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Abstract—With massive amounts of data producing each
day in almost every field, traditional data processing tech-
niques have become more and more inadequate. However, the
research of effectively managing and retrieving these big data
is still under development. Multimedia high-level semantic
concept mining and retrieval in big data is one of the most
challenging research topics, which requires joint efforts from
researchers in both big data mining and multimedia domains.
In order to bridge the semantic gap between high-level
concepts and low-level visual features, correlation discovery
in semantic concept mining is worth exploring. Meanwhile,
correlation discovery is a computationally intensive task in the
sense that it requires a deep analysis of very large and growing
repositories. This paper presents a novel system of discovering
negative correlation for semantic concept mining and retrieval.
It is designed to adapt to Hadoop MapReduce framework,
which is further extended to utilize Spark, a more efficient and
general cluster computing engine. The experimental results
demonstrate the feasibility of utilizing big data technologies
in negative correlation discovery.
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MapReduce, Spark, Multimedia Semantic Mining and Re-
trieval, Information Integration.

I. INTRODUCTION

In recent years, we have witnessed a deluge of big
multimedia data such as texts, images, and videos. The data
is big in terms of volume, variety, velocity, etc. For instance,
Facebook ingests 500 terabytes of new data every day;
while Walmart handles more than 1 million customer trans-
actions every hour. Take Boeing 737 as another example. It
generates 240 terabytes of flight data during a single flight
across the US. During the fight, infrastructure and sensors
generate massive log data in real-time. The big data are
not just numbers, dates, and strings, but also the geospatial
data, 3D data, audio data, video data, and unstructured texts
(including log files and social media). Therefore, different
approaches, techniques, tools and architectures are required
for mining and retrieving knowledge, which is still in the
development stage [1][2][3][4][5].

Despite the ubiquity of big multimedia data, effec-
tive management and retrieval of big multimedia data
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are considered challenging research topics. For exam-
ple, the conventional tag-based indexing and searching
technologies suffer from the noisy and missing tag is-
sue. As a result, more and more researchers turn to
content-based approaches [6][7][8][9][10][11][12][13][14].
One main research task in the content-based big multime-
dia data retrieval field is multimedia concept mining and
retrieval [15][16][17][18][19][20][21][22], which focus on
mining semantic concepts such as face, car and airplane
from raw videos directly.

Many approaches treat each concept as an individual
class and convert one multi-concept detection problem into
multiple binary classification problems [23]. Therefore, it
ignores the correlations among different concepts. Never-
theless, the concepts are correlated in real-world multime-
dia data sets. For instance, some concepts co-occur more
frequently, such as sky and cloud; while others rarely co-
occur like road and fish. Such characteristics of correlations
provide important context cues that can assist concept
detection. Therefore, the calculation of correlations between
concepts can help a lot in semantic concept mining and
retrieval. There are many types of correlations, including
Pearson correlation, Spearman correlation and Cross corre-
lation, which detect the number of times two things occur
together [24].

One major challenge in correlation discovery is the huge
volume of related datasets. With the rapid development
of multimedia, communication, and Web 2.0 technology,
massive amounts of multimedia data have been increasingly
available on desktops and smart mobile devices via the
Internet. Statistics shows that 72 hours of videos with all
sorts of tags are uploaded to YouTube every minute and
about 1.54 million photos are uploaded to Flickr every
day [25]. Accordingly, the annual TREC Video Retrieval
(TRECVID) competition organized by National Institute
of Standards and Technology (NIST) has the “Semantic
Indexing” task for concept detection from a large amount
of videos collected from Internet [26].

In this paper, we focus on a novel framework that



calculates negative concept correlations. In order to do it
efficiently, two popular and widely used big data technolo-
gies, namely Hadoop and Spark, are adopted. The Apache
Hadoop™™ software library is designed to scale up from a
single server to thousands of machines, each offering local
computation and storage. Rather than relying on hardware
to deliver high-availability, the library itself is designed
to detect and handle failures at the application layer. It
delivers a highly-available service on top of a cluster of
computers, each of which may be prone to failures. Apache
Spark”™™ is a fast and general engine for large-scale data
processing. Comparing to Hadoop, Spark is more advanced
and contains many new features, and therefore has been
deployed in many popular big data systems. Using these
techniques, an efficient system is built to discover negative
concept correlations from the multimedia big data.

In summary, the contribution of this paper are as follows.
First, we propose a novel ICF (Integrated Correlation Fac-
tor) algorithm to estimate the negative correlation. Second,
an efficient big multimedia data system using the ICF-
based negative correlation discovery is built. Finally, ICF is
utilized for multimedia concept mining and retrieval with
the promising performance.

This paper is organized as follows. In Section II, we
list and introduce several types of correlations and discuss
their usages. In Section III, our proposed novel framework
that includes negative correlation discovery and the ICF
(Integrated Correlation Factor) algorithm are discussed. In
Section IV, the proposed MapReduce algorithm on Hadoop
is introduced. In Section V, an advanced system based on
Spark is presented with its important modules explained
in details. Section VI shows the comparison results of
using the generated ICF values on the TRECVID 2015
dataset. Section VII draws the conclusion and identifies
future research directions.

II. CORRELATION COEFFICIENT

Based on the category of the input data, correlations can
be divided into the following four different types.

A. Nominal Scale

As the name implies, a nominal scale simply places
the data into categories, without any order or structure.
Nominal scales are used for labeling variables without any
quantitative values. Nominal is like “name” while nominal
scales could simply be called “labels”. A physical example
of a nominal scale is the terms we use for colors. The
underlying spectrum is ordered but the names are nominal.
In research activities, a YES/NO scale is nominal. It has
no order and there is no distance between YES and NO.

B. Ordinal Scale

With ordinal scales, it is the order of the values with
importance and significance, so smaller (<) and bigger (>)
can be applied but the differences between them is not
really known. The simplest ordinal scale is a ranking. There

is no objective distance between any two points on the
subjective scale. For one case, the top may be far superior
to the second; but to another case, the distance may be
subjectively small. An ordinal scale only lets you interpret
a gross order and not the relative positional distances.
Spearman’s rank correlation coefficient is a nonparametric
measure of statistical dependence between two variables. It
assesses how well the relationship between two variables
can be described using a monotonic function. If there are
no repeated data values, a perfect Spearman correlation of
-1 or +1 occurs when each of the variables is a perfect
monotone function of the other.

C. Interval Scale

Interval scales are numeric scales in which not only the
order but also the exact differences between the values are
known. The classic example of an interval scale is Celsius
temperature. An interval scale is nice because the realm
of statistical analysis on these data sets opens up. It is
for numeric variables, plus (4+) and minus (—) can also
be applied. Pearson product-moment correlation (p or r)
coefficient is a measure of the linear correlation dependence
between two variables X and Y, giving a value between -1
and +1 inclusive, where -1 is a total negative correlation, 0
is no correlation, and +1 is a total positive correlation. It is
widely used in sciences as a measure of the degree of the
linear dependence between two variables.

D. Ratio Scale

Ratio scales are the ultimate nirvana when it comes to
measurement scales because they tell us about the order,
they tell us the exact value between units, and they also
have an absolute zero which allows for a wide range of
both descriptive and inferential statistics to be applied. A
ratio scale provides a wealth of possibilities when it comes
to statistical analysis. It is for numeric variables with an
absolute zero, like temperature, mass, etc. Multiply (x) and
divid (=) can also be applied. This kind of scales is not
often available in multimedia and social research; while
most correlation coefficient methods for interval scales can
also be applied for ratio scales.

III. INTEGRATED CORRELATION FACTOR (ICF)

While positive correlations are widely used in semantic
concept mining and retrieval, very few research approaches
explore negative correlations to improve the performance.
Some studies speculated that negative correlations captured
by the negative graph might slightly improve the perfor-
mance. Jiang et al. [27] studied the effect of negative
correlations and conducted an experiment on the TRECVID
data set showing the performance gain is merely 1.3% when
using the negative graph alone.

Although the co-occurrence of two concepts in one
video shot/image increases the probability that they are
positively correlated, the fact that one concept does not
occur when the other appears does not indicate they are



negatively correlated. For example, given an image that
depicts a cat with no human face in the picture does not
mean the appearance of a cat will exclude the appearance
of a face. This makes it more challenging to discover
negative correlations. To address this challenge, a two-step
hierarchical selection strategy is proposed in this study.

First, a conditional probability-based coarse filtering ap-
proach is applied. The purpose of this step is to eliminate
the irrelevant correlations in an efficient way. Specifically,
for a target concept C'r, C;: and C represent the events
that a data instance is positive or negative for Cr. Likewise,
for a reference concept, CE and C} represent the events
that a data instance is positive or negative for C'g. If Cp
and Cr are negatively correlated, the following conditions
must hold.

P(CfICR)
PCf) ! M
P(C7|C)
TR )
P(Cy)

Here, P(F) indicates the probability of event F. The
threshold of 1, appeared in the above inequalities, is
not selected arbitrarily. It is the necessary condition for
the negative correlation, i.e., P(Cf|Cp) > P(C;}) and
P(CL|CY) > P(Cy). The first inequality indicates that
the probability of Cr appearing decreases if C'r appears.
On the other hand, the second inequality indicates that
the probability of Cp appearing increases if C'r does not
appear. From the association rule point of view, these two
values are related to the conviction measurement introduced
in [28]. Actually, for each concept pair, we just need to get
the result of Equation (1) since:

P(CplCk) _  P(CrCR) _ P(CRICr)
P(Cr)

P(Cy)P(Cz)  P(CR)
Therefore, once we have the result of Equation (1) for all
concepts, it is easy to find the value of Equation (2) in
the result table (simply switching the target concept and
related concept) and save a half of the computation time.
Then we define a Negative Independent Coefficient (NIC)
to measure the negative correlations between concepts as
follows.

3)

P(Cr|CR) | P(CrlCR)
P(Cy) P(Cr)

All concept pairs with the NIC value less than a certain
threshold will be filtered. This step eliminates a large num-
ber of possible correlations and reduces the computational
complexity significantly.

The second step is to filter the selected concepts more
rigorously. The reason of adding this step is based on the
observation that a huge number of data instances are not
labeled and are given the inferred label 0. This is common
in a large multimedia dataset as manual labeling is very
expensive. For example, the concept pair “Indoor” and

NIC(T,R) = )

“Outdoor” should show perfect negative correlations. How-
ever, in our experiment, there are 104054 out of 115806
instances with negative labels for both concepts. Therefore,
the conditional probability P(CZ ... |C; . ) is only
0.0786, which severely deviates from 1. The problem could
not be solved by discarding those data instances simply as it
will introduce the bias that the two concepts are negatively
correlated. These kinds of bias are clearly not what we want
since we wish to use correlation information to improve
concept detection for all kinds of testing instances.

In order to tackle this difficulty, a novel strategy is
proposed. The general assumption is that if two concepts
are negatively correlated, their correlations would not be
affected by the existence of the third concept, which is
named as a control concept in this study. To formulate this
problem, we define an integrated correlation factor (ICF)
between the target concept and the reference concept, as
formulated in Equation (5).

ICF(T,R) =

1
-2 2.

DEQ,DAT,D#R

p(Cr,CR|CH) (5

Here, ) indicates the set of all concepts and |Q2| indicates
the total number of concepts. C'p represents the control
concept. C’g is the condition that a data instance is positive
for Cp, and p(Cr, Cr|C},) indicates the Pearson product-
moment correlation coefficient [29] between the labels of
Cr and Cr given C}. The reasons for adding the control
concept Cp is that ICF represents an average quantitative
metric of correlations under different conditions. For special
cases where p(Cr,Cr|C}) is not defined, the default
values are assigned as given in Table I. In this table, “All
Cr” indicates that all data instances are positive for Cr and
“All C 1 indicates that all data instances are negative for
Cr. Correspondingly, “All C'},” and “All Cgl” have similar
meanings. All the special cases happen because the data
instances have unique labels for either C'r or C'g, in which
case the Pearson correlation coefficients are not defined. As
shown in Table I, as long as C'y and Cr co-occur once, the
value is set to a positive value, which imposes a relatively
large penalty on that concept pair. Our empirical studies
showed that when this value is 0.5, most of the significant
negative concept pairs are captured.

After sorting all the ICF values in an ascending order, we
observe that the combined correlation coefficients follow
a quasi-normal distribution. Hence, a Gaussian probability
density function is fit for all the ICF values. Different
thresholds depending on the significance levels such as 95%
and 67% could be set to select the significant negative
correlations. As the Pearson product-moment correlation
coefficients are symmetric, the concept pairs are selected.
Therefore, the concept whose corresponding detector is less
accurate is chosen as the target concept and the other one as
the reference concept. The selection results are introduced
in Section VI-B.



TABLE I
THE VALUES TO SET UNDER SPECIAL CONDITIONS

Cr Cgr Value To Set
All CL. All CL, 1
AlLCL! AllCR! 0
All C’% All 01;1 Average va?ue of negative Pearson correla-
tion coefficients
All C' All CL Same as above
Both C T and CQL appear All Clgl Same as above
All C:,Tl Both Cll2 and C§1 appear Same as above
All C’% Both Cll% and C’;él appear 0.5
Both C." and C All CL 0.5

IV. CORRELATION DISCOVERY BY HADOOP
MAPREDUCE

MapReduce (MR) is a popular programming model intro-
duced by Google [30], on which the distributed applications
can be developed to efficiently process large amounts of
data. Hadoop [31], its open-source implementation, pro-
vides a distributed file system called Hadoop Distributed
File System (HDFS) and MR. Hadoop splits the files into
large blocks and distributes them amongst the nodes in
the cluster. To process the data, Hadoop MR transfers the
packaged code for nodes to process in parallel, based on
the data each node needs to process [32]. An MR program
consists of two user-defined functions: a map function to
process pieces of the input data called input splits, and a
reduce function to aggregate the output of invocations of
the map function. Both functions use user-defined key-value
pairs as the input and output.

A collection of videos can be represented by Table II.
Let S denote a shot in a video, C' denote a concept, and
v denote whether a concept appears in a shot. Value 1
represents the concept appears in the shot; while value
—1 represents otherwise. Assume that there are totally M
concepts and N shots in this video collection. To build
the MR framework, we read the concept ID corresponding
values from each video file and build the <Key, Value>
pairs. Hence, each video file has several <Key, Value>
pairs like:

Key = (C1,Cq), Value = (v1,v3)
Key = (C1,C3), Value = (vy,v3)

Key = (C1,Cuy), Value = (v1,vn)
Key = (02701), Value = (UQ,Ul)

Key = (Ca,Cyr), Value = (ve,vpr)

Key = (Crn-1,Cn), Value = (var—1,vnr)

The Map() function is used to generate the key-value
pairs mentioned above; while the Reduce() function is used
to calculate the conditional probability value in Equation (1)
for each key. As discussed before, these two functions

TABLE 1T
A VIDEO DATASET

Shot ID | Concept ID | Value
S1 C1 v11
S1 Cmr VM1
So C1 V12
So Cum UM2
SN [ V1IN
SN Cum VMN

use the defined key-value pairs as the input and output.
Different from many symmetrical correlations like Pearson
and Spearman correlations, conditional probability values
are asymmetrical. Therefore, there are totally N x M x M
keys and M x M outputs as well.

However, since too many keys are generated, the com-
putation gain is limited. It can be seen that the Mappers
running time complexity is O(NM?) and the Reducers is
O(M?). If multiple Reducers can be run in parallel, we
should definitely see the speed improvement based on the
scale. The time wasted on the mapping phase is much more
than the time saved on the reducing part. In the next step,
we can filter the outputs as mentioned in Section III to
generate the ICF values for each concept pair.

V. CORRELATION DISCOVERY ON SPARK

In contrast to Hadoop’s two-stage disk-based MapRe-
duce paradigm, Spark’s multi-stage in-memory primitives
provide performance up to 100 times faster for certain
applications [33][34][35]. Spark provides many operations
called transformations like map, filter, flatMap, sample,
groupByKey, reduceByKey, union, join, cogroup, mapVal-
ues, sort, and partionBy; while Hadoop only provides two
operations, namely map and reduce. Spark Core is the
foundation of the overall project. It provides distributed
task dispatching, scheduling, and basic I/O functionalities.
The fundamental programming abstraction is called Re-
silient Distributed Datasets (RDDs), a logical collection
of data partitioned across machines. RDDs can be created
by referencing datasets in external storage systems or by
applying coarse-grained transformations (e.g., map, filter,



TABLE III
CORRELATION MATRIX

S1 So SN
C1 v11 V12 VIN
Ca v21 V22 V2N
Cs V31 v32 V3N
Cy | v | e VM N

reduce, join) on the existing RDDs. The RDD abstraction is
exposed through a language-integrated API in Java, Python,
Scala, and R similar to local, in-process collections. This
simplifies the programming complexity because the way
that the applications manipulate RDDs is similar to how to
manipulate the local collections of data.

Our Spark solution is presented as a single Java driver
class that uses the rich Spark API to find the correlations of
all versus all concepts. In order to build a better correlation
discovery system using Spark, we first read the keys(shot
ID) and values in Table II. After reading the data from
all video files, we can group the values as an array or an
iterator in Java using combineByKey. Table III shows the
data representation.

Key = (C1), Value = (v11,v12, ..., VIN)
Key = (Cy), Value = (vo1,v92, ..., VaN)
Key = (C3), Value = (vs1,v32, ..., U3N)

Key = (Cu), Value = (var1, 02, -, UMN)

To correlate all versus all concepts, we have to create the
Cartesian product of groups by groups. This will generate
all possible combinations of (C;, C;). These combinations
are the output values of the Cartesian products, which are
the input keys for computing the correlations:

Key = (C1,C), Value = (v1]], v2[])
Key = (C1,Cs3), Value = (v1]], vs[])

Key = (C1,Cuyp), Value = (v1[], vamr]])
Key = (Cy,C1), Value = (v, v1]])

Key = (Cy,Cyyp), Value = (va[], var]])

Key = (Cp—1,Cur), Value = (var—1[], var]])

Now, we are ready to calculate the conditional probability
values for all possible combinations of concepts. Afterward,
we can filter the half of the key pairs when 7> in (C;, C;)
and generate the NIC values using Equation (4). The key
pairs with the NIC values less than a threshold will be
discarded. In the next step, the ICF values are generated.
We create new key value pairs as follows. The keys have
been filtered based on the NIC values between the concept
pairs. The values here are the same. However, for different

keys, the target concept and related concept are different,
as mentioned in Equation (5). For each key pair, the rest
concepts would be the control concepts. The ICF values
are then generated for each key pair and the final output is
shown as follows.

Key = (01702)7 Value = (ICF1,2>

Key = (C1,Cy), Value = (ICFy )
Key = (027 C’3)7 Value = (ICF2,3)

Key = (02, Cw[), Value = (ICFQ,]W)

Key = (Cr-1,Cn), Value = (ICFy—1,m)

VI. EXPERIMENTS AND RESULTS
A. Dataset

In the experiment, the IACC.1.A dataset is chosen from
the TRECVID 2015 benchmark [36], whose semantic in-
dexing (SIN) task aims to recognize the semantic con-
cept contained within a video shot, which is an essential
technology for retrieval, categorization, and other video
exploitations. Here, the concepts refer to the high-level
semantic objects such as a car, road, and tree. It has several
challenges such as data imbalance, scalability, and semantic
gap [37][38].

This data set contains 200 hours of videos with the
durations between 10 seconds and 3.5 minutes. The labels
of 130 concepts were given by the collaborative annotation
organized by NIST. After data pre-processing, there are
144774 shots and one keyframe was extracted from each
shot. The detection scores of all shots were downloaded
from the DVMM Lab of Columbia University [39]. The
list of concepts and detailed explanations can be found
in [26]. In order to increase the number of ground truth in
the negative association selection module, the TRECVID
2015 training labels are also utilized.

B. Negative Correlation Selection Results

For 130 concepts, there are totally 8385 pair-wise con-
cept correlations. The top 10 negative correlations using the
NIC-based selection and the ICF-based selection are shown
in Table IV. For the NIC-based selection, the concept pairs
are selected by adding the two probability ratios on the left
side of Equations (1) and (2).

It should be pointed out that some negative correlations
are caused by the definitions of the concepts. For example,
the “Two people” concept indicates that there must be
exactly two people in the video shot so the “Single_Person”
concept does not occur. The “Building” concept means
the shots of an exterior of a building so that it has a
negative correlation with the “Indoor” concept. The full
explanations of all concepts can be found in [26]. As



TABLE IV
COMPARISON OF NEGATIVE CORRELATION SELECTION

Rank NIC-based ICF-based
1 Entertainment, Building Road, Waterscape_Waterfront
2 Infants, Industrial Indoor, Plant
3 Person, Helicopter_Hovering Indoor, Vegetation
4 Person, Natural-Disaster Daytime_Outdoor, Indoor
5 Person, Airplane_Flying Indoor, Outdoor
6 Canoe, Bus Suburban, Indoor
7 Telephones, Swimming Indoor, Building
8 Cats, Person Trees, Indoor
9 Canoe, Car_Racing Male_Person, Female_Human_Face_Closeup
10 Person, Birds Two_People, Single_Person

introduced in Section III, we used the average value minus
one standard deviation as the threshold, which corresponds
to 0.67 significance level, to select the negative concept
pairs. The selected correlations are shown in the right
column of Table IV. There are totally seven target con-
cepts in the top 10 ICF-based negative correlations, which
are “Road”, “Indoor”, “Daytime_Outdoor”, “Suburban”,
“Trees”, “Male_Person”, and ‘“Two_People”. These con-
cepts are common and appear in many papers [40][41][42].

We obtain the shot IDs and the corresponding values
from all the training video files and use the Map() function
to build the key-value pairs (shot ID, value). Next, we use
the combine function in Spark to combine their pairs by the
shot IDs and get a table similar to Table III. This table is
considered as the input for the next layer. In the next layer,
the output key is the key pairs of the Cartesian products
of all shots; while the output values are the pairwise
vectors that contain values from each shot. The conditional
probability values are then calculated to generate the NIC
values by the vector pairs. As mentioned in Sections III and
V, some key pairs are discarded due to the low NIC values
and the rest are kept to generate the ICF values. These steps
are shown in Fig. 1.

A framework of semantic concept mining and retrieval
was proposed in [43]. Its training section consists of
the “Multimedia Concept Mining” subcomponent and the
“Concept Mining Enhancement” subcomponent. The basic
idea of the “Multimedia Concept Mining” subcomponent
is as follows. For N data instances (e.g., images/video
shots) and M concepts, M concept detection models are
trained such that for each instance, the model m outputs
a score measuring the likelihood that concept m exists
in that data instance. A more detailed discussion of this
subcomponent can be found in [43]. In this paper, an
enhanced “Concept Mining Enhancement” subcomponent
within the multimedia big data infrastructure is proposed,
which improves the overall semantic concept mining and
retrieval framework. First, all the class labels are organized
into a label matrix so that each row contains the labels of
different concepts for one data instance. Next, significant
negative correlations are selected using this label matrix in
the negative correlation selection module. A set of features
are extracted from the original training data set to train a

Video Files (shot ID, value)

)

Combined by shot ID

)

RDD <C, v[]>

)

Cartesian Products (C1, C2)

)

RDD <<(C1, v1[]>, <C2, v2[]>>

)

Conditional Probability Calculation

)

RDD <<(C1, C2>, NIC value>

)

NIC-based filter

)

RDD <<(C1, C2>, Correlation Matrix>

)

ICF Calculation

)

RDD <<(C1, C2>, ICF value>

3

Results combination

Fig. 1. Spark implantation of the ICF calculation

Multiple Correspondence Analysis (MCA) based negative
weight estimation model [44][45][46][47]. The weights
generated from this model together with the output scores
from the “Multimedia Concept Mining” subcomponent are
normalized and then used to train a regression-based score
integration model. The selected negative correlations, MCA
models, and regression models are stored for the testing
section.

In the testing section, the testing data instances are
plugged into all the concept detection models to generate
the testing scores. The same features are extracted from
that data instance to get the MCA-based weights. After the
scores and weights are normalized, they are input to the



TABLE V
MAP VALUES AT DIFFERENT NUMBER OF INSTANCES RETRIEVED

Framework | MAP@10 | MAP@20 | MAP@30 | MAP@40 | MAP@50 | MAP@100 | MAP@200 | MAP@500 | MAP@2000
Base 0.45077 0.40841 0.37285 0.35755 0.33353 0.24407 0.15928 0.13049 0.16538
Subtraction 0.47292 0.39973 0.36313 0.33913 0.31965 0.22274 0.15056 0.11547 0.12814
Random 0.36005 0.31563 0.25743 0.23170 0.20680 0.13966 0.09827 0.08455 0.09293
DASD 0.48268 0.40204 0.36449 0.33404 0.32726 0.24311 0.15950 0.12220 0.13391
ICF-based 0.86262 0.73554 0.65211 0.60537 0.57122 0.47294 0.36569 0.33970 0.40617

regression-based score integration model to generate a new
set of re-ranked scores. Finally, the new output scores are
evaluated. The score integration module could be viewed
as a two-layer neural network.

C. Performance of the Proposed Framework

In order to evaluate the proposed negative correlation
discovery method, it is compared with the following four
approaches. The first one, denoted as “Base”, has no
modification on the raw scores. The second one, denoted
as “Subtraction”, is an intuitive approach that subtracts the
scores of a reference concept from those of a target concept.
The third one, denoted as ‘“Random”, randomly selects
a reference concept. In the experiment, the randomly se-
lected target concepts are: “Running” for “Road”; “Hand”,
“Old_People”, and “Computer” for “Indoor”; “Beards” for
“Daytime_Outdoor”; “Greeting” for “Suburban”; “Door-
way” for “Trees”; “Chair” for “Male_Person”; and “In-
fants” for “Two_People”. The fourth one, denoted as
“DASD”, applies the domain adaptive semantic diffusion
(DASD) framework [48]. All negative affinities are kept as
described in [48] and the number of iterations was set to 20.
We compare our results with DASD since it also focuses
on correlation discovery and achieves the best performance
among many similar technologies.

The Mean Average Precision (MAP) values at different
numbers of the retrieved data instances are reported. All
results are the average of three-fold cross-validation over
the seven ICF-based target concepts, appeared in Table IV.
Table V shows the MAP comparison results. As can be
seen, our proposed ICF-based method outperforms the
four comparison methods by a large margin across all
different MAP measures. “Random”, as expected, shows
the worst performance. “DASD” obtains a slightly higher
MAP@ 10 value compared to “Base” and “Subtraction”, but
quickly drops after MAP@20. In addition, we found that a
further increasing number of iterations did not improve the
performance. ‘Subtraction” shows a small gain at MAP@ 10
compared to “Raw”, but the values also decline when more
retrieval results are considered. Moreover, the proposed
ICF-based negative correlation discovery adapts to Hadoop
and further to Spark, which makes it ready to scale-up to
larger datasets, in terms of both the number of concepts
and the number of data instances.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel system of learning
the negative correlations to provide valuable context cue

for concept mining and retrieval. The system adopts both
Hadoop and Spark for efficient big data processing. Our
proposed framework is compared to four approaches with
the performance of semantic concept mining and retrieval.
The experimental results demonstrate that negative correla-
tions between the reference concepts and the target concepts
discovered by the ICF-based method can effectively help
retrieve the target concepts.

The proposed correlation discovery technique can be
extended and used in many kinds of correlations and
coefficients. The only difference is in the last steps of Fig. 1,
meaning that different correlation algorithms can be applied
to get the desired correlations in different circumstances.
Furthermore, some correlations can be ternary or even qua-
ternary. In such cases, the Cartesian part can be replaced to
generate the corresponding groups for correlation discovery.

REFERENCES

[1] D.Liu, Y. Yan, M.-L. Shyu, G. Zhao, and M. Chen, “Spatio-temporal
analysis for human action detection and recognition in uncontrolled
environments,” Int. J. Multimed. Data Eng. Manag., vol. 6, no. 1,
pp. 1-18, Jan. 2015.

[2] Y. Yan, Y. Liu, M.-L. Shyu, and M. Chen, “Utilizing concept corre-
lations for effective imbalanced data classification,” in Proceedings
of the IEEE 15th International Conference on Information Reuse
and Integration, Aug 2014, pp. 561-568.

[3] X.Li, S.-C. Chen, M.-L. Shyu, and B. Furht, “An effective content-
based visual image retrieval system,” in Proceedings of the Computer
Software and Applications Conference, 2002, pp. 914-919.

[4] S.-C. Chen, S. Sista, M.-L. Shyu, and R. Kashyap, “Augmented tran-
sition networks as video browsing models for multimedia databases
and multimedia information systems,” in Proceedings of the 11th
IEEE International Conference on Tools with Artificial Intelligence,
1999, pp. 175-182.

[5] S.-C. Chen, M.-L. Shyu, and R. Kashyap, “Augmented transition
network as a semantic model for video data,” International Journal
of Networking and Information Systems, vol. 3, no. 1, pp. 9-25,
2000.

[6] L.-C. Chen, J.-W. Hsieh, Y. Yan, and D.-Y. Chen, “Vehicle make
and model recognition using sparse representation and symmetrical
{SURFs},” Pattern Recognition, vol. 48, no. 6, pp. 1979 — 1998,
2015.

[7]1 C.Chen, Q. Zhu, L. Lin, and M.-L. Shyu, “Web media semantic con-
cept retrieval via tag removal and model fusion,” ACM Transactions
on Intelligent Systems and Technology, vol. 4, no. 4, pp. 61:1-61:22,
October 2013.

[8] K.-T. Chuang, J.-W. Hsieh, and Y. Yan, “Modeling and recognizing
action contexts in persons using sparse representation,” in Advances
in Intelligent Systems and Applications - Volume 2, ser. Smart
Innovation, Systems and Technologies, J.-S. Pan, C.-N. Yang, and
C.-C. Lin, Eds.  Springer Berlin Heidelberg, 2013, vol. 21, pp.
531-541.

[9] L. Lin and M.-L. Shyu, “Weighted association rule mining for
video semantic detection,” International Journal of Multimedia Data
Engineering and Management, vol. 1, no. 1, pp. 37-54, 2010.



[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Q. Zhu, L. Lin, M.-L. Shyu, and S.-C. Chen, “Feature selection
using correlation and reliability based scoring metric for video
semantic detection,” in Proceedings of the Fourth IEEE International
Conference on Semantic Computing, 2010, pp. 462-469.

L. Lin, G. Ravitz, M.-L. Shyu, and S.-C. Chen, “Video semantic con-
cept discovery using multimodal-based association classification,” in
Proceedings of the IEEE International Conference on Multimedia &
Expo, July 2007, pp. 859-862.

X. Li, S.-C. Chen, M.-L. Shyu, and B. Furht, “Image retrieval
by color, texture, and spatial information,” in Proceedings of the
8th International Conference on Distributed Multimedia Systems,
September 2002, pp. 152-159.

X. Huang, S.-C. Chen, M.-L. Shyu, and C. Zhang, “User concept
pattern discovery using relevance feedback and multiple instance
learning for content-based image retrieval,” in Proceedings of the
Third International Workshop on Multimedia Data Mining, in con-
Junction with the 8th ACM International Conference on Knowledge
Discovery & Data Mining, July 2002, pp. 100-108.

M.-L. Shyu, S.-C. Chen, and R. Kashyap, “Generalized affinity-
based association rule mining for multimedia database queries,”
Knowledge and Information Systems (KAIS): An International Jour-
nal, vol. 3, no. 3, pp. 319-337, August 2001.

D. Liu and M.-L. Shyu, “Semantic motion concept retrieval in non-
static background utilizing spatial and temporal visual information,”
International Journal of Semantic Computing, vol. 7, p. 43:67, 2013.
Y. Yan, J.-W. Hsieh, H.-F. Chiang, S.-C. Cheng, and D.-Y. Chen,
“Plsa-based sparse representation for object classification,” in Pro-
ceedings of the 22nd International Conference on Pattern Recogni-
tion, Aug 2014, pp. 1295-1300.

S.-C. Chen, S. Rubin, M.-L. Shyu, and C. Zhang, “A dynamic
user concept pattern learning framework for content-based image
retrieval,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, vol. 36, no. 6, pp. 772-783, Nov
2006.

M.-L. Shyu, C. Haruechaiyasak, S.-C. Chen, and N. Zhao, “Col-
laborative filtering by mining association rules from user access
sequences,” in Proceedings of the International Workshop on Chal-
lenges in Web Information Retrieval and Integration, April 2005, pp.
128-135.

T. Meng and M.-L. Shyu, “Leveraging concept association network
for multimedia rare concept mining and retrieval,” in Proceedings
of the IEEE International Conference on Multimedia & Expo, July
2012, pp. 860-865.

S.-C. Chen, M.-L. Shyu, and C. Zhang, “Innovative shot boundary
detection for video indexing,” in Video Data Management and
Information Retrieval, S. Deb, Ed. Idea Group Publishing, 2005,
pp. 217-236.

S.-C. Chen, M.-L. Shyu, C. Zhang, and R. L. Kashyap, “Identifying
overlapped objects for video indexing and modeling in multimedia
database systems,” International Journal on Artificial Intelligence
Tools, vol. 10, no. 4, pp. 715-734, 2001.

S.-C. Chen, M.-L. Shyu, and C. Zhang, “An intelligent framework
for spatio-temporal vehicle tracking,” in Proceedings of the 4th IEEE
International Conference on Intelligent Transportation Systems, Au-
gust 2001, pp. 213-218.

E. A. Cherman, J. Metz, and M. C. Monard, “Incorporating label
dependency into the binary relevance framework for multi-label
classification,” Expert Systems with Applications, vol. 39, no. 2, pp.
1647-1655, February 2011.

S. Perera, Instant MapReduce Patterns - Hadoop Essentials How-to.
Packt Publishing, May 2005.

E. Gabarron, L. Fernandez-Luque, M. Armayones, and A. Y. Lau,
“Identifying measures used for assessing quality of youtube videos
with patient health information: A review of current literature,”
Interactive Journal of Medical Research, vol. 2, no. 1, March 2013.
A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns and
TRECVid,” in Proceedings of the 8th ACM International Workshop
on Multimedia Information Retrieval, October 2006, pp. 321-330.
Y.-G. Jiang, J. Wang, S.-F. Chang, and C.-W. Ngo, “Domain adaptive
semantic diffusion for large scale context-based video annotation,” in
Proceedings of thel2th IEEE International Conference on Computer
Vision, Sept 2009, pp. 1420-1427.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset
counting and implication rules for market basket data,” in Proceed-

[29]

[30]

[31]
(32]

[33]
[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

ings of the ACM SIGMOD international conference on management
of data, vol. 26, 1997, pp. 255-264.

K. Pearson, “Notes on regression and inheritance in the case of two
parents,” Proceedings of the Royal Society of London, vol. 58, pp.
240-242, 1895.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
Jan. 2008. [Online]. Available: http://doi.acm.org/10.1145/1327452.
1327492

Apache, “Hadoop,” http://hadoop.apache.org, accessed Oct, 2015.
F. Fleites, S. Cocke, S.-C. Chen, and S. Hamid, “Efficiently inte-
grating mapreduce-based computing into a hurricane loss projection
model,” in Proceedings of the 14th IEEE International Conference
on Information Reuse and Integration, Aug 2013, pp. 402—407.
Apache, “Spark,” https://spark.apache.org, accessed Oct, 2015.

U. Berkeley, “amplab,” https://amplab.cs.berkeley.edu, accessed Oct,
2015.

R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: Sql and rich analytics at scale,” in
Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’13. New York,
NY, USA: ACM, 2013, pp. 13-24. [Online]. Available: http:
//doi.acm.org/10.1145/2463676.2465288

P. Over, G. Awad, M. Michel, J. Fiscus, G. Sanders, W. Kraaij, A. F.
Smeaton, G. Quenot, and R. Ordelman, “Trecvid 2015 — an overview
of the goals, tasks, data, evaluation mechanisms and metrics,” in
Proceedings of TRECVID 2015. NIST, USA, 2015.

Q. Zhu, L. Lin, M.-L. Shyu, and D. Liu, “Utilizing context infor-
mation to enhance content-based image classification,” International
Journal of Multimedia Data Engineering and Management, vol. 2,
no. 3, pp. 34-51, 2011.

L. Lin, C. Chen, M.-L. Shyu, and S.-C. Chen, “Weighted subspace
filtering and ranking algorithms for video concept retrieval,” IEEE
Multimedia, vol. 18, no. 3, pp. 3243, March 2011.

Y.-G. Jiang, “Prediction scores on TRECVID 2010 data set,”
http://www.ee.columbia.edu/In/dvmm/CU-VIREO374/, 2010, Ilast
accessed on September 8, 2011. [Online]. Available: http:
/Iwww.ee.columbia.edu/In/dvmm/CU- VIREO374/

L.-C. Chen, J.-W. Hsieh, Y. Yan, and D.-Y. Chen, “Vehicle make
and model recognition using sparse representation and symmetrical
surfs,” in Proceedings of the 16th IEEE International Conference on
Intelligent Transportation Systems, Oct 2013, pp. 1143-1148.

J.-W. Hsieh, K.-T. Chuang, Y. Yan, and L.-C. Chen, “Sparse repre-
sentation for recognizing object-to-object actions under occlusions,”
in Proceedings of the Fifth International Conference on Internet
Multimedia Computing and Service, ser. ICIMCS ’13. New York,
NY, USA: ACM, 2013, pp. 117-120.

L.-C. Chen, J.-W. Hsieh, Y. Yan, and B.-Y. Wong, “Real-time
vehicle make and model recognition from roads,” in Proceedings of
the 12th International Conference on Information Technology and
Applications in Outlying Islands, May 2013, pp. 1033-1040.

T. Meng, Y. Liu, M.-L. Shyu, Y. Yan, and C.-M. Shu, “Enhancing
multimedia semantic concept mining and retrieval by incorporating
negative correlations,” in Proceedings of the IEEE International
Conference on Semantic Computing, June 2014, pp. 28-35.

Q. Zhu, Z. Li, H. Wang, Y. Yang, and M.-L. Shyu, “Multimodal
sparse linear integration for content-based item recommendation,” in
Proceedings of the IEEE International Symposium on Multimedia,
2013, pp. 187-194.

Q. Zhu, M.-L. Shyu, and H. Wang, “Videotopic: Content-based video
recommendation using a topic model,” in Proceedings of the IEEE
International Symposium on Multimedia, 2013, pp. 219-222.

Q. Zhu and M.-L. Shyu, “Sparse linear integration of content and
context modalities for semantic concept retrieval,” IEEE Transac-
tions on Emerging Topics in Computing, vol. 3, no. 2, pp. 152-160,
June 2015.

Q. Zhu, M.-L. Shyu, and H. Wang, “Videotopic: Modeling user
interests for content-based video recommendation,” International
Journal of Multimedia Data Engineering and Management (IJM-
DEM), vol. 5, no. 4, pp. 1-21, October 2014.

Y.-G. Jiang, J. Wang, S.-F. Chang, and C.-W. Ngo, “Domain adaptive
semantic diffusion for large scale context-based video annotation,”
in Proceedings of the International Conference on Computer Vision,
Kyoto, Japan, September 2009, pp. 1420-1427.



