Equation
(2b).

variance between treatments
P = : — (2a)
variance within treatments
o M STreatments S STrealments / (I - 1)

F2 N MSError B SSEITOT/(TLT - I) (Zb)

where M S is the mean square, SS is the sum of square, I is
the number of treatments, and nr is the total number of cases.

We start plotting the individual PDF of the derived attributes
as shown in Fig. 3. It was observed in Fig. 3(a) that the
population density in the lower conditional probability region
was highly unstable and composed of multivariate distribu-
tion; whereas the upper probability region indicated a near
monotonic region of low anomalies. Therefore, we marked two
sections of the conditional probability, i.e., higher and lower
than the average. Next, the data was split to 66.6% and 33.4%,
and the Patient Rule Induction Method (PRIM) is performed
to generate the boxes to characterize the potential fraudulent
cases. Once the boxes are generated where the fraudulent
medical insurance claims are located, a much smaller pool
of potential fraudsters is identified.

B. Transformation and Normalization

Given the derived attributes, Fig. 3(b) and Fig. 3(c) indicate
very high kurtosis density plots, where kurtosis is defined
as the 4th central moment, indicating a small part of the
population consistently requesting incongruent charges. This
causes an outlier in the input feed of a linear regression fit
and we were having difficulties predicting the fit.

Since the regression basis is the squared distances in the
attribute space, the outlier distances become large when they
are squared. For example, the slope of a regression fit line,
as described in Equation (3), is inversely proportional to the
variance of X. Thus the outliers change the variance of X to
be much higher, causing the fit to rotate down and taking it

Min 15t Median Mean | 3"¢ Qu. Max
U -99.580 -21.880 -4.463 0.000 12.680 4517
U’ -1.887 -0.045145 | -0.08457 0.0 0.24 85.6
S -97.94 79.31 147.7 241.8 265.4 71650
S’ -0.583 -0.28 -0.16 0.0 0.04 122.6
A 0.0 4800 2753 3.9e27 1.4e4 2.3e32
A -0.005 -0.005 -0.005 0.0 0.0057 314.1

away from the truth, where X (z; € X) and Y (y; € Y) are
the attribute space and outcome respectively and i=1 to n. We
can apply the log rank transformation (LRT) or the square
root transformation to make the slope line more straight.
These transformations will pull in the curve too to make the
distribution become more Gaussian. Then it is more likely to
work with the linear regression model of the modified PRIM.

Diy (@i —3)(yi — 9) _ Cov(X,Y)
> ey (= 7)? Var(X)

Moreover, as shown in Fig. 4, we observe that several of the
4th to 8th degree variables have linear relationships; while the
others have very large outlier ranges. To rectify this problem,
we apply z-score normalization to our dataset % in order
to bring the data to unified ranges. The formula for Z-score
normalization is given in Equation (4).

m(b) = 3)

T — ,LL.I‘]'

Oz,

Z = “)
where Z represents the normalized matrix and attributes
for j € {1,...,p}. The resultant changes in the ranges are
also shown in Table I, where U refers to the case when the
charged amount is higher than other specialists, S refers to
the case when the charged amount is higher than the Medicare
standard, and A refers to ANOVA in charged prices. The prime
symbols of each of the above mentioned variables represent
the normalized ranges.

IV. EXPERIMENT SETUP & RESULTS

After the transformation, we start executing the Patient
Rule Induction Method (PRIM) on the derived dataset until
we reach a plateau in the peeling steps of the method. The
procedure is previously described in Algorithm 1. In the step
of top-down peeling, the box B,, is shrunk by compressing
one face (peeling), so as to peel off an arbitrary fraction «y
from an attribute x; for j € {1, ..., p}. The direction of peeling
7 that yields the largest box increase rate is chosen.

Given a sequence of (not necessarily nested) boxes {3 M)
where M is the estimated total number of boxes covering .Z.
The decision rules of all boxes {B M} can be collected into
a combined final decision rule set % applicable to a solution
region R of the following form:
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Fig. 3. Density plots of (a) Conditional Probability; (b) Charge higher than other physicians; and (c) Charge higher than the Medicare standard

TABLE I
CROSS-VALIDATED BOXES GENERATED AND THEIR ATTRIBUTES

Cross Validation Learning Set Test Set

Objg | Bm | Objg | Bm
B10.024 | 0304 | B10.024 | 0.217

ov B2 0.031 | 0.182 | B2 0.030 | 0.179
B3 0.050 | 0.261 | B3*0.062 | 0.604
B4+*0.083 | 0.253
B10.024 | 0.264 | B10.024 | 0.290

Vs B2 0.025 | 0.186 | B2 0.034 | 0.220
B3 0.048 | 0.319 | B3 0.047 | 0.233
B4*0.087 | 0.229 | B4*0.087 | 0.256
B10.022 | 0.246 | B10.023 | 0.176

CVs B2 0.030 | 0.215 | B2 0.031 | 0.227
B3*0.065 | 0.539 | B3*0.061 | 0.597
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where % refers to the combined final decision rule set, R
refers to the common solution region from M sub-spaces
having [t_; m,t4;m] boundaries, and J is the total number
of attributes in the input space. The final decision rule set R
can then be applied to identify whether a claim is more likely
to be fraudulent or wasteful based on the given dataset.
Meanwhile, Fig. 4 illustrates the relationships between
the different attributes. Here we can observe that several
of the variables display strong relationships, which validates
the hypothesis of co-variance among the attributes. Table II
shows the cross-validated boxes generated by PRIM from the
learning set and test set respectively, where Obj 5, and ﬁ;n
represent the box-function and box-mass of individual boxes
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Fig. 4. Relationships between the attributes

respectively. The PRIM algorithm starts with 12-dimensional
data with the first Box By being 0.024 (i.e., only 2.4% of the
learning data linked to the low conditional probability). Then
further boxes were generated encompassing more areas of the
learning set and testing set respectively. A combination of the
generated boxes was to characterize the input space and also
to predict the test set.

Let BM be the final box derived using PRIM and having
region R. To evaluate if the final box B, M having box- mass ﬁ M
characterizes the low conditional probability in region R, we
compare the number of observations contained in R and also
those residing outside of R. We adopt the confusion matrix
illustrated in Table III. After calculating the numbers of a, b,
¢, and d in Table III, we calculate the sensitivity, recall, and
F1 measure using the following equations.



TABLE III

CONFUSION MATRIX OF SIMULATED OBSERVATIONS

Classified

Obs. inside R

Obs. outside 12

Obs. inside R

Actual

a: the number of
observations inside
R, classified cor-
rectly

b: the number of
observations inside
R, classified incor-
rectly

Obs. outside R

c: the number of
observations out-
side R, classified

d: the number of
observations out-
side R, classified

incorrectly correctly

Sensitivity = a/(a + b) (62)

Recall = a/(a + c) (6b)

Sensitivity x Recall

Fl=2x (6¢)

Sensitivity + Recall

The F1 measure is defined as the F-score and it has the
values between zero and one. The value close to one implies
that most of the observations are classified correctly. Another
important measure is to evaluate the accuracy defined in Equa-
tion (7). However, this measure is susceptible to imbalanced
observations in R.

Accuracy = (a+d)/(a+ b+ c+d) (7)

A. Visualization of the Boxes

There is a wide variety of health systems around the world
to meet the needs of populations in different countries and
regions. In the United States, the prominent public healthcare
system is known as the Medicare program. In the experimental
part, we feed data from the Medicare database into our model
and try to identify healthcare frauds. The visualizations drawn
are shown in Fig. 5 with 2-dimensional vectors of several de-
rived attributes. The solid boxes in Fig. 5(a) and Fig. 5(b) rep-
resent the shrunk region that we identify as a bump, in space of
the two corresponding variables along the axis. Fig. 5(a) shows
the small region between the Percent_higher_charged and
Anova_F variables that cause the bump in our outcome
variable. Similarly, Fig. 5(b) shows that the bump is along
the entire range of Percent_higher_charged when com-
pared to Awvg_Supplier_Medicare_Std_Amount. The box
in Fig. 5(c) was made transparent to accommodate the scatter
plot of the points between Percent_higher_charged and
Percent_higher_standard.

B. Performance Comparison

The goal is to compare bump hunting with other algorithms
by measuring the reproducibility of finding the fraudulent
region of the conditional probability. This is done by treating
the prediction as a classification problem and identifying if
the same bump is found repeatedly in the low conditional

TABLE IV
F-SCORES AND ACCURACY COMPARIASION

Classifier || F-score | Accuracy
SVM 0.654 0.564
NB 0.639 0.567
RF 0.586 0.578
DAC 0.689 0.535
LR 0.688 0.539
PRIM 0.785 0.699

probability region. The second step is to characterize the
attribute space using variable importance and/or variable corre-
lation metrics. The comparison is to see if some other leading
frameworks are able to persistently identify and characterize
the attribute space that causes the low conditional probability.
To conduct the comparison, our PRIM algorithm is evaluated
against several popular classifiers including Support Vector
Machine (SVM) [39], [40], Naive Bayes (NB) [41], Random
Forest (RF) [42], [43], discriminant analysis classifier (DAC)
[44]-[46] and Logistic Regression (LR).

The general idea of the Support Vector Machine (SVM)
classifier is to build a separating hyperplane to classify the
dataset so that the geometric margin is maximized. The “Naive
Bayes” (NB) approach is based on applying the Bayes theorem
with strong independence assumptions between the attributes
in the CMS dataset. Random forest (RF) is an ensemble
learning method for classification by constructing a multitude
of decision trees at the training time and outputting the
class that is the mean prediction of the individual trees. The
discriminant analysis classifier (DAC) assumes that the data
from different classes are generated based on different Gaus-
sian distributions. In the training phase, the fitting function
calculates the parameters of a Gaussian distribution for each
class; while in the testing stage, the trained classifier finds
the class with the smallest misclassification cost. Logistic
regression (LR) is another predictive analysis and a kind of
generalized linear model. It can be used when the dependent
variable is binary, which is the case in this study. Instead of just
predicting binary-valued labels in linear regression, logistic
regression uses a different hypothesis class to predict the
probability that a given example belongs to the positive (fraud)
class versus the probability that it belongs to the negative
(non-fraud) class by a logistic function. As shown in Table
IV, it is clear that other comparative classifiers struggle to
classify the uniqueness of the health care data. Thus potential
frauds having a low conditional probability (i.e., indicating
malpractice) may go unidentified. PRIM, however, achieves
better F-score and accuracy results because it characterizes
the input space and then classifies new instances.

C. Further Discussion

The rationale behind this study is that we believe any fraud
is an individual act and organizations will not commit frauds
because the risk to benefit ratio is too high. We develop
our ground truth from the known fraud cases in Florida
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[47]-[50]. By observing these real-world cases, we observed
that the majority of these fraudulent activities are built on
false claims. False claims are attributed to overcharging the
medicare program by billing for unnecessary items, billing
an item for a higher price, or both. To identify unnecessary
items, we find the conditional probability of a prescribed item
falling in a category. If the conditional probability is too
low, then it is a matter of concern. The method to design
fraud detecting frameworks usually starts with scenarios where
you know what is supposed to be in the box and compare
it with several other methods like SVM, Random Forests,
or clustering. Bump hunting identifies what cases are at
the extremes and characterizes their X-space while trying to
identify the partitions in that attribute space with respect to the
response. We believe that a certain level of depth into the data
is necessary to build any substantial hypothesis for predicting
the frauds. Therefore, we work on the data of individual claims
prescribed by the physicians so that we are able to trace and
compare individual prescriptions.

V. CONCLUSION

Public health policies and regulations have been continu-
ously striving to improve the quality of public health systems
and better serve the people of the United States. One service
in the system is the Medicare/Medicaid program that enables
health benefits to low-income families and individuals. How-
ever, the program is filled with fraudsters causing annual losses
of almost $1.8 billion. Our proposed framework analyzed the
CMS big data to identity a subset of physicians who are
potentially involved in fraudulent and wasteful use of Medicare
insurance. The state of Florida was isolated for this study
because of the high and persistent evidence of health care
fraud in Florida. The experimental results show that our fraud
detection framework can effectively shrink the target dataset
and deduce a potential suspect subset of physicians who
involve several anomalous claims and probably are qualified
as fraudsters. The attribute sub-space and their correlations are

used in PRIM to characterize the low conditional probability
region. The attribute space was characterized by PRIM that
provides a deeper understanding of how certain attributes are
the key predictors in identifying frauds. The identified bumps
were validated and compared with other classification methods
to demonstrate the efficiency and effectiveness of the fraud
characterization.
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