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Abstract—Data imbalance is a challenging and common problem 
in data mining and machine learning areas, and has attracted 
significant research efforts. A data set is considered imbalanced 
when the data instances (samples) are not close to uniformly dis-
tributed across different classes/categories, which is very com-
mon in real-world data sets. It is likely to result in biased classifi-
cation results. In this paper, a two-phase classification frame-
work is proposed to make the classification of imbalanced data 
more accurate and stable. The proposed framework is based on 
the correlations generated between concepts. The general idea is 
to identify negative data instances which have certain positive 
correlations with data instances in the target concept to facilitate 
the classification task. The experimental results show that our 
framework is effective in imbalanced data classification and is 
robust to feature descriptors by comparing it with four existing 
approaches using four different kinds of feature representations. 
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mining; correlation 

I. INTRODUCTION 

Recently, the development in computer science has enabled 
explosive growth and availability of data. Noticeably, in many 
real-world applications, large amounts of data are generated 
with skewed distributions (or called data imbalance) since the 
events of interests occur infrequently [1]-[3]. For example, 
there are often more samples of normal cells (considered nega-
tive class) than the abnormal (positive) ones in cancer research. 
Another example is in natural language processing (NLP) 
where positive examples/data instances are vastly outnumbered 
by negative ones when doing information extraction. Similar 
situations are observed in other areas, such as fraud detection in 
banking operations, network intrusion detection, risk manage-
ment, and failure prediction of technical equipment. 

Generally speaking, data imbalance problem is ubiquitous 
and challenging. In an imbalanced data set, the class that has 
more data instances is defined as a majority class; while the 
one with fewer data instances is called a minority class. Since 
most classifiers are modeled by exploring data statistics, as a 
result, they may be biased towards the majority classes and 
hence show very poor classification accuracy on the minority 
classes. It is also possible that a classifier labels all data in-
stances as the majority classes and ignores the minority classes. 
There are techniques in the literature that attempt to solve the 
data imbalance problem [1]-[18]. However, imbalanced data 

classification remains an open challenge, and more work is 
needed to tackle it. 

In this paper, a two-phase classification framework is pro-
posed that utilizes the concept correlations to effectively tackle 
the data imbalance problem. Here, concepts refer to high-level 
semantic objects such as car, road, tree, etc. Using the proposed 
framework, the majority of the negative data instances that do 
not have positive correlations to the data instances in the target 
concept will be identified and filtered so that they will not be 
used to train the final classification model. This improves the 
quality of the training data set that leads to a better classifier.  

This paper is organized as follows. In section 2, existing 
classification approaches to handle the data imbalance problem 
are reviewed in details. Section 3 introduces the proposed 
framework and each important component.  In section 4, exper-
imental results and observations are presented. Finally, the last 
section summarizes this paper and suggests future research 
directions. 

II. RELATED WORK 

In general, imbalanced data classification techniques fall in-
to three categories, namely sampling-based, algorithm-based, 
and feature selection-based approaches. 

A. Sampling-based 

The most popular classification algorithms for imbalanced 
data sets are sampling-based approaches. Oversampling and 
undersampling methodologies have received significant atten-
tions to counter the effect of imbalanced data sets [1]. Studies 
have tested different variants of oversampling and under-
sampling techniques, and presented (sometimes conflicting) 
viewpoints on the usefulness of oversampling versus down-
sampling [5] for imbalanced data sets. 

In general, downsampling is to select a part of negative 
samples (data instances) to build a model with a similar number 
of positive samples. It is very efficient as it uses only a subset 
of the majority class. The main disadvantage is that many data 
instances in the majority class are ignored and may result in 
loss of information. Liu et al. proposed two algorithms to over-
come this deficiency [6]. “Easy Ensemble” samples several 
subsets from the majority class, trains a classification model 
using each of them, and integrates the outputs of those models 
to produce the final predication results. “Balance Cascade” 
trains the models sequentially. In each step, the majority class 



data instances that are correctly classified by the current trained 
models are removed from the next round. 

In terms of oversampling, duplicate or similar positive data 
instances are generated by certain algorithms to make the data 
set balanced. Zhang et al. presented an improved oversampling 
approach based on the synthetic minority over-sampling tech-
nique (SMOTE) [7][8]. First, data distribution of the minority 
class is used to estimate whether different types of data in-
stances are overlapped. Next, synthetic data instances are gen-
erated in different classes when classes overlap significantly 
with each other. In addition, weights are increased for those 
positive samples that are far from the borderline. However, 
oversampling can potentially lead to overfitting. 

B. Algorithm-based 

The common goal of algorithm-based approaches is to op-
timize the performance of learning algorithms on unseen data 
to address the class/data imbalance problem. One-class learning 
methods recognize the data instances belonging to a specific 
class and reject the others. Under certain conditions, such as in 
a multi-dimensional data set, one-class learning achieves better 
performance than the peers [9]. Cost-sensitive learning meth-
ods try to maximize loss functions associated with a data set to 
improve the classification performance. These learning meth-
ods are motivated by the observation that most real-world ap-
plications do not have uniform costs for misclassifications. The 
actual costs associated with each kind of errors are unknown 
typically, so these methods need to determine the cost matrix 
based on the data and apply it to the learning stage. A closely 
related idea to cost-sensitive learners is shifting the bias of a 
machine to favor the minority class. 

GASEN (Genetic Algorithm based Selective Ensemble 
Network) has been proven very effective to select a subset of 
neural networks to form an ensemble classifier or a regressor of 
the enhanced generation ability. Che et al. tested GASEN on 
dozens of data sets and finds that there is some potential for 
improving GASEN’s performance on class-imbalance learning 
[11]. However, such studies on GASEN are far from extensive 
or systematic. Machine learning algorithms, such as genetic 
programming (GP), can also generate biased classifiers when 
data sets are imbalanced. Bhowan et al. used new fitness func-
tions in the GP learning process and empirically showed better 
performance by the evolved classifiers on both minority and 
majority classes [12]. 

C. Feature Selection-based 

The goal of feature selection, in general, is to select n fea-
tures from a feature set that allow a classifier to reach an opti-
mal performance, where n is a user-defined parameter. As a 
key step for many machine learning and data mining algo-
rithms especially for high-dimensional data sets, feature selec-
tion has been thoroughly studied, where filters are used to score 
each feature independently based on a rule [13][14]. However, 
its importance in resolving the data imbalance problem is a 
recent direction [15]. This direction is motivated by the fact 
that in real-life data, the data imbalance problem is commonly 
accompanied with the issue of high data dimensionality which 
both sampling techniques and algorithm-based approaches may 
be insufficient to deal with [9]. Therefore, a number of research 
work has been conducted to perform feature selection to tackle 

the data imbalance problem recently. For example, Ertekin [16] 
studied the performance of feature selection metrics in classify-
ing text data drawn from the Yahoo Web hierarchy. They ap-
plied nine different metrics and measured the power of the best 
features using the naive Bayes classifier. 

Wasikowski et al. presented the first systematic comparison 
of different approaches using seven feature selection metrics. 
They evaluated the performance of these metrics based on the 
receiver operating characteristic (AUC) and the precision-recall 
curve (PRC) [9]. Jamali et al. discussed a prior knowledge for 
an expert system, which can identify the best performed feature 
selection metric based on the data characteristics regardless of 
the classifier used [17]. Zheng et al. investigated the usefulness 
of explicit control of combination within a proposed feature 
selection framework using multinomial naive Bayes and regu-
larized logistic regression as classifiers [18]. 

III. FRAMEWORK 

Different from most existing approaches, a two-stage 
framework is proposed in this paper to train the classifiers in 
order to solve the data imbalance problem. To demonstrate its 
effectiveness, in our current study, this framework is applied to 
detect semantic concepts in a large set of video files using 
keyframes extracted from them. However, it is worth noting 
that our framework is generally applicable to a wide range of 
applications that have imbalanced data distributions.  

A. Feature selection 

In order to use the proposed framework to detect semantic 
concepts in videos, the first step is to represent the images (i.e., 
keyframes) using a set of descriptors or features. Such a repre-
sentation should be able to cover most of the important infor-
mation contained in the images. Four kinds of features are uti-
lized in this study, namely HOG (Histogram of oriented gradi-
ents), HSV (Hue, Saturation, and Value), Gabor, and CEDD 
(Color and Edge Directivity Descriptor). The first three are 
widely used features, focusing on gradient, color, and wavelet, 
respectively. CEDD is a relatively new type of features which 
incorporates the color histogram and texture information. 

HOG [19] is similar to the edge orientation histograms, 
scale-invariant feature transform descriptors, and shape con-
texts, but differs in that it is computed on a dense grid of uni-
formly spaced cells and uses the overlapping local contrast 
normalization for an improved accuracy [20]. HOG counts the 
occurrences of gradient orientation in the localized portions of 
an image to describe the inner visual characteristics of an ob-
ject. It combines the angles into eight bins which are uniformly 
divided over 360 degrees, and each bin accumulates the num-
ber of edge points whose angles fall in it [21][22]. Let xI  and 

yI  denote the central differences at point ( , )x y , ( , )M x y be 

the gradient magnitude, and ( , )x y be its orientation. They are 
defined as follows. 

( 1, ) ( 1, )xI I x y I x y    ; 

( , 1) ( , 1)yI I x y I x y    ; 

2 2( , ) x yM x y I I  ; 



1( , ) tan /x yx y I I  . 

The contribution of an edge point to the HOG is weighted 
by its gradient magnitude ( , )M x y . In a real implementation, 
the analyzed object may further be divided to four grids. Then, 
an ensemble of HOG descriptors with 32 bins can be formed 
for action analyses (32 = 4 grids ×8 bins). 

HSV is utilized for color histogram since it is perceptually 
uniform that matches with the human vision system. It is a non-
linear color model, by which the color signals can be expressed 
as three kinds of attributes: Hue, Saturation, and Value [23]. 
Here, Hue refers to the wavelength of the dominant color that 
ranges from 0 to 360, Saturation represents the purity of color 
from 0 to 100% (full saturation), and Value is the color bright-
ness from 0 (black) to 100% (white). This color model is ex-
pressed by the Munsell three-dimensional coordinate system 
[24]. After the HSV values are extracted from the images, they 
are further processed through an appropriate quantization step 
before they are used for histogram calculation. This can signifi-
cantly reduce the required computational load and get a uni-
formed histogram. 

Gabor Feature extracted by the Gabor wavelet is widely 
used in many research areas and proven to be efficient. A 2D 
Gabor filter is first utilized which is a band-pass spatial filter 
with selectivity to both orientation and spatial frequency. With 
the oscillation orientation and frequency, the Gabor feature 
vector of each key point is extracted based on the principal 
component analysis (PCA). To determine whether a candidate 
key point is selected for feature extraction, the point is consid-
ered to be the center of a window whose size is dependent on 
its type [25]. If there is no selected point within the window, 
the point under consideration will be selected [26]. Based on 
the selected key points, the Gabor feature vectors are generat-
ed. Changing the values of scale and orientation can identify an 
optimized parameter setting. In this paper, we use 48-
dimension uniformed Gabor feature vectors. 

CEDD is a new low-level feature that can be used for image 
retrieval based on multiple feature extraction algorithms. It 
incorporates both color and texture information to form a 144-
demension vector [27]. One of the most important attributes of 
CEDD is its low computational complexity for feature extrac-
tion, in comparison with the needs of the most MPEG-7 de-
scriptors [28]. For the color part, a set of fuzzy rules [29] un-
dertakes the extraction of color information in the HSV color 
space. The fuzzy system forms a 24-bins histogram with 3 
channels of HSV as inputs, and each bin represents a preset 
color. In order to extract texture features, the MPEG-7 Edge 
Histogram Descriptor [30] is utilized which can detect edges in 
vertical, horizontal, 45-degree, 135-degree, and non-directional 
edges. Adding the 5-edge descriptor with the original infor-
mation, each region contains 6 fixed texture regions and totally 
a 144-bin histogram. 

B. Classification 

SVM is one of the state-of-the-art algorithms in the data 
mining area [31] including multimedia classification 
[32][33][34]. The general idea is to build a separating hyper-
plane to classify the data instances so that the geometric margin 

is maximized. In order to handle the case that the classes are 
linearly inseparable, the kernel trick is utilized.  In this paper, 
LibSVM, one of the most popular off-the-shelf software im-
plementations, is used [35]. There are only four common ker-
nels, and  , r , and d  are kernel parameters: 

linear: ( , ) T
i j i jK x x x x ; 

polynomial: ( , ) ( ) ,  0T d
i j i jK x x x x r    ; 

RBF: 
2

( , ) , 0i jx x

i jK x x e
    ; 

sigmoid: ( , ) tanh( )T
i j i jK x x x x r  . 

 
Figure 1.  An example of two-dimensional imbalanced data. 

C. Data imbalance problem 

An example imbalanced data set is given in Figure 1, where 
the circles represent the positive data instances and the crosses 
represent the negative ones. Due to the data imbalance prob-
lem, the same SVM (with the same kernel and parameters) can 
produce vastly different borders on different training sets that 
are randomly picked from the same data set (in Figure 1). We 
further investigate such an observation by repeatedly picking 
training sets from the same data set and building SVM models, 
and notice that the borders can be categorized into three differ-
ent types: horizontal, left-leaning, and right-leaning (an exam-
ple for each type is shown in Figures 2(a), 2(b), and 2(c), re-
spectively). This shows that the classification results keep 
changing for the imbalanced data. 

Motivated by the fact that in most data sets, many negative 
data instances are far from the positive ones, we propose to 
consider them isolated and build two different models separate-
ly. We believe these models, when trained properly, can collec-
tively provide better classification results. The main idea of our 
two-phase framework is to combine positive instances with 
their correlated negative instances in the first phase and to iden-
tify the real positive ones in the second phase. 

D. Positive correlation 

In our study, positive correlations are utilized to find the so-
called related concepts, namely the negative data instances that 
are considered to be similar to the positive data instances (i.e., 
the ones belong to the target concept). Formally, a positive 



correlation is defined as a relationship between two concepts 
that the increase of the occurrence in one concept would in-
crease the other. If two concepts have a positive correlation, it 
means they are likely to appear together. For example, the con-
cept “Plant” and “Vegetation” are likely to appear together, 
which means there is a strong positive correlation between 
them. Therefore, they are both first considered positive. 

 

 
(a) 

 
                   (b)    (c) 

Figure 2.  Different types of decision boundaries generated by the same 
classifier on different training sets which are randomly picked from the same 

imbalanced data set: (a) horizontal, (b) left-leaning, (c) right leaning. 

Many algorithms have been developed to select the most 
significant positive correlations from the variables. In 
[36][37][38], the Apriori algorithm and its variants were intro-
duced for the association rule mining technique. Positive corre-
lations have also played an important role in multimedia anno-
tation problems [39][40]. However, though the approaches in 
mining positive correlations have performed well in previous 
cases, when coming to large imbalanced data sets, there are 
some limitations. In order to address this issue, we extend the 
work in [39] to true positive correlation mining. The idea is that 
if two concepts (e.g., “Plant” and “Vegetation”), called target 
concept and reference concept, are truly correlated, the correla-
tion between them would remain with or without the existence 
of any other concepts (e.g., “Field,” “Sky,” etc.). In other 
words, if “Plant” and “Vegetation” have positive correlation 
only when “Field” is presented but not in any other cases, their 
correlation may be falsely identified and is actually caused by 
“Plant”-“Field” and “Vegetation”-“Field” correlations. We 
therefore define these exogenous concepts as control concepts 
for further filtering. Formally, assume Ω is the set of interested 
concepts in the study. For a target concept  ܶ ∈ Ω  (e.g., 
“Plant”), we want to check whether it has a true positive corre-
lation with a reference concept ܴ ∈ Ω (e.g., “Vegetation”) by 
computing the Integrated Correlation Factor (ICF) between 

them given a control concept C (e.g., “Field”), where ܥ ∈
Ω, ܥ ് ܶ, ܥ ് ܴ.  

,ሺܶܨܥܫ ሻܥ|ܴ ൌ
1

|Ω| െ 2
,்ܥሺߩ ஼ܥ|ோܥ

ାሻ 

 

Here,  is the number of concepts in Ω, cC  indicates a 

control concept, cC  is the set of data instances where concept 
C exists, CT and CR are vectors indicating the existence (1 be-
ing yes and 0 otherwise) of target concept and reference con-

cept in the data instances, and ( , )T R cC C C  indicates the Pear-

son product-moment correlation coefficient between the target 
concept and reference concept under the condition of cC . It 
should be noted that Pearson correlation is undefined under 
some circumstances, and hence a default value was used in the 
system in our study [41]. The following reasons further justify 
the need of introducing the control concept in our system. First, 
there are many concepts that are normally considered mutually 
exclusive, such as "indoor" and "outdoor," but are in fact corre-
late to each other along their borderlines (e.g., front door area is 
close to indoor and outdoor). Such boundary correlated con-
cepts are hard to detect under normal two-variable systems. 
However, in our proposed framework, these concepts can be 
effectively mined because any control concepts that appear 
normally in one concept but rarely in the other concept would 
filter the data set and make the correlation more explicit. Sec-
ond, based on the TRECVID data set [42], all of the newly 
reconstructed data instances are under the condition that the 
control concept is labeled as positive, which means our data 
instances are all viewed by human annotators. This increases 
the credibility of our data set. 

E. Model built based on positive correlations 

Based on the trained positive correlations, we can build a 
two-phase framework for the imbalanced data set. First, those 
data instances that have a positive correlation with the data 
instances of the target concept are used as the positive training 
set and the rest of the negative ones are the negative training 
set. These two training sets are used to build the SVM model at 
the first phase. Please note that those data instances having a 
positive correlation with the target concept may be true positive 
or false positive. Therefore, another SVM model is built in the 
second phase to recognize the true positive data instances. If a 
testing data instance is labeled as negative in phase 1, it does 
not need to be tested by phase 2. A positive decision is made 
only when both two phases make the positive decision. Figure 
3 and Figure 4 present the training and testing phases of our 
proposed framework. 

To demonstrate the effectiveness of the proposed 2-phase 
framework, the same example two-dimensional imbalanced 
data instances (in Figure 1) are classified by the same SVM 
model, and are used to show how the decision boundaries be-
have in phase 1, phase 2, and the proposed 2-phase framework. 
In Figure 5, it can be easily seen that the decision boundaries 
generated from different tests behave similarly at Phase 1. The 
same happens at Phase 2 as shown in Figure 6. In addition, 
when both phases are integrated, the decision boundaries can 



better separate the truly positive data instances from the nega-
tive ones, which can be clearly observed in Figure 7. The re-
sults from these figures show that by using the concept correla-
tions in two phases, it is much more effective to find the stable 
decision boundaries to separate the positive data instances (the 
minority class) from a large number of negative data instances 
in an imbalanced data set, resulting in a high and stable classi-
fication accuracy. 

 
Figure 3.  Training stage of the proposed framework. 

 

 
Figure 4.  Testing stage of the proposed framework. 

F. Performance Measure 

In general, a classifier is evaluated by a confusion matrix as 
illustrated in Table I. The columns are the predicted class and 
the rows are the state of nature (actual class). In the confusion 
matrix, TN is the number of negative examples correctly classi-
fied (True Negatives), FP is the number of negative examples 
incorrectly classified as positive (False Positives), FN is the 
number of positive examples incorrectly classified as negative 
(False Negatives), and TP is the number of positive examples 
correctly classified (True Positives). For performance compari-

son, the precision and recall metrics [43] are commonly used 
and are derived from the confusion matrix as follows. 

TP
precision

TP FP



 

TP
recall

TP FN



 

 

 

 
Figure 5.  Decision boundaries generated in phase 1. 

 

 
Figure 6.  Decision boundaries generated in phase 2. 

TABLE I.  CONFUSION MATRIX 

 Predicted 
Positive 

Predicted 
Negative 

State of nature 
Positive 

True Positives 
(TP) 

False Negatives 
(FN) 

State of nature 
Negative 

False Positives 
(FP) 

True Negatives 
(TN) 



 
Figure 7.  Decision boundaries generated in our proposed 2-phase framework   
(integrating phase 1 and phase 2), where NEG(C) represents the negative data 

instances having a false positive correlations with the data instances of the 
target concept. 

The main goal for learning from the imbalanced data sets is 
to improve the recall without sacrificing the precision. Howev-
er, recall and precision goals can often be conflicting, since the 
increase of true positive data instances for the minority class 
may also increase the number of false positives, which will 
reduce the precision. F-measure, also known as F1 score or F-
value, can combine the trade-offs between precision and recall, 
and is therefore considered an objective and ultimate quality 
metric of a classifier. It is defined as follows. 

2
precision recall

F measure
precision recall


  


 

 

  

  
Figure 8.  Sample keyframes with annotated concepts in the TRECVID data 

set, the concepts are bicycling, tree, politics, and face, respectively. 

IV. EXPERIMENTAL RESULTS 

In TRECVID 2012 project, the semantic indexing (SIN) 
task aims to recognize the semantic concept contained within a 
video shot, which can be an essential technology for retrieval, 
categorization, and other video exploitations. It has several 
challenges such as data imbalance, scalability, and semantic 
gap [44][45]. The research directions to address these challeng-

es may include developing robust learning approaches that 
adapt to the increasing size and the diversity of the videos, fus-
ing information from other sources such as audio and text, and 
detecting the low-level and mid-level features that have high 
discrimination abilities. 

A. Experimental Setup 

In the experiment, the IACC.1.A data set is chosen from the 
TRECVID 2012 benchmark [42]. It contains approximately 
8000 Internet Archive videos (50GB, 200 hours) with creative 
commons licenses in MPEG-4/H.264 with the duration be-
tween 10 seconds and 3.5 minutes. Most videos have some 
metadata provided by the donor available, e.g., title, keywords, 
and descriptions. These videos are collected from the Internet 
and are diversified in terms of the creator, content, style, pro-
duction qualities, and original collection devices. The videos 
are segmented into a number of shots and each shot is repre-
sented by a keyframe. The shot boundaries and keyframes are 
also given in the data set. The labels are provided by collabora-
tive annotation effort organized by NIST. In this study, each 
keyframe is treated as a data instance. Figure 8 shows four 
sample keyframes with the labeled concepts. SVM is used as 
the classifier in this study. We adopt the empirical setting in 
LibSVM, and for comparison purposes, the cross validation 
scheme is employed to compare with some existing approach-
es. In each iteration, two third of the dataset is used to train a 
model, the rest is for testing. 

B. Experimental Results  and Analyses 

This data set is chosen because it has severe data imbalance 
problem as some basic statistics shown in Table II [42]. As can 
be seen, the positive data instances account for less than 1% in 
the data set, which poses great challenges in data retrieval in 
practice. 

TABLE II.  INFORMATION OF IACC.1.A DATA SET 

Data Set IACC.1.A 
TRECVID Year 2012 
No. of Concepts 130 
No. of Instances 144774 

Average Positive No. 865.42 
Average P/N Ratio 0.0062 

 

TABLE III.  TOP TEN POSITIVE RELATED CONCEPT PAIRS 

Target Concept Related Concept ICF 
Plant Vegetation 0.69306 
Car Ground_Vehicles 0.56938 

Government-Leader Politicians 0.54638 
Daytime_Outdoor Outdoor 0.41878 

Road Streets 0.37638 
Anchorperson News_Studio 0.34946 

Beach Waterscape_Waterfront 0.34690 
Trees Vegetation 0.34369 

Anchorperson Reporters 0.33728 
Building Suburban 0.31346 

 

In this experiment, the classification of each class is consid-
ered as a two-class problem, namely positive and negative. The 



target concept is considered as positive; while the rest 129 con-
cepts are considered as negative. As shown in Table III, we 
first compute the ICFs among the concepts and identify the top 
ten positive related concept pairs. The column “Target Con-
cept” contains ten concepts that we aim to classify one by one 
in the experiment while the “Related Concept” helps in Phase 1 
of the modeling. The performance of the proposed framework 
is compared to four existing approaches (down-sampling, over-
sampling, adapting SVM [46] and feature selection) by report-
ing the average performance across these ten concepts. To 
eliminate the possible influence of features on the classification 
performance, four different types of features (HOG, HSV, Ga-
bor, and CEDD) are used in the comparisons. Their results are 
presented in Tables IV, V, VI, and VII, respectively. In the 
tables, the top performance in each column is highlighted. As 
we can see, the performance of the classification approaches is 
largely influenced by the choice of feature set. For instance, 
most of the approaches including the proposed framework per-
form better by using HOG or CEDD features (Tables IV and 
VII) than using HSV or Gabor (Tables V and VI). Neverthe-
less, though other classification approaches may achieve higher 
precision or recall values using certain features, , our proposed 
framework consistently outperforms all of them using the F-
measure metric, which as discussed earlier better reflects the 
effectiveness of a classifier than other metrics.  

TABLE IV.  EXPERIMENTAL RESULTS BY HOG 

 Precision Recall F-measure 
Down-sampling 5.90% 82.99% 0.1103 
Over-sampling 100% 36.93% 0.5394 
Adapting SVM 52.77% 90.87% 0.6677 

Feature Selection 40.67% 95.02% 0.5697 
Proposed Framework 58.35% 98.34% 0.7324 

TABLE V.  EXPERIMENTAL RESULTS BY HSV 

 Precision Recall F-measure 
Down-sampling 4.42% 85.06% 0.0841 
Over-sampling 100% 0.41% 0.0083 
Adapting SVM 22.14% 70.54% 0.3370 

Feature Selection 23.28% 68.88% 0.3480 
Proposed Framework 28.86% 81.13% 0.4257 

TABLE VI.  EXPERIMENTAL RESULTS BY GABOR 

 Precision Recall F-measure 
Down-sampling 5.72% 87.55% 0.1073 
Over-sampling 100% 1.24% 0.0246 
Adapting SVM 33.46% 74.69% 0.4621 

Feature Selection 32.10% 68.46% 0.4371 
Proposed Framework 39.42% 81.46% 0.5313 

TABLE VII.  EXPERIMENTAL RESULTS BY CEDD 

 Precision Recall F-measure 
Down-sampling 5.29% 84.65% 0.0997 
Over-sampling 100% 18.26% 0.3088 
Adapting SVM 67.14% 97.51% 0.7953 

Feature Selection 55.42% 97.51% 0.7068 
Proposed Framework 70.85% 99.01% 0.8260 

V. CONCLUSIONS AND FUTURE WORK 

It is challenging to obtain reasonable classification accura-
cies when the data set is imbalanced, since the data instances in 
the majority class usually overshadows those in the minority 
class (the target concept). In the paper, we propose a novel 2-
phase classification framework that utilizes concept correla-
tions to tackle the data imbalance problem. Experimental re-
sults that compare four existing approaches with four types of 
features demonstrate that the proposed framework is capable of 
utilizing the concept correlations to separate the positive data 
instances of the minority class from a large number of negative 
data instances in an imbalanced data set. It is important to note 
that the proposed framework can also be applied in many other 
research areas and applications that are challenged by the data 
imbalance problem like homeland security, network security, 
disaster information management, to name a few. 

In this paper, we used the correlation between concepts re-
gardless of how strong the correlations are. In the future, the 
correlation values can also be considered in the framework 
since the larger a correlation value between two concepts is, the 
stronger the concepts may be correlated. 
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