
Enhancing Rare Class Mining in Multimedia Big Data by Concept Correlation

Yilin Yan and Mei-Ling Shyu
Department of Electrical and Computer Engineering

University of Miami, Coral Gables, FL, USA
y.yan4@umiami.edu, shyu@miami.edu

Abstract—The development in information science has en-
abled an explosive growth of data, which attracts more and
more researchers to engage in the field of big data analytics.
Noticeably, in many real-world applications, large amounts
of data are imbalanced data since the events of interests
occur infrequently. However, the detection of these events
is such an important research problem and has attracted
significant research efforts as lots of real-world big data sets
have skewed class distributions. Despite extensive research
efforts, rare class mining remains one of the most challenging
problems in information science, especially for multimedia big
data. Though inter-concept correlations have been utilized to
address this issue recently, the very small number of instances
in the minority class often lead to the detection of impre-
cise correlations and unsatisfactory classification results. This
paper proposes a novel concept correlation analysis strategy
framework using the correlations between the retrieval scores
and labels. By integrating the correlation information, the
proposed framework can help imbalance data classification
and enhance rare class (or concept) mining even with trivial
scores from the minority class. Experimental results on the
TRECVID multimedia big benchmark data set demonstrate
the effectiveness of the proposed framework with promising
performance.
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I. INTRODUCTION

Massive amounts of multimedia data are generated and
available on different kinds of devices via Internet everyday,
while the problem of mining new and useful knowledge from
these big data efficiently has attracted significant research
efforts [1][2][3][4]. Among them, rare event mining from
imbalanced data has become more and more important as
lots of applications do not have uniform class distributions
[5][6]. That is, the majority of the data instances belong to
one class and far fewer data instances belong to the others.
In such a data set, the classes with more data instances are
called the majority classes; while the ones with far fewer
data instances are called the minority classes. In many real-
world applications, the data instances in a minority class
actually represent the concept of interest like unusual events
in surveillance, intrusions in network security, etc.

Since most classifiers are modeled by exploring data
statistics, as a result, they may be biased towards the
majority classes and hence show very poor classification
accuracy on the minority classes. However, compared to
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Figure 1. Positive to Negative (P/N) Ratios for some rare classes/concepts
in the TRECVID data set

the data instances of the majority class, the data instances
of the minority class are usually more important and more
interesting in a wide range of applications, including the de-
tection of cancer cells, fault prevention of components, metal
fatigue detection, etc. The same observation applies to mul-
timedia semantic concept mining and retrieval [7][8][9][10],
which is one of the centric research tasks in content-based
information retrieval [11][12][13][14]. It focuses on mining
semantic concepts such as “person”, “vehicle”, and “sky”
from the multimedia data directly.

As mentioned earlier, most of the important events of
interests are rare classes/concepts. For example, the TREC
Video Retrieval (TRECVID) data set [15] includes a large
amount of videos collected from the Internet and other
sources by National Institute of Standards and Technology
(NIST). This multimedia big data set has many concepts
that are considered imbalanced and its average P/N (positive
to negative) ratio is only 0.003 (as shown in Figure 1).
An extreme example is the concept “Yasser Arafat” which
contains only one keyframe (video shot), making semantic
concept retrieval extremely hard. The purpose of this paper
is to effectively detect such rare semantic concepts from
multimedia big data sets.

In addition, a video shot usually contains multiply con-
cepts which are correlated in real-world multimedia data
sets, either positively or negatively. In other words, some
concepts co-occur more frequently, e.g., sea and whale;
while others rarely co-occur, e.g., sky and meeting. Such cor-
relations can provide important context cues to help detect
the concepts [16][17][18]. By building a semantic concept
hierarchy and using inter-concept correlations, we propose
a novel rare concept detection framework in this paper.



Experimental results on TRECVID 2015 semantic indexing
(SIN) data set demonstrate that the proposed framework
gives promising performance, comparing to several state-
of-the-art approaches.

The rest of this paper is organized as follows. In Section 2,
previous work on imbalance data classification is discussed
and various types of correlations are introduced as well. In
Section 3, we show how to calculate the correlations between
concepts as well as how to connect them in a hierarchy.
Section 4 describes a novel idea of enhancing rare concept
detection using the correlation between the retrieval scores
and labels. Section 5 shows how to setup the framework
and compares the results of the proposed system on the
TRECVID data set. Finally, Section 6 draws the conclusion.

II. RELATED WORK

A. Imbalanced Data Classification

Sampling-based approaches are the most popular classifi-
cation algorithms for imbalanced data sets. Among them,
oversampling and undersampling methodologies have re-
ceived significant attentions to counter the effect of imbal-
anced data sets and present the viewpoints on the usefulness
of oversampling versus downsampling [19] for imbalanced
data sets, though sometimes they are conflicting. The ideas
are simple in oversampling, i.e., more positive data instances
are somehow generated to make the data set balanced. The
problem of oversampling is its tendency to overfit. Compar-
atively, downsampling is to select a part of the majority data
instances to build a model with a similar number of positive
samples. Although downsampling is somewhat efficient as it
uses only a subset of the majority class, many data instances
in the majority class are ignored and may result in the loss
of information.

Other than sampling-based approaches, algorithm oriented
approaches mainly focused on studying and modifying the
training algorithms to achieve better performance in imbal-
anced data classification. For instance, cost-sensitive learn-
ing methods try to maximize the loss functions associated
with a data set to improve the classification performance.
These learning methods are motivated by the observation
that most real-world applications do not have uniform costs
for misclassifications. The actual costs associated with each
kind of errors are typically unknown, so these methods need
to determine the cost matrix based on the data and apply it
to the learning stage. A closely related idea to cost-sensitive
learners is to shift the bias of a machine to favor the minority
class [20]. Though some studies have shown their potential
in improving classification performance on imbalanced data,
they are far from extensive or systematic.

B. Building Hierarchies for Classes

Organizing hierarchies for semantic concept retrieval and
event detection has been investigated by many research
groups. Wang et al. [21] proposed a hierarchical context

model that simultaneously exploits contexts at all three levels
and systematically incorporate them into event recognition.
To tackle the learning and inference challenges that were
brought in by the model hierarchy, they developed com-
plete learning and inference algorithms for their hierarchical
context model based on the variational Bayes method. The
problem of general event classification from uncontrolled
YouTube videos was investigated [22]. They proposed a text
mining pipeline to automatically discover a collection of
video event categories, and employed the WordNet hierarchy
to refine the category selection.

Some recent researches on event detection focus on
relations among concept classes to re-rank the concept
scores. The selection of event-specific concepts based on the
similarity to a textual event description had shown to yield
effective event detection results without positive examples
[23]. Tao et al. [24] proved that concept-concept association
can be effective in bridging the semantic gap in multimedia
data [25][26][27]. They proposed a concept-concept associ-
ation information integration and multi-model collaboration
framework to enhance high-level semantic concept detection
from the multimedia data.

III. BUILDING THE HIERARCHICAL MODEL

While some previous work considers that connectivity
between classes provides information about their semantic
relationship, most of them utilize the hierarchical rela-
tionship from the data provider for combining classes to
generate the re-organized hierarchies [28][29][30]. These
relationships are mainly generated manually, which may lead
to biases and not suitable for big data sets. Though some
big data sets are provided with the hierarchies (such as the
WordNet hierarchy), it is almost impossible to include all
existing classes. In addition, when there are new classes,
building a new hierarchy or updating the current one is
inevitable.

To build a hierarchical model for all concepts in our
framework, conditional probabilities are first computed. Let
Cparent be a parent concept, Cchild represent a child con-
cept, C+

parent denote the positive collection of Cparent, and
C+

child represent the positive collection of Cchild. Further-
more, let P (.) denote the probability. If Cparent is the
parent of Cchild, the occurrence of Cchild should imply the
occurrence of Cparent. For instance, if a video shot contains
the concept “boy”, it definitely includes the concept “person”
as well, unless the ground truth is incorrect. In this example,
“boy” is a child concept while “person” is a parent concept.

Considering the fact that videos in data sets are labeled
either manually or by certain automatic labeling techniques,
the ground truth is not always correct. Also, in many cases,
the concept pairs have the parent-child relationships (such
as “outdoor” and “rowboat”), which should be included.
Therefore, a threshold is used to determine such a relation-
ship. Based on our empirical studies, the threshold is set to
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0.9 in our proposed framework, which can be adjusted with
different data sets and the number of positive instances of
the rare concept for better performance.

P (C+
parent|C+

child) > 0.9. (1)

After filtering all the parent-child concept pairs, we start
to build the hierarchy model of all concepts in a bottom-
up manner, i.e., from the leaf nodes. If a concept has no
child but at least one parent, it is considered as a leaf node
and is added to the initial model. Then, its “direct” parent
is included as the parent node. For examples, a lizard is a
reptile and an animal. Although the occurrence of a lizard
implies the occurrence of an animal, the concepts “reptile”
and “animal” also have the parent-child relationship. Thus,
“reptile” is first included as a parent node and then follows
by “animal”. If a parent concept has no parent, it will be
finally considered as a head (root) node. These operations
are shown in Figure 2.

Afterward, we can combine the branches into a tree and
thus find the siblings of the child concepts as given in
Figure 3. Please note that different hierarchies would be
generated based on different data sets and we build a tree for
each target concept. In the aforementioned instance, if the
concept “reptile” is removed, “animal” could be the parent
of “lizard” in the updated hierarchy. The more concepts
included, the more complete the hierarchy model would be.
Though the model can never be perfect, it is suitable for the
particular data set. Since only rare concepts are targeted, the
cases when the concepts of multiple labels overlapping with
each other do not occur in our model.
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Figure 4. Top ten related concepts that support the rare concept “cow”.

IV. ENHANCING PREDICTION SCORES OF RARE
CONCEPTS

A. Score-based Correlation Generation

To our best knowledge, all previous studies including the
aforementioned conditional probability approaces calculate
the correlations and build the hierarchical models using the
label information in the training data, i.e., the occurrence
or non-occurrence of the concepts. While some groups used
such information to leverage the retrieval scores, one main
problem remains. That is, the high correlations between
concepts do not necessarily lead to the high correlation
between the concepts and prediction (detection) scores,
since the scores are not always good, especially for rare
concepts. This means that using those concepts’ correlation
information for enhancement may cause contrary results.
As an example, the concept “flood” should have a positive
correlation with the concept “natural disaster”. However,
with the bad prediction scores, “flood” does not really help
the retrieval of “natural disaster” in the current data set.

Another issue is that the detection scores of rare concepts
can be relatively imprecise. In the TRECVID data set, there
are only 6 out of the total of 137,272 video shots that
include the concept “cow”. Most of the classifiers cannot
get acceptable prediction scores for these rare concepts albeit
with such a big training data set. Therefore, in this paper,
we propose a framework to enhance the prediction scores of
the rare concepts using Pearson correlations (ρ) from both
the label information and score information [31].

Let CT be the label information of a target (rare) concept,
and SR be the prediction score of a related (support) concept.
Take the aforementioned example. In order to enhance the
prediction score of the rare concept “cow”, all ρ(CT ,SR) are
calculated and ranked, where T is the concept “cow” and
R = 1, 2, · · · , N (where N is the number of concepts).
The top ten related concepts are shown in Figure 4, which
means the prediction scores of these concepts are helpful to
enhance the prediction score of the concept “cow”.



As shown in Figure 4, the top ten related concepts
are “Herbivore”, “Ruminant”, “Mammal”, “Quadruped”,
“Wild Animal”, “Vertebrate”, “Animal”, “Animal Pens And
Cages”, “Sea Mammal”, and “Cattle”, respectively. Clearly,
most of them are reasonable at the first glance expect “Sea
Mammal”. Nevertheless, the shapes of some sea mammals
are similar to those of the cows. Especially, one common
kind of sea mammal, manatee, is known as “sea cow”. This
highlights another advantage of the proposed framework,
which can find the potentially related concepts. Figure 4 also
implies the prediction score of “cow” itself is imprecise and
will not be integrated for the enhancement.

B. Score Integration

Figure 5 shows an overview of our proposed framework,
including a training phase and a testing phase. The data
set is first split into two parts, namely a training set and a
testing set. For the training phase, conditional probabilities
are calculated to build a hierarchical model for all concepts
from the training label information. Next, for all the video
shots and N concepts, N concept detection models are
trained such that for each video shot, the nth model outputs
a score measuring the likelihood that concept n exists in
that video shot. For this part, all kinds of classifiers can
be employed to generate different prediction scores, which
may lead to different score-based correlations from the same
data set. After ranking them by their correlation values, for
a target concept CT , only the related concepts connecting
to this target concept in the hierarchical model (built in
Section III) are kept. In this paper, the target concepts are
the rare concepts. The scores of the top ten related concepts
are used to train an integration model for re-ranking using a
discriminant analysis classifier, which is based on a Gaussian
mixture model (GMM).

In the testing phase, each testing video shot of the target
concept is plugged into all concept detection models to
generate the corresponding scores for the related concepts
chosen. These scores are then input to the trained score
integration model to generate a new set of re-ranked scores.
Please note that the scores of the target concept may or may
not be used, as shown in Figure 4, depending on whether
they are chosen in the training phase or not. Finally, the new
output scores are evaluated.

V. EXPERIMENTS

A. Data Set

To setup the experiment, the IACC.1.B data set from the
TRECVID 2015 benchmark [32] for the semantic indexing
(SIN) task is used, which aims to detect the semantic
concepts contained within a video shot. The data set is drawn
from the IACC.1 collection with videos whose durations are
between 10 seconds and 3.5 minutes with a total number of
137,272 video shots. It is a multimedia big data set [33], and
essential for the retrieval, categorization, and other video

exploitations. As mentioned earlier, there are challenges
in the SIN task, such as data imbalance, scalability, and
semantic gap [34][35].

Given the multimedia big data set, the master shot ref-
erence, and the concept/feature definitions, the proposed
framework is employed for score integration and enhance-
ment. Totally, 346 concepts are selected including many
common semantic concepts like “cloud”, “island”, and
“ocean”. The list of concepts and detailed explanations can
be found in [15]. In this paper, we directly use the detec-
tion scores from the DVMM Lab of Columbia University
[36], who ranked the first several years in the TRECVID
competition.

B. Experimental Results

In this experiment, 20 most rare concepts are chosen with
an average P/N ratio of 0.0001. Among the 68,663 video
shots in the training data set, each of them does not have
more than 10 video shots in the data set. These 20 concepts
are: “Car Crash”, “Cigar Boats”, “Crustacean”, “High Secu-
rity Facility”, “Helicopter Hovering”, “Cetacean”, “Military
Buildings”, “Rpg”, “Prisoner”, “Police Truck”, “Colin Pow-
ell”, “Earthquake”, “Oil Drilling Site”, “Rescue Helicopter”,
“Dolphin”, “Security Checkpoint”, “Fire Truck”, “Whale”,
“Cows”, and “Yasser Arafat”.

In this paper, we use the mean average precision (MAP)
value as a metric which is widely used in multimedia
concept/information retrieval. The experimental results are
shown in Table I. The “Base” one is calculated using the raw
scores directly from the classifiers in [36]. Although these
scores are the best prediction scores of the data set, they
are still bad because of the extremely skewed distributions.
Different classifiers including Naive Bayes, Random Forrest,
and Discriminant Analysis Classifier are used to re-rank
these scores and all target on these imbalanced concepts. The
results clearly show that if the target concepts are extremely
rare, re-ranking the scores directly will not help enhance the
results. Comparatively, albeit with the imprecise raw scores,
the propose framework can successfully enhance the results,
as demonstrated in Table I.

VI. CONCLUSION AND FUTURE WORK

It is challenging to obtain reasonable classification accura-
cies when the target concept is rare, since the data instances
in the majority classes usually overshadow those in the
minority classes. In this paper, a novel concept correlation
analysis strategy framework using the correlation between
the retrieval scores and labels is proposed to enhance rare
class/concept mining. The experimental results on a mul-
timedia big data set clearly show the effectiveness of the
proposed framework and how it can successfully enhance
the prediction scores of the chosen rare concepts.

In the future, the co-existence of multiple tree hierarchies
when building them will be considered. Furthermore, under
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Figure 5. The proposed framework.

Table I
EXPERIMENTAL RESULTS.

Framework MAP@10 MAP@20 MAP@50 MAP@100 MAP@200 MAP@500 MAP@1000
Base 0.04464 0.04382 0.03123 0.03175 0.03220 0.03020 0.02034

Naive Bayes 0.00556 0.00572 0.00723 0.00577 0.00577 0.00518 0.00528
Random Forrest 0.03750 0.04083 0.02972 0.02154 0.02154 0.02154 0.02154

Discriminant Analysis 0.02429 0.03815 0.03361 0.03074 0.03017 0.02688 0.02593
Proposed Framework 0.11298 0.11298 0.08560 0.07329 0.07113 0.06142 0.05553

the scenario of manually labeling the videos, user subjectiv-
ity can lead to totally different tree structures. Modeling such
user subjectivity is needed to make the proposed framework
more robust and will be investigated.
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