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Abstract

Recent developments in social media and cloud storage
lead to an exponential growth in the amount of multimedia
data, which increases the complexity of managing, storing,
indexing, and retrieving information from such big data.
Many current content-based concept detection approaches
lag from successfully bridging the semantic gap. To solve
this problem, a multi-stage random forest framework is pro-
posed to generate predictor variables based on multivariate
regressions using variable importance (VIMP). By fine
tuning the forests and significantly reducing the predictor
variables, the concept detection scores are evaluated when
the concept of interest is rare and imbalanced, i.e., having
little collaboration with other high level concepts. Using
classical multivariate statistics, estimating the value of
one coordinate using other coordinates standardizes the
covariates and it depends upon the variance of the correla-
tions instead of the mean. Thus, conditional dependence on
the data being normally distributed is eliminated. Exper-
imental results demonstrate that the proposed framework
outperforms those approaches in the comparison in terms
of the Mean Average Precision (MAP) values.

Keywords: Multimedia imbalanced concept detection;
Multivariate regression; Variable importance (VIMP); Ran-
dom forests

1. Introduction

The complexity and cost of the data storage and retrieval
for multimedia research and applications have increased

tremendously [10,14,21,25,26,28,47]. How to store and in-
dex multimedia data in various media types including video,
audio, image, text, etc. for efficient and effective data re-
trieval has drawn a lot of attention [16, 31, 42, 43]. To solve
this problem, multimedia data is labeled with respect to
their real high-level semantic meanings such as “Person”,
“Boat”, and “Football”. These labels are often referred to as
“concepts” or “semantic concepts” [8,32,41,44]. The fore-
most challenge in this research domain is to reduce the gap
between the low-level features [19, 29] and high-level se-
mantic concepts [7,10,15,29,48], i.e., to build a connection
between the different meanings and conceptions formed by
different representation systems.

To bridge the semantic gap [27, 58, 59], a lot of ef-
fort has been put into Scale Invariant Feature Transform
(SIFT) and Histogram of Oriented Gradients (HOG) based
feature detectors [9, 11–13, 15, 45]. Other methods try to
increase the ratio of positive and negative data (for ex-
ample, video frames) to improve the classification accu-
racy for automatic labeling and to build the correlations
between the labeled concepts to utilize underlying predic-
tors [6, 30, 40, 46, 55, 57]. Some notable solutions include
the conditional random field (CRF) methods that improve
object classification by maximizing its inter-label agree-
ments [12, 37]. In [34], the CRF method is extended by
creating a database of semantic concepts for event detec-
tion. On a similar pattern, the ontology based methods
utilize the fusion of concept detection confidence scores
such as fused Neural Network and concept ontologies to
improve the concept identification [4]. In [18], the authors
fused the ontologies with fuzzy logic to deduce the correla-
tions among concepts. Other correlation based frameworks
such as [24] introduced a Domain Adaptive Semantic Dif-



fusion (DASD) based approach to capture the correlations
using Pearson Product. More recent ontology based models
use linguistic ontology models to correlate different con-
cepts [2]. For instance, [3, 45] united the WordNet model
and Association Rule Mining (ARM) for video retrieval. A
more recent and promising approach is to use tree based
frameworks that model the contextual correlation using a
probabilistic tree method and the conditional probability to
evaluate the scores using weights [1,17]. The bag-of-words
(BoW) model in [51] effectively uses random forests and K-
Nearest Neighbor (KNN) for large datasets. Similar models
assign each descriptor to a single concept or multiple con-
cepts using KNN [36, 52, 56].

Random forests are a notion of the general technique
of random decision forests that are an ensemble learning
method for classification, regression and other tasks. Us-
ing random forest classifiers, [20] proposed a framework for
similarity based labeling of concepts to cluster the training
images. It has been observed in [53] that the soft assignment
to multiple concepts improves the prediction at the cost of
an increased computation time. An interesting framework
using random forests and supervised learning reported an
improvement in the processing time with a smaller number
of classes [35]. An extension of [35] uses random forests
in their image segmentation stage by applying the forest on
image pixels [39]. However, several random forest based
methods reported challenges with noisy attributes and er-
ror propagation and their effects on inter-concept collabo-
ration; while others reported shortcomings on either relying
on the conditional independence within concepts and de-
pending highly on the prior knowledge and domain knowl-
edge of the data. Some of the data-oriented approaches rely
on the assumption that the data is normally distributed and
the distribution of the training and testing datasets are the
same. These conditions served as the motivation to our
work because several of these requirements are not neces-
sarily valid in video dataset detection. Our proposed frame-
work tries to overcome these shortcomings by extending the
work from [33,52,56] where the noise issue was minimized
and a good retrieval accuracy was achieved by using unsu-
pervised random forests and large datasets.

The paper is organized as follows. In Section 2, the pro-
posed framework is introduced and descriptions are pro-
vided for the important components of the developed ran-
dom forests. Experimental setup based on the TRECVID
dataset and the results are discussed in Section 3. Section 4
concludes the paper with the summary of the key findings
and important future directions.

2. The Proposed Framework

Our framework is modeled as a random forest based re-
gression problem with big data. The model utilizes the se-

mantic content of images to improve the confidence scores
in the retrieval of video shots (keyframes). It was deduced
that utilizing the correlations of the concepts assume that
the data is normally distributed and centered at zero. This
represents a case of conditional expectation and the optimal
way to improve the annotation would be to calculate the co-
variance matrix. However, this is not always the real case
so that the proposed model was developed for such cases
without the normal distribution assumption. Since there is
no “mean” at all, the problem is just a multivariate regres-
sion problem with correlation due conditional expectation
to calculate the predicted value. This is achieved by using
an unsupervised multivariate regression forest that does not
require any domain knowledge or does not necessitate any
distribution requirement. In classical multivariate statistics,
estimating the value of one coordinate using other coordi-
nates standardizes them and the predicted outcome, instead
of the mean, depends upon the variance of the correlations.

We consider the scores of 346 concepts from the
IACC.1.B dataset in TRECVID 2015 as a 346-dimensional
multivariate vector and there are more than 130,000 obser-
vations (video shots). Sample images for some of the con-
cepts are depicted in Figure 1.

Figure 1. Sample images of concepts from
TRECVID 2015 data

Our proposed framework first splits the TRECVID 2015
data equally into a training data and a testing data. The two
data sets are used in the training and testing parts respec-
tively as shown in Figures 2 and 3. The goal is to improve
the confidence scores of each concept for all of the obser-
vations. Since there is no output variable, we model each
instance as a conditional regression problem to predict its
best estimate. For any given testing instance, to predict Ci,
we take all other variables from C1, C2, C3, ..., Ci−1, Ci+1,



..., C346 and regress the value of Ci, using random forests,
against this high dimensional large dataset. This process is
repeated for all concepts and video shots.

In the training part, a state-of-the-art concept detection
framework is applied to the video shots in the training data
set and the detection confidence scores for each concept are
evaluated. Please note that the focus of this paper is not
on the initial concept detection performance but rather on
the score improvement in the latter step. Thus, the central
part of the proposed framework is kept flexible so that the
scores output from any concept detection framework could
be utilized with our framework. The variable importance
(VIMP) evaluator permutes all 346 concepts and identifies
the most significant concepts in the prediction of each con-
cept. This results in significantly reducing the dimensional-
ity and the output of this essential component is used in the
testing part. We also grow a synthetic forest to empirically
identify the most suitable forest tuning parameters such as
mtry and node size for the domain of multimedia concepts
detection.

In the testing part, after the detection scores are gener-
ated from the concept detection framework, the scores are
forwarded to the multivariate regression forest where each
concept is predicted as a missing value problem treated by
multivariate regression. The VIMP and tuning parameters
are used to reduce the dimensionality and fine tune the for-
est. Finally, the scores output from all the randomly grown
trees are assembled together to give the final predicted con-
fidence scores of each concept.

The prediction of each testing video shot is performed by
a process called Bootstrap Aggregating (BAGGING). Boot-
strap aggregating and random forests were introduced in [5]
where it was concluded that the model is always overfitted
and by randomly perturbing the dataset and taking the en-
semble of that dataset will reduce the overall variance and
effectively turn the random forests into highly accurate es-
timators. It was also proposed that the random forest is a
great way for noise reduction and for building a model with
low variance [5].

3. VIMP-based Random Forests

3.1. Random Forests

A random forest is an aggregation of ntree number of
trees, usually in thousands, and each tree is grown by boot-
strapping a randomly sampled vector mtry from the com-
plete dataset. Each tree in the random forest collection is
grown non-deterministically with a two stage method. In
the first stage, randomization is induced in each tree by ran-
domly selecting sub-sampled data (bootstrapping) from the
original data. The second stage randomization is applied
at the node level, where each node is split by randomly se-

Figure 2. Forest optimization using the train­
ing dataset

lecting a variable from the sub-sampled variables and only
those variables are utilized to get the best possible split.
This process results in substantially de-correlating the trees
so that the final ensemble or the average among the trees
will have low variance. Each tree is grown to a depth where
the terminal nodes contain at least nodesize number of video
frames or cases. Algorithm 1 lists the steps of constructing
a random forest.

To achieve this, we begin by modeling the prediction
based on the regression setting for which we have a nu-
merical outcome called Y. The learned or observed data is
assumed to be independently drawn from the joint distribu-
tion of (X, Y) and comprises n ∗ (p + 1) samples, namely
(x1, y1), ..., (xn, yn). X is an n by p matrix indicating the
total number of video frames (or samples) and their features
Y, where X=[x1, ..., xn]T , Y=[y1, ..., yn]T , xi is the subsam-
pled vector (of size 1 by p) from X for the ith sample, p
is the total number of features (or dimensions), and Y indi-
cates the vector of outcome variables (yi, i=1 to n) that are
to be regressed using the random forest.

The random forest for regression is built by growing the
trees based on a random vector θk such that the tree predic-
tor h(x, θk) takes on numerical values as opposed to class
labels. The vector θk contains regressed values of the out-
come variable Y. The output values are numerical values and
we assume that the training dataset is independently drawn
from the distribution of the random vector X and random



Figure 3. Multivariate regression forest grown
on the testing dataset

vector Y.
Then, the regression based random forest prediction

is defined as the unweighted average over the collection
of the predictor trees as shown in Equation (2), where
h(x; θk), k = 1, ..., ntree are the collection of the tree pre-
dictors and x represents the observed input variable vector
of length mtry with the associated i.i.d random vector θk.

h(x) = (1/ntree)
ntree∑
k=1

h(x; θk). (2)

As k → ∞, the Law of Large Numbers ensures:

EX,Y (Y − h(X))2 → EX,Y (Y − Eθ(X; θ))2, (3)

where θ represents the regressed outcome variable average
over ntree trees. The quantity on the right is the prediction
(or generalization) error for the random forest, designated
PE∗

f . The convergence in Equation (3) implies that the ran-
dom forests do not overfit. Now the average prediction error
for each individual tree is defined in Equation (4).

PE∗
t = EθEX,Y (Y − h(X; θ))2. (4)

The common element in all of these procedures is that for
the kth tree, a random vector θk is generated, independent
of the past random vectors θ1, ..., θk−1 but with the same
distribution; and a tree is grown using the training dataset

Algorithm 1 - Construction of Random Forests

1. Draw the ntree bootstrap samples from the original
data.
2. Grow a tree for each bootstrap data set. At each
node of the tree, randomly select mtry variables for
splitting. Grow the tree so that each terminal node
has no fewer than the nodesize cases.
3. Aggregate the information from the ntree trees for
a new data prediction such as majority voting for clas-
sification.
4. Compute an out-of-bag (OOB) error rate by using
the data not in the bootstrap samples (Equation (1)).

MSEOOB = n−1
n∑

i=1

{yi − ŷOOB
i }2, (1)

where n indicates the total number of OOB observa-
tions (video frames); while yi and ŷOOB

i are the aver-
age predictions for the in-bag and out-of-bag samples
in the ith observation.

and θk, resulting in a classifier h(x, θk) where x is an in-
put vector. After developing the forest, we further fine tune
it by reducing the dimensionality of the features. This is
achieved by optimizing mtry, nodesize, and variable impor-
tance (VIMP) as described in the following subsection.

3.2. Optimizing the Forest

There are three key factors to optimize the maximum
throughput from a random forest, namely nodesize, mtry,
and VIMP. Their parameters as used in the proposed frame-
work and subsequent justifications are provided as follows.
When deciding upon nodesize, some methods like [38] ar-
gue that large sampled terminal nodes provide consistent
results. On the other hand, [5] advises to grow the random
forest trees very deeply, i.e., expanding the trees until the
terminal nodes contain only one variable. Although this
causes very skewed and deep trees that require relatively
longer times to compute, it has been observed empirically
that near singular terminal sizes are more effective in high
dimensional problems [22]. This is because that the trees
are grown to purity, i.e., single sampled terminal nodes re-
sulting in a much lower bias. While deep trees result in low
bias values, the final ensemble or aggregation of all the trees
reduces the variance. Thus we opt our forest to be grown in
near purity.

VIMP is another tuning feature of the random forests that
we utilize to rank each variable based on its predictability.
VIMP calculates the increase in the prediction error for the
forest aggregation by randomly noising up a variable and



permuting its value. The larger the VIMP value of each vari-
able, the more predictive the variable is. VIMP helps to se-
lect only the most predictive variables in the prediction pro-
cess and helps implement the dimensionality reduction in an
efficient way. Empirical results show that in some cases the
number of prediction variables were reduced down to 1%,
which also significantly reduced the computation time. The
most commonly used permutation method is the Breiman-
Cutler importance measure for the random forest. In the
method, the variable importance VI of a feature variable Xj

in tree k is evaluated as shown in Equation (5).

V I(k)(Xj) =

∑
i∈B(k) I(γi = γ

(k)
i )

|B(k)|

−
∑

i∈B(k) I(γi = γ
(k)
i,πj)

|B(k)|
, (5)

where Xj is the jth feature from X and Bk
is the out-of-bag

(OOB) sample of the variable for a particular tree k, with
k ∈ 1, ..., ntree. Moreover, γ(k)

i is described as the selected
class for observation i before permuting, γ(k)

i,πj is the class
for observation i after permuting its value for variable Xj ,
and I(.) is the identity function. γi represents the observed
class for the observation i. Please note that if variable Xj is
not in tree k, V I(k)(Xj) = 0 by definition. The raw variable
importance score for each variable is then computed as the
mean importance over all trees as given in Equation (6).

V I(Xj) =

∑ntree
k=1 V I(k)(xj)

ntree
. (6)

One of the key techniques in calculating the VIMP vari-
able is to keep the mtry variable very close to p, where p
is the total number of predicting variables (in our case 346),
and mtry is the number of randomly subsampled variables to
be used in each tree. The default setting for choosing mtry
is mtry =

√
p, but it has been argued in [22] by several

empirical studies to keep mtry close to M = 7/8× p. This
is because if the mtry variables chosen for the root node are
noisy (i.e., they are not predictive for the outcome), then the
predicted variable and the permuted importance of the vari-
able are also noised up [50]. This principle is depicted in
Figure 4, i.e., the larger number of mtry helps better iden-
tify the variable importance (VIMP). The colors are used to
indicate the relevance of the variables with color red being
highly predictive.

4. Experiments and Results

4.1 Experiment Setup

For this paper, we use TRECVID 2015 dataset which
is a huge dataset with lots of imbalanced concepts. The

Figure 4. Example of a parametric plot

TRECVID conference series is sponsored by the National
Institute of Standards and Technology (NIST) with addi-
tional support from other U.S. government agencies. The
goal of the conference series is to encourage research in in-
formation retrieval by providing a large test collection, uni-
form scoring procedures, and a forum for organizations in-
terested in comparing their results. The TRECVID dataset
is very suitable for our experiment due to its vast volume.
We choose the IACC.1.B dataset used in the TRECVID
2015 semantic indexing (SIN) task which aims to detect the
semantic concept contained within a video shot. Challenges
such as data imbalance [54], scalability, and the semantic
gap [27] make the SIN task tough.

In the IACC.1.B dataset, there are 137,327 observations
by extracting a keyframe from each shot. Totally 346 con-
cepts are given including many popular semantic concepts
include “Vehicle”, “Airplane”, and “Cloud” which are com-
mon and appear in many papers. It also contains many rare
and imbalanced concepts such as “Security Checkpoint”,
“Helicopter Hovering”, and “Mosques”. The distribution
of some concepts are highly skewed in which the majority
of the data instances belong to one class and far fewer data
instances belong to others. The list of concepts and detailed
explanations can be found in [49].

The average precision (AP) value is used as a metric
which is widely used in the multimedia concept retrieval
domain. For a given concept, Pre(i) indicates the preci-
sion at cut-off i in the item list, and N is for the number
of the retrieved data instances. The average precision at N
(i.e., AP@N ) is defined in Equation (7). If the denominator
is zero, AP is set to zero. By generating AP for all concepts
and calculating the mean value of them, the mean average



Table 1. Results Comparison
Framework MAP@50 MAP@100 MAP@200 MAP@500 MAP@1000
Benchmark 0.1995 0.1895 0.1721 0.1525 0.1362
Naive Bayes 0.1183 0.1203 0.1219 0.1206 0.0728

Random Forests 0.1671 0.1577 0.1523 0.1493 0.1077
VIMP-based Random Forests 0.2197 0.2078 0.1881 0.1622 0.1554

precision (MAP) value is calculated for evaluation.

AP@N =
N∑
i=1

Pre(i)× rel(i)

# of relevant instances at N
; (7)

rel(i) =

{
0, if instance i is negative,
1, if instance i is positive.

4.2 Experimental Results

In our experiment, we choose 20 highly imbalanced con-
cepts for testing including “Airplane Takeoff”, “Emergency
Vehicles”, “Military”, “Natural-Disaster”, “US Flags”,
“Airplane Landing”, “Airport Or Airfield”, “Car Crash”,
“Cigar Boats”, “Earthquake”, “Military Base”, “Rowboat”,
“Election Campaign Debate”, “Election Campaign Greet-
ing”, “Exiting A Vehicle”, “Exiting Car”, “Flags”, “Military
Aircraft”, “Rescue Vehicle”, and “Prisoner”. Also, the de-
tection scores from the group of DVMM Lab of Columbia
University [23] for shots are used as the raw scores and
the benchmark. Their group got the best performance on
TRECVID IACC.1.B dataset but the raw scores for the
many imbalanced concepts are relatively low and need to
be enhanced.

To conduct the comparison, the proposed framework is
evaluated against the following four approaches. The first
one, “Benchmark”, is the raw scores we got from [23] with-
out any modification. The “Naive Bayes” approach is based
on applying the Bayes’ theorem with strong independence
assumptions between the scores. In the implementation of
our approach, the selected 20 imbalanced concepts with the
p/n ratio values lower than 0.001 are tested and the VIMP-
based random forests are applied. We also compare our
work with random forests without VIMP. In the proposed
work, the dataset is split in half, one for training and one for
testing. The comparison results are shown in Table 1.

As can be seen from Table 1, since the assumption of the
“Naive Bayes” approach is not true for many concepts like
“sea” and “fish”, the accuracy is very low as expected. The
random forests without VIMP also fail to enhance the raw
scores as well, and this may be caused by the inappropriate
tree built process. Among all the four methods, our pro-
posed framework achieves the best performance and suc-
cessfully enhances the raw scores, which proves the novelty

of using random forests with VIMP and shows good MAP
results of our proposed framework.

5. Conclusions

Many of the multimedia content based semantic data
mining methods face a very complex challenge known as
the semantic gap problem. This is the problem of connect-
ing low level details of the image with its high level con-
cepts. The problem becomes even more challenging with
those concepts that are rare and imbalanced. In this paper,
the proposed framework attempts to solve this problem by
utilizing the unsupervised random forest classifiers. Sev-
eral experiments were conducted on the TRECVID dataset
and the results were compared with several existing frame-
works. The proposed method illustrates the improvement in
terms of the Mean Average Precision (MAP) values for the
rare and imbalanced concepts. Furthermore, our proposed
random forest approach with VIMP successfully reduces
the dependency on domain knowledge and the restriction
on data distributions.
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