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Abstract—Catastrophes have caused tremendous damages in
human history and triggered record high post-disaster relief from
the governments. The research of catastrophic modeling can help
estimate the effects of natural disasters like hurricanes, floods,
surges, and earthquakes. In every Atlantic hurricane season, the
state of Florida in the United States has the potential to suffer
economic and human losses from hurricanes. The Florida Public
Hurricane Loss Model (FPHLM), funded by the Florida Office
of Insurance Regulation, has assisted Florida and the residential
insurance industry for more than a decade. How to process big
data for historical hurricanes and insurance companies remains
a challenging research topic for cat models. In this paper, the
FPHLMs novel integrated domain knowledge assisted big data
processing system is introduced and its effectiveness of data
processing error prevention is presented.

Index Terms—Big Data Processing; Catastrophe Modeling;
Pre-processing; Post-processing; Florida Public Hurricane Loss
Model (FPHLM)

I. INTRODUCTION

A catastrophe is a sudden and widespread disaster that
causes tremendous damages. Among all kinds of catastrophes,
tropical cyclones are the most deadly hazards threatening the
state of Florida. Based on different wind speeds located around
the circulation center, they can be classified into different types
including tropical depressions, tropical storms, and hurricanes.
Hurricanes, also known as typhoons in the northwest Pacific
Ocean, are the most powerful tropical storms. The Labor
Day hurricane in 1935 was the strongest hurricane with 1-
minute sustained 185 mph to make landfall in the United
States recorded history. It killed 408 people and severely
destroyed parts of the Florida east coast railway. The most
intense hurricane in recent decades, Andrew in 1992, caused
about $26 billion damage in South Florida and destroyed over
25-thousand houses in Miami-Dade County, while nearly 100-
thousand more houses were severely damaged. Just ten years
ago in 2005, Hurricane Katrina caused around $108 billion
property damages in the United States, which is roughly four
times the damage wrought by Andrew [1].

The tremendous loss is a strong incentive to build hur-
ricane catastrophe models for loss estimation. Some groups

put their efforts into single hurricane case studies. In [2],
the authors present their work on visualization of scientific
data from Hurricane Katrina, originating from computational
simulations. With remotely sensed observations including the
3-D terrains, their model simulates the development of Katrina
in the atmosphere interacting with the ocean which caused
deadly storm surge. For the same hurricane, local researchers
[3] estimated the effects of Katrina on the Louisiana coastlines.
As a result of these studies there has been increased attention
from the government to develop policies to mitigate extensive
damages by hurricanes.

To understand hurricane risk and estimate losses, cat models
are essential. Researchers in both developing [4] and de-
veloped [5] countries have tried to build general estimation
models. The Florida Public Hurricane Loss Model (FPHLM)
[6] is the first and only public wind hurricane loss projection
model in the United States. With a multi-disciplinary team of
experts in the hurricane catastrophe modeling fields, FPHLM
was developed as an advanced, automated, and systematic
model to help the State of Florida [7]-[13].

Supported by Florida Office of Insurance Regulation (FL
OIR), the FPHLM project aims to help the residential in-
surance industry with the rate-making process and evaluate
solvency of insurance companies. FPHLM is considered novel
in the following three ways [14], [15]: (1) It is a systematic
model with different functional components, including pre-
processing, Wind Speed Correction (WSC), Insurance Loss
Model (ILM), post-processing, verification, and documenta-
tion; (2) With multiple attributes frequency distribution tables,
it also includes features for data analysis, model configuration
and event notification by proper permission management using
access control tables based on the fine-grained system actions;
and (3) Experts from different fields, including meteorol-
ogy, engineering, actuarial science, GIS, statistics, finance,
and computer science, collaborate together. The current wind
model project includes over 30 researchers and students from
Florida International University, University of Miami, Univer-
sity of Florida, Florida State University, Florida Institute of
Technology, National Oceanic and Atmospheric Administra-



tion (NOAA) Hurricane Division, and AMI Risk Consultants.

As in a big data era, a large amount of hurricane catastrophe
data is collected by remote sensors and provided by insurance
companies. Such large collections of data can create lots of
opportunities but at the same time pose great challenges and
difficulties in data processing in order to mine and retrieve
useful information efficiently. For the FPHLM project, how
to automatically process the big data from the meteorology
group, the engineering group, and the insurance companies
is one of the major research problems. About 57-thousand
years of wind simulation data is the largest dataset in the
meteorological component, and a single dataset from an insur-
ance company can contain data on ten thousands of insurance
policies. There are about 29 million grid points mapped in
the state. As a result, for each geographic location in Florida,
it takes an extremely long time for data processing. Besides,
datasets from different property assessments can also be in
different formats and suffer from data-entry errors. Therefore,
in this paper, we focus on how to process the deluge of
hurricane catastrophe data efficiently and correctly.

The rest of this paper is organized as follows. In section
2, previous work on catastrophe modeling including those
on other hurricane models and corresponding data processing
steps are introduced. Section 3 gives an overall view of
our FPHLM design and discusses the details of our system
components including pre-processing, wind speed correction,
insurance loss model, post-processing, and verification. Sec-
tion 4 shows the implementation of our system. The last
section presents the conclusion and future work.

II. RELATED WORK ON CATASTROPHE MODELING

Catastrophe modeling is one kind of disaster data modeling
which adopts information technology to estimate the losses
caused by a catastrophic event. It has attracted considerable at-
tentions from the governments, industries, and research groups
due to the huge damages caused by the catastrophes such as
floods, earthquakes, and hurricanes. In this section, we first
introduce different kinds of hurricane catastrophe modeling,
and then their pre-processing and post-processing tools. Also,
a literature review of catastrophe modeling for the insurance
industry is presented since it is very suitable for risk analysis.

The Cat models typically involve the efforts of experts
from multiple disciplines, making domain knowledge assisted
modeling and data processing a necessity. In [16], a complete
hurricane catastrophe model is divided into four different
modules including a stochastic model that randomly generates
a hazard model for local severity (peak wind gust), a vulnera-
bility model that estimates the loss given the local severity, and
a financial model that calculates the flow of money between
two parties (industry and economic losses). In [17], HAZUS-
MH, a hurricane model methodology, incorporates experts
from multiple disciplines which includes hurricane hazard,
wind load, terrain, physical damage and loss components. To
date, several HAZUS-MH tools such as Comprehensive Data
Management System (CDMS), Inventory Collection Survey
Tool (InCAST), Risk Assessment Tool, and Flood Information

Tool (FIT) have been developed, which enable the users to
manage statewide datasets. However, all these tools require
users to have the domain knowledge and also to undertake
huge human efforts.

A. Pre-processing and Post-processing

Data pre-processing is a vital component in many catastro-
phe models. For example, Coastal Louisiana Risk Assessment
(CLARA) [18] is an analytical model which evaluates flood
damages of storm surges in Lousiana’s coastal region. CLARA
includes three primary components: (1) The pre-processing
module including spatial data and storm data pre-processing;
(2) The flood depth module estimating the depths of a flood in
the protected areas; and (3) The economic module calculating
the damage losses for each flood depth.

The pre-processing is responsible for getting the trimmed
model input, and post-processing serves to visualize and inter-
pret the results. Viviroli et al. [19] list three major challenges to
illustrate adequate necessity of their pre-processing and post-
processing tools: (1) time-consuming, (2) the need to compile,
process, and interpolate data series from the meteorological
station networks, and (3) extra software need to interpret
model outputs. Tasks in their proposed framework typically in-
volved with pre-processing and post-processing are handled by
adopting the tailored tools with Graphical User Interface (GUI)
to speed up the data processing. In [20], the authors mention
how they select the observation data from the global integrated
public dataset in the pre-processing and how to analyze the
model bias in the validation and post-processing part. In [21],
for the post-processing part, the authors emphasize the model
output statistical analysis together with screening regression
procedure (which can select the predictors to be included
in an equation), are capable of estimating the surface wind,
the probability of precipitation, maximum temperature, cloud
amount, and the conditional probability of frozen precipitation.
Analyzing big data in pre-processing and post-processing is
extremely important and leads to more accurate hurricane
forecasting. A parallel aggregate risk analysis algorithm is
employed in [22], which utilizes large-scale input data and
improves the speed of the aggregation process. The algorithm
and its aggregate risk engine, implemented on both multi-core
CPU and GPU platforms, generate the aggregate analysis in
an efficient and real-time manner. However, more techniques
need to be included for efficient data processing.

B. Catastrophe Risk Modeling for Insurance Industry

Catastrophe modeling is especially applicable to risk anal-
ysis in the insurance industry and is at the confluence of
actuarial science, engineering, meteorology, and computer
science. Various private loss modeling systems have been
developed to assist the insurance industry in the insurance rate
process.

Recently, research studies of catastrophic insurance have
attracted attentions from many governments as the loss caused
by catastrophes is becoming more and more serious. The 2008
Wenchuan earthquake, the 21st deadliest earthquake, alone



with a severe snow storm rarely seen before, cost no less than
1 trillion China Yuan, or $150 billion USD over the next three
years to rebuild the ravaged areas.

For the aforementioned Wenchuan earthquake, experts of
the China Insurance Regulatory Commission (CIRC) estimated
that the actual compensation was no more than 5% of the
losses, which is far below the global average catastrophe insur-
ance compensation level of 30% and 60%-70% in developed
countries [23]. As catastrophes result in very high damages,
developing the catastrophe insurance model is a necessary and
difficult task.

Currently, catastrophe risk models have been extensively
used for risk and loss analysis, and can be further leveraged to
conduct stress tests on insurance companies and make strate-
gic plans. Paper [24] presents various catastrophe modeling
technologies which offer significant values to the insurance
companies. One such model is used for water bloom prediction
in [25], where data pre-processing techniques are used to unify
the data dimension and fit the data into the model. However,
the pre-processing is limited to the historical data statistics
such as yearly mean value.

III. FPHLM DATA PROCESSING SYSTEM COMPONENTS

Since FPHLM initially released in 2006, it has been used for
over 1000 occasions to evaluate rate change requests from the
insurance companies. The FPHLM data processing framework
is a novel, automated, and modern system integrating the
following five components:

(1) Pre-processing

(2) Wind Speed Correction
(3) Insurance Loss Model
(4) Post-processing

(5) Verification

Figure 1 shows an overall view of these components, their
interactions, and the groups involved in each component.

A. Pre-processing

As discussed earlier, the pre-processing part for FPHLM is a
very important component and faces a plethora of challenges.
It receives the input data from both FL OIR and private
insurance companies, most likely in different formats. In
addition, the data may include up to millions of policies
with a large number of attributes and in most cases come
with missing or erroneous values. Here is a list of common
problems that FPHLM faces:

— Missing zip code

— Zip code provided does not match corresponding physical

address

— Address for a particular policy is not from Florida

— Missing geographic coordinates

— Invalid city or county name

— Value shift

It takes a lot of efforts to take care of the potential issues
with the zip codes, for instance, changing the zip code format,
removing the last 4 bits of the zip codes, and updating the
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Fig. 1. Overview of FPHLM system.

invalid ones. If the zip code fields provided by the insurance
companies have missing values or just simply cannot be
matched with the actual physical address, the FPHLM model is
able to automatically update these attributes without manual
efforts. Furthermore, in FPHLM, a preliminary module run
is performed after pre-processing in order to identify any
inconsistency between attributes, e.g., zip code and county.
That is, all inconsistencies are automatically resolved before
the vulnerability calculation in FPHLM; while the unmapped
zip codes are either manually revised or are omitted from the
pre-processing in the other models [26].

For the policies with missing zip codes and/or geographic
coordinates, we perform geocoding using a third-party soft-
ware named ArcMAP [27] which is the main component
of Esri’s ArcGIS suite of geospatial processing programs to
produce geographic coordinates needed in the next component
in Section III-B. The processor first exports the addresses
from the policies, and then feeds them into ArcMAP for
geocoding. Next, the results are placed in the corresponding
folder. Before continuing with pre-processing, the results are
checked, formatted, and then imported back to the policies. In
fact, in many cases, the raw insurance policies do not include
the coordinates, which makes the geocoding sub-component
necessary. If an address could not be matched by ArcMAP, the
centroid of the provided county is used for further processing.

The experts in the engineering team determine the external
vulnerability of the structures using different combinations



of policy attributes including year built, number of stories,
and various mitigation properties to generate the vulnerability
matrices used as the input in Section III-C. However, it is
impossible to provide the vulnerability matrices for every com-
bination of attributes since the number of insurance policies in
most companies is big. Thus, the engineering team provides
a base set of matrices which cover the basic categories of
combinations. The pre-processing component needs to map
each value to a valid one for the vulnerability matrices in
the base set. For example, the roof shape has to be one of
the following types: gable-unbraced, gable-braced, gable, hip,
other, and unknown. If the provided roof shape or its code is
invalid, the system will try to map it to a valid value or set it to
unknown. As another instance, when there are more than one
county referred to the same zip code and only one of them is
used to denote the corresponding vulnerability matrices, then
linking a policy containing a different county name with the
correct matrix may raise a problem. Thus, the county names
also need to be revised.

Other fields such as losses, deductibles, and construction
types also need to be cleaned and corrected. A summary file
including the basic statistics of all attributes and potential erro-
neous values is generated automatically both before and after
pre-processing. After this component is done, the summary
file is formatted and stored for our record and references.
The results are also used to further generate the region and
year built distribution files. If a problem is ambiguous and
cannot be automatically fixed, the pre-processing component
can generate a summary report that identifies any major issues
which require to contact the corresponding insurance company.

Furthermore, the pre-processing component can automati-
cally check typo errors, change the invalid inputs, and solve
the formatting issues in the data, which reduces a lot of man-
ual efforts. The pre-processing component also controls the
permission issues and keeps the environment clean and clear.
Overall speaking, all the aforementioned steps are integrated
into this component.

B. Wind Speed Correction

Derived from the meteorological discipline, the Wind Speed
Correction (WSC) component simulates the storm tracks and
wind speeds at each policy location with multiple events and
refines the wind speed produced by the hurricane wind model
on the actual terrain. Typically, tens of thousands of stochastic
events that span almost sixty thousand years are simulated
in this WSC component. The WSC component initiates their
conditions with random historical records that come from the
Atlantic tropical cyclone basin. The input of the WSC com-
ponent consists of the storm information (radius of maximum
winds and location of the storm center), roughness length for
the open terrain, and the policy data information (policy IDs
and their latitude/longitude coordinates), etc. The output of
the WSC component consists of the simulation results of the
wind speeds for multiple height spots at each policy location.
Combined with the exposure data from the insurer policies,
the characteristics of the personal or commercial residential

WSC setting interface

Select interpolation run in the system

Select roughness information
{open terrain Roughness/residential Roughness)

Select height level, gust,terrain etc.

WSC Multi-Server System run

Fig. 2. Flowchart of the WSC component.

properties and the vulnerability matrices serve as the input to
the component in Section III-C. The WSC component includes
the following sub-components:

(1) Storm Track and Intensity Model

(2) Inland Storm Decay Model

(3) Wind Field Model

(4) Gust Factor Model

(5) Terrain Roughness Model

(6) ArcIMS environment

To launch one WSC task, we need to first import the
interpolation setting in the WSC setting interface and select
the existing roughness option of the model. In addition, the
remaining information like the height level, gust, task name,
and so on need to be set at the same time. When the pre-
processing component is finished, the trimmed policy dataset
is generated and would be used as the input to the WSC
component to estimate the wind speeds on different heights of
each policy location (latitude and longitude coordinates). After
the WSC task is launched, we use the roughness information
and marine surface winds to calculate the terrain-corrected 3-
second gust winds and 1-minute peak winds for the actual
terrain and open terrain at the street level. The detailed flow
diagram of WSC is shown in Figure 2.

The output of the WSC component includes the policy
ID and wind speeds for at least ten-meter height level and
up to fifteen levels in ten-meter increments if requested.
The results together with the exposure information and the
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engineering vulnerability matrices are further applied to the
ILM (Insurance Loss Model) component in Section III-C.

C. Insurance Loss Model

Insurance Loss Model (ILM), which is responsible for
predicting the losses of the residential structures, integrates
the damage ratio distribution from the engineering component
with the wind speed calculation results from the meteorology
component. The engineering component, which also be called
as the vulnerability component, uses the Monte Carlo simula-
tion to achieve the external damage of the buildings at various
wind speeds [28]. The internal damage, including the utilities
and content losses, are estimated from the external analysis
results formulated as the damage matrices. The vulnerability
matrices for each typical building type in Florida, including the
manufactured homes, are expanded based on the Monte Carlo
model simulations to cover all structural type combinations
(frame or masonry), roof cover type (gable vs. hip, tile vs.
shingle), region (North, Central, or South), and sub-region
(high wind velocity zone, wind-borne debris region, and
others). The ILM program automatically decides the matrices
usage for each property in order to estimate the total building
loss.

The ILM component receives the building stock information
from the pre-processing output that determines the set of
exposure, zip codes, and construction types, along with the
wind speed data which is the result of the previous step for
each storm, to perform the simulation and quantify the total
damage as the output. Figure 3 gives an overview of the ILM
component.

D. Post-processing

As mentioned in the Introduction section, the integrated
data processing is vital because of the deluge of insurance
data. Also, due to different data sources and requirements,
a comprehensive post-processing component is designed by
using a series of software, tools, and languages. An effective
and automatic post-processing component is very critical to
ensure a fast and coherent system. The results from Sections
II-B and HI-C are first checked by a set of codes to meet
the “zero error tolerance” requirement. These codes check
the errors and exceptions from the log files and also check
the potential problems. If a problem is found, the results are
considered unreliable and immediate attention messages are
sent to the corresponding data processor.

To generate user-friendly results for FL. OIR and insurance
companies, raw results from ILM need to be formatted into
Excel tables. However, formatting tens of files (from the
data analysis) and millions of policies is a tedious and time-
consuming job. Furthermore, manually dealing with this kind
of big data is error-prone and is definitely not a smart choice.
Using the proposed post-processing system, statistical files
from the pre-processing component and analysis files from
the ILM component are automatically verified and formatted.

Additionally, a data transfer element is designed for insur-
ance data transformation between components. It simplifies
the automation process and is flexible to new technologies
and model changes. FPHLM also includes a well-designed
email notification system and a web-based processing mon-
itoring system. Finally, the results are formatted, reviewed,
and packaged by the post-processing component before the
submission. While all data processing jobs are associated
with organizations, with the web-based processing monitoring
system, permission control is as simple as creating a new user
account and associating it with the corresponding organization.

As discussed before, our task involves lots of tables and
faces the big data issues. Without this post-processing compo-
nent, a lot of human efforts will be needed for checking and
formatting the results and it will take more than two hours
for a single company. On the other hand, by integrating a set
of scripts together, simply clicking a single button is needed
for all the post-processing steps and it takes only two minutes
for checking and formatting the final results. By switching the
manpower from routine and tedious work to monitoring the
overall system, the FPHLM model successfully achieves error
prevention - nearly leaving no room for mistakes from data
Processors.

E. Verification

A minor fault in a technical system may result in costly and
critical consequences. Thus, verification is essential to alleviate
the unintended faults made by the processor. However, the
system complexities make the verification bothersome and
difficult. In the proposed system, verification is applied in an
automatic manner under the supervision of the verifier. As
soon as the data processing is completed by the processor,
an email is automatically sent to the verifier to check the



correctness of the results and the processing steps. The whole
FPHLM verification process is automated and includes the
following routines:

o Pre-processing verification: In this step, several prepared
SQL functions are executed to check the data inconsisten-
cies. First, the processed insurance portfolio is checked,
as well as its number of policies and the order of the
data columns. Then, the verifier checks if there is any null
value and the pre-processing component has not assigned
any value to it. Finally, the geographic information is
checked to ensure there is no GIS errors.

e WSC and ILM verification: The main purpose of this
step is to verify the model parameters and the values
assigned by the processor. In addition, the log files are
automatically checked using a shell script that looks for
all errors, warnings, exceptions, etc. during the process
execution. These kinds of errors may happen due to server
problems or parameter inconsistencies. If no fault is found
in this step, the verifier runs another script which checks
if the policy numbers in WSC and ILM are consistent
with the original portfolio. The final script checks the
correctness of the soft links, such as WSC, vulnerability
matrices, and roughness information, to name a few.

o Results verification: In the final step of the verification,
the pre-processing and ILM results are verified. The
format and completeness of the ILM results including
the analysis files, expected losses, and PML, and pre-
processing results such as the summary file, distribution,
and exposure files are all checked to avoid any incom-
patibility.

Running these powerful functions and scripts makes the
verification process easy and straightforward. Once the verifier
approves the processing and the results, a notification is sent to
the approver by the system. At this stage, the approver checks
the results to ensure there is no actuarial inconsistencies and
logical errors. There are various distribution tables generated
by the system to assist the approver for further verification.
As soon as the results are validated by the approval, an email
notification with a link to the page containing all the result
files is automatically sent to the client (usually an insurance
company). Thereafter, the client can easily download all the
desired files.

IV. SYSTEM IMPLEMENTATION

As discussed in the previous section, the data flows as
follows. The original insurance data is first cleaned and format-
ted by the pre-processing component. Next, the data-transfer
element delivers the processed data to the WSC component as
well as the ILM component. The WSC component (Section
III-B) generates the wind speeds, and the ILM component
(Section III-C) uses the results from WSC together with
the engineering vulnerability matrices as its input. Finally,
the results after post-processing are verified and submitted.
These complicated and computational intensive components
from cleaning the data to formatting the final results are

now automated by the proposed FPHLM integrated domain
knowledge assisted big data processing system.

In addition, the monitoring of this integrated data processing
system is web-based and user-friendly. Starting from receiving
the data from FL OIR or the insurance companies via secured
e-mails or postal services using the encrypted media, an
FPHLM task is created by the computer science group and
the original data is uploaded to the Data Processing Manager
(DPM). When the processing stage changes, the DPM notifies
all the corresponding members via secured e-mails. This web-
based system is developed using a suite of popular software
tools, including JavaScripts (JS) and Cascading Style Sheets
(CSS).

The logic tier of FPHLM is written in Java and hosted in an
Apache Tomcat server with a cluster of powerful computing
nodes running Linux; while the data tier is composed of
two relational database management systems with several file
servers. One of the database management systems manages
system metadata such as users, roles, and client organizations.
The second one houses hundreds of databases processed
through FPHLM. Each database contains several processing
stages of the input policy file along with the auxiliary infor-
mation and scripts used during the pre-processing of the data.
For the post-processing stage, Visual Basic for Applications
(VBA) is used to build the user-defined functions, automate
the processes, access the Windows API, and provide other
low-level functionality through dynamic-link libraries.

While FPHLM manages the production usage of a long-
term research project, domain knowledge including the appli-
cation domain requirements and solution domain technologies
changes frequently. For example, the requirements like new
regulations from the Florida Commission on Hurricane Loss
Projection Methodology (FCHLPM) may change. Therefore,
FPHLM has both a production version and a development
version. These requirements evolve new data and research
findings; while the solution domain changes as new imple-
mentation technologies become available. In other words,
the system is designed to be flexible and extensible. The
development version is submitted and certified by FCHLPM,
and becomes the next production version upon certification
every two years. Since our system provides services to both
FL OIR and private insurance companies, the whole system
is designed for computationally complex components with
stability and robustness from various disciplines .

V. CONCLUSIONS AND FUTURE WORK

In this paper, an integrated and automated big data pro-
cessing system assisted by domain knowledge for the FPHLM
project is presented and introduced in details. FPHLM together
with the proposed integrated data processing system are a
novel computing framework that integrates functional compo-
nents from various disciplines, and are able to provide long-
term and up-to-date services for new insurance regulations.
It can also provide the insights and help other researchers
who are interested in working on hurricane catastrophe loss
projection models.



With the development of the advanced hurricane research
work, more factors can be considered. From the computer
science point of views, the proposed integrated domain knowl-
edge assisted data processing system can incorporate more
domain knowledge and consider more advanced big data
techniques like multithreading and Spark.
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