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Abstract—Most content-based recommender systems focus on
analyzing the textual information of items. For items with images,
these images can be treated as another information modality. In
this paper, an effective method MSLIM is proposed to integrate
multimodal information for content-based item recommendation.
It formalizes the probelm into a regularized optimization problem
in the least-squares sense and coordinate gradient descent is
applied to solve the problem. Aggregation coefficients of items are
learned in an unsupervised manner during this process, based on
which k-nearest neighbor (k-NN) is used to generate the top-N
recommendations of each item by finding its k nearest neighbors.
A framework of using MSLIM for item recommendation is pro-
posed accordingly. Experiments on self-collected handbag dataset
show that MSLIM outperforms the comparison methods and how
the parameters of the model affect the final recommendation
results.

Index Terms—recommendation; sparse linear; multimodal in-
tegration;

I. INTRODUCTION

Content analysis for multimedia retrieval has been a hot
research topic for more than two decades. It includes areas
such as semantic concept detection [1], image and video
classification [2], recommendation [3] etc. Differing from
tradition information retrieval, recommendation goes beyond
providing accurate results since recommender systems are
centered around users. User profiles or behavior data as an
important information are usually preferred comparing to
information of item contents since user profiles can better
capture their interests and behaviors.

Recommendation approaches can be categorized into three
categories: content-based recommendation which focuses on
analyzing the content of items; collaborative filtering which
utilizes user profiles such as ratings or clicks to recom-
mend items for like-minded users; and hybrid recommenda-
tion which incorporate both approaches. Latent factor model
(LFM) is the one of the most popular technique in rec-
ommendation and has been adopted in many state-of-the-art
recommendation models [4][5]. They involve analyzing user
profiles, typically in the form of the user-item matrix. Some
recently proposed frameworks bring contents of items into
consideration, such as [6][7] extend LEM to incorporate item
features, and [8] considers item features as side information
and integrates them into users’ implicit feedbacks. However, in
many situations user profiles are not available or very sparse.

which is referred as the cold-start problem in recommendation.
The pure collaborative filtering methods would fail in these
scenarios, and the enriched or extended approaches can only
handle the cold-start problem to some extent for they rely
on factorizing the user-item matrix or use it to optimize
the models. As a result, we have to rely on content-based
recommendation before enough user profiles can be collected.

The pure content-based recommendation methods don’t
need user profiles or behavior data and the recommendation is
based on the content of items. Typically features are extracted
to represent each item as a feature vector, then item relations
are discovered in the extracted feature space or a projected
feature space. Currently the content in most recommender
systems is limited to descriptions or metadata associated with
items, such as text descriptions and tags. While for items
with multimedia information, such as images and videos,
their visual contents are not often utilized. This is because
items are usually organized with correct descriptions available.
Meanwhile, there is a “semantic gap” between low-level visual
features (e.g., color, edge, texture etc.) and high-level human
perception of inferred semantic concepts. However, nowadays
with the exponential growth of multimedia data, a large
proportion of the data are unorganized which means their
textual information could be incomplete or non-existent or
even incorrect. For these data, either a lot of efforts need to
be spent in manually annotating them or automatical tagging
methods have to be applied [9][10] in order to describe them in
text. Another option is to explore the visual content directly
and utilize the visual information together with the textual
information and information of other modalities if available
to improve the content-based recommendation.

In this paper, a multimodal sparse linear integration method
(MSLIM) is proposed to facilitate content-based item recom-
mendation. Aggregation coefficients of items are learned in an
unsupervised manner from multiple modalities and recommen-
dation results are generated using k-nearest neighbor (k-NN)
based on the coefficients between items. The contribution of
this study can be summarized into two folds:

o An effective yet generic method MSLIM is proposed to
integrate multimodalities to mine pair-wise correlations
between items.

e A framework adopted MSLIM is proposed accordingly
which learns item correlations based on textual informa-



tion from item description and visual information from
images, and then applies k-NN for item recommendation.

The rest of paper is organized as follows: Section II discusses
related work of addressing this issue. The detailed problem
formalization and solution are presented in Section III fol-
lowed by the experimental results in SectionlV. Conclusion is
drawn in Section V.

II. RELATED WORK

Sparse LInear Methods (SLIM) for top-N recommendation
are first introduced in [11] which generates recommenda-
tion results by aggregating from user purchase or rating
profiles. A sparse aggregation coefficient matrix is learned
by solving a ¢;-norm and ¢s-norm regularized optimization
problem. The final recommendation is the linear combination
of the original user profiles weighted by the learned sparse
aggregation coefficients. Later the authors extend SLIM to
incorporate item content information [8], but the basic model
is the same. The extended method is called SSLIM, which is
short for SLIM with item Side information. Experiments on
various datasets demonstrate high quality recommendations,
and the sparsity of the coefficient matrix allows SLIM to
generate recommendations very fast. Compared to SLIM and
SSLIM, our proposed method is more generic and can be
used in general information retrieval task. The focus in this
paper is to utilize multimodalities of item content to handle
recommendation scenarios when user profiles are not available.
Therefore, rather than using the learned coefficients to linearly
combine user profiles as in SLIM or user profiles with item
side information as in SSLIM, we directly use the learned
coefficient matrix of items to generate the recommendations.
Because each entry in the coefficient matrix is the coefficients
between items and indicates their similarity.

In the field of multimedia retrieval [12] [13], information
of multimodalities have been utilized to complete each other
and have shown promising results in tasks such as semantic
concept detection, speech recognition, multi-sensor fusion and
etc. Its core issue is multimodal fusion. Current methods
typically fall into one of the three categories: (1) Early fusion
which is feature-level fusion. It involves concatenating features
from different modalities which results a simple model but can
also easily reach to very high dimensions in the feature space.
(2) Late fusion which is decision-level fusion. This category
is further divided into the rule-based methods, the estimation-
based methods, and the classification-based methods. Com-
pared to early fusion, late fusion offers scalability and al-
lows to choose suitable learning method for each modality.
However, it can not utilize the feature-level correlations from
different modalities and require to make local decisions first.
(3) Hybrid fusion which involves both early fusion and late
fusion. More detailed discussion of multimodal fusion can be
found in [14]. A comparison between early fusion and late
fusion is done in [15], and experiments on broadcast videos
for video semantic concept detection show that late fusion
tends to slightly outperform early fusion for most concepts,

but for those concepts where early fusion performs better, the
gain is more significant.

Our proposed MSLIM belongs to the early fusion category,
but rather than directly concatenating the features, it learns
sparse linear aggregation coefficients between items based on
features extracted from multiple modalities. A comparison
with rule-based late fusion method is conducted to evaluate
MSLIM. Details are presented in Section IV.

III. THE PROPOSED METHOD

Based on the work in [11] [8], an effective and generic
method MSLIM is proposed to integrate multimodal infor-
mation for content-based top-N recommendation. It aims to
learn a sparse coefficient matrix from multimodalities in an
unsupervised manner. The problem is formalized into a regu-
larized optimization problem in the least-squares sense and a
framework of integrating textual and image visual information
for item recommendation is proposed accordingly.

A. Problem Formalization

Assuming there are P modalities, and each modality is
represented by a feature-item matrix S? and p € [1, P], where
each row is a feature or an attribute and each column is an
item. If there are totally M items and AP features/ attributes
for the p-th modality, then the dimension of S? is AP x M. Let
A denote the dimension of matrix including all the modalities
which is equal to Zng AP. An entry in S? is denoted as
si; which could be a nominal or a numeric value for the
i-th feature of the j-th item from the p-th modality. The
j-th column of S? is denoted as sé-) while the i-th row is
denoted as (s?)”. In this paper, all the vectors are denoted
using bold lower-case letters (e.g., sf and s? ), and matrices
are denoted using bold upper-case letters (e.g. S). Upper-case
letters are used for dimension of vectors and matrices (e.g. K
and AP x M), and lower-case letters are used for indices and
entries of vectors or matrices (e.g. sfj is an entry and p, ¢ and
7 are indices).

Each feature in S” represented by a row vector s?, and each
entry s? ; 1s updated as a sparse aggregation of s?. As shown
in Equation(1), =; is a sparse aggregation coefficient column
vector of length M. It is learned by integrating information
from other modalities S' where | # p. The matrix form is
shown in Equation(2), and X is the corresponding sparse
aggregation coefficient matrix with x; as its column. X
contains M x M coefficients of items, which are obtained
by updating each SP using other modalities S! where [ # p.
This is achieved by minimizing the difference between SP and
the updated S?, as expressed as Equation(2).

(sP)7T (sP)ij (1)

SP + SPX 2)

The problem can be formalized into an optimization prob-
lem presented in Equation(3), where || - ||; and || - ||% are the
matrix ¢1-norm and Frobenius norm respectively. The term



ISP — SPX ||§, measures how well the update fits. The term
| X% and || X||; are the £z-norm and ¢;-norm regularization
terms, respectively, and S and A are their regularization
parameters. A larger regularization parameter imposes a severe
regularization. /1 -norm is introduced to get a sparse solution of
X [16], which can make the updating process of Equation(2)
very fast, especially when dealing with big data. ¢p-norm
can prevent model from overfitting. The two regularization
terms together lead the optimization problem to an elastic
net [17], which balances between the lasso using ¢;-norm and
ridge regression using ¢p-norm. The first constraint X > 0
ensure all the coefficients of X are non-negative, so that the
learned X represents positive relations between items. The
second constraint diag(X) = 0 is applied to avoid trivial
solutions [8], that is the optimal X is an identical matrix such
that an item is always best related to itself and not related to
any other item.
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According to [8], Equation(3) can be decoupled into a
set of the same optimization problems since each column
of X is independent from each other. Therefore, solving
Equation(3) is equivalent to solve Equation(4), where S =
[Val8' ... vVaPSP|T, and it can be parallelized using each
processor to handle a column of X. Let Y denote the cost
function in Equation(4). Using coordinate descent [18], the
partial derivative of Y with respect to the i-th entry of x;
is derived as Equation(5). Therefore, x;; can be calculated
accordingly if let the partial derivative equal to 0. The up-
date of wz;; is shown in Equation(6), where T is the soft-
thresholding operator. The aggregation coefficients of items
calculated by integrating multiple modalities are represented
by the M x M matrix X. For each item, its neighbors are
defined as items having large coefficients with this item, and
thus k-NN can be adopted as the recommendation algorithm.
In other words, content-based recommendation is achieved by
obtaining similar items from multiple modalities.
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The proposed MSLIM can incorporate user profiles if avail-
able, which is equivalent to the method in [8] if considering all
the content information of items as side information. If using
U to denote users’ implicit or explicit feedbacks, then there
is an addition term in Equation 3 which is p||U — UX||3.
The solution is the same as depicted in Equation 4 with S
replaced by [,/uU, S]”.

To evaluate the efficiency of MSLIM is to analyze the
computational complexity of Equation(2). The updating of S
or the computing of X is O(n,, x A x n.,), where n,, is the
average number of non-zero values in the rows of S, A is the
number of rows of S, and n., is the number of columns of X.
Therefore the computational complexity of MSLIM depends
on the feature sparsity of the initial S and the number of
features from different modalities as well as the number of
items. Considering the independent property of the columns of
X as presented in Equation(4), the computation of X can be
parallelized, which can reduce the computational complexity
can be reduced to O(n,, x A) if using n., processes.

B. A System Framework

A framework utilizing MSLIM for item recommendation is
presented. One modality is the textual information of items,
and the other modality is the visual information of items. In
this framework, they are item descriptions and images respec-
tively. Therefore, in Equation(6), S = [Val8' V2§27,
where S! is the textual feature-item matrix, and S? is the
visual feature-item matrix.

1) Feature Extraction: Visual features of images includes
color, texture, shape etc, such as HSV color histogram,
histogram of oriented gradients (HOG) and popular scale-
invariant feature transform (SIFT) [19]. The aim of this



paper is not to compare various features, but to validate
the effectiveness of MSLIM which can improve content-
based recommendation by integrating features from difference
modalities. Hence, we only extract one visual feature which
is CEDD [20] feature due to its good balance between
accuracy and complexity. It is a compact composite descriptor
that incorporates both color and texture information in one
histogram. The CEDD extraction system is composed of two
units, texture unit and color unit, and three fuzzy systems.
First, the image is separated into a preset number of blocks
(usually 1600 for compromising between the image detail and
the computational complexity). Then each of the blocks passes
through all the units as follows. In the texture unit, each image
block is classified into one of the 6 texture categories by
applying with 5 digital filters. In the color unit, the image
block is converted into the HSV color space and fed into
two fuzzy systems with a set of rules, obtaining a 24-bins
histogram (with each bin representing one color). Finally, the
overall histogram contains 6 x 24 = 144 regions.

For textual features, we extract keywords/ terms from
descriptions of items, and use binary value to represent the
presence of a feature. Take feature “leather” for example, 1
means “leather” exists in the item’s descriptions while 0 means
the opposite. For descriptions in English, standard procedures
such as stop word removal and stemming are usually applied
to preprocess the terms. WordNet [21] can also be used to
validate English words due to ubiquitous typos, especially in
user-contributed social media data such as image tags from
Flickr. The descriptions we collected for our bag dataset are
in Chinese, and more details are given in Section IV-A. There
are totally 509 binary features extracted which cover materials,
brands, colors, styles, structure and etc.

Normalization is performed on extracted features to convert
their scales and to ensure that they are suitable for general
data analysis. For visual features, min-max normalization is
adopted to scale the feature values between 0 to 1. For textual
features, we do not apply any normalization since the extracted
features are binary.

2) A Practical Framework: Features extracted from each
modality are fed into the sparse linear integration module and
generate the aggregation coefficients of items. Then k-nearest
neighbor (k-NN) is used to find the neighbors of each item
based on the aggregation coefficients. Recommendation results
are generated by sorting the similarity scores of neighbors in
descending order. A framework summarized these procedures
is presented in Figure 1. Textual features and visual features
are extracted from descriptions and images of items respec-
tively. If there are other modalities, such as descriptions from
other websites or images from a different view point, then
features can be extracted accordingly and fed into the sparse
linear integration module.

IV. EXPERIMENTS

To evaluate MSLIM for content-based recommendation,
images and descriptions of handbags are collected to perform
handbag recommendation, and user rating data are collected
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Fig. 1. The MSLIM framework for content-based multimedia recommenda-
tion

as ground truth for judgement. We first investigate how pa-
rameters affect the recommendation results, and then use the
best parameter settings to conduct further comparison. The
comparison includes methods using a single modality, as well
as the method which linearly combines the results from each
single modality. To ensure fair comparison, k-NN is used as
the recommendation algorithm for all methods.

A. Data Collection

The dataset of handbags are collected based on the bags
appeared in a fashion show video which is created by gluing
parts from several videos. Specifically, the first sequence (0-
27 sec) is the Gucci fall-winter 2010 women’s wear show; the
second sequence (28-58 sec) is from some advertising videos
downloaded from the Gucci web site; the rest of the video
(59-end) is the Prada fall-winter 2012 women’s wear show.
Google image search based on keywords such as “prada fall
winter 2012 women’s wear show handbag” is used to find the
exact bags appeared in the video. Next Google image search
using the images from the keyword search results is utilized
to find visually similar bags which form the recommendation
dataset. There are totally 440 bags, and both the images and
their descriptions are collected as two modalities. Since the
descriptions of bags are relatively structured, that is they are
described in similar way such as materials, brands, color, styles
etc., thus textual features are extracted based on this structure.

To collect the ground truth, we design a web-based interface
for users to provide ratings. Each bag is used as a target item
which means the bag is the one the user is interested in or
wants to purchase. 20 other bags are recommended to the
user for him or her to rate from 0 to 5. 0 means the user
is not interested in the recommended bag while 5 means the
recommended bag is very similar to the target bag. There are



actually two parts in this user judgement process. The first part
is using visual information alone and presenting the images
of the top 20 recommended bags to the users, as showed in
Figure 2. The second part is adding textual information and
both the important descriptions and the images of the top 20
recommended bags are presented to the users, as showed in
Figure 3. In both web interfaces, the target bag is the first one
in each row which is highlighted in yellow box. Only the first
top 10 recommended bags can be seen from the figures due
to the size of the window, but there are actually 20 bags in
each row. The reason we design it in two parts is to avoid
bias when judging using visual or textual information alone.
11 users participate this judging task, and ratings from both
parts are collected. For each target bag, its recommended bags
with an average rating equal to or above 3.0 is considered as
a relevant recommendation which indicates the interest from
users.
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Fig. 3. The interface of collecting ratings for bags using visual and textual
information

B. Evaluation Metrics

For evaluation metrics, precision is the most commonly
used metric in the top-N recommendation. It measures the

percentage of correctly predicted items, denoted as prec@n,
and can be calculated based on Equation (7). TP is the number
of relevant items or true positive (TP) in the n recommended
items, and n is usually set to 5 or 10.

TP
prec@Qn = —
n

(N

Another widely adopted metric is the area under the ROC
curve (AUC), which is a more general ranking measure. It is
equal to the probability that a model will rank a randomly
chosen positive item higher than a randomly chosen negative
one. The best possible value of AUC is 1, and any non-
random ranking that makes sense would have an AUC value
greater than 0.5. Other common metrics for ranking include
mean average precision (MAP) and normalized discounted
cumulative gain (NDCG), which are also used in this paper.
MAP is the mean of the average precision scores for each
query, while average precision (AP) is computed as a function
of recall, as shown in Equation (8). @ is the total number of
queries, F'N is the number of false negative, and A(t) is an
indicator function equaling 1 if the item at rank ¢ is a relevant
one, zero otherwise. NDCG measures the gain of an item based
on its position in the result list according to Equation (9). rel;
is the graded relevance of an item at position ¢, and IDCG is
the ideal DCG which is the maximum possible value of DCG.

_ ZiEP AP

MAP a)
(8)
where AP(q) = —jf’;icg]thA(t)
NDCG = I%%%
)
where DCG — =rel; + Y-} lorgzl(‘t)

C. Compared Methods

The proposed MSLIM is first compared with methods
using the same k-NN recommendation algorithm but a single
modality in order to prove that the integration of multiple
modalities helps the final recommendation. The method using
textual information only is denoted as textual method (TM)
while visual method (VM) denotes the method using visual in-
formation only. However, to further evaluate the improvement,
a rule-based late fusion method is adopted as a comparison
method. It uses Equation (10) to linearly weight and combine
the recommendation scores from each modality, where w?
is the weight of modality SP and f(-) is a recommendation
algorithm which takes feature-item matrix as input and outputs
the recommendation scores. As mentioned before, P = 2 since
there are two modalities in our dataset. This method is denoted
as LWM, which stands for linear weighted method.

Shor w X f(8P)
(10)

P

D
where plw_l



D. Experimental 1: Parameter Tuning

The parameters involved in MSLIM are o', o2, 5 and X a
shown in Equation (3) where P = 2. There are no paramete
in TM and VM, and for LWM, the parameters are the weigh
of textual modality w! and the weights of visual modality w?

Let’s start from LWM first. We decrease the value of w
from 1 to 0 with step of 0.1, and the value of w? is increase
from 0 to 1 with step of 0.1 accordingly. Figure 4 presents th
performance of LWM using the aforementioned 7 metrics wit]
the weight of visual modality w? increasing from 0 to 1. A
can be seen, AUC reaches the highest when w? = 0.2, and it
value at 0.1 is relatively high. While for the rest metrics, thei
values slightly increase or stay the same when w? increas
from 0 to 0.1, and drop dramatically when w? continue
increasing from 0.1 to 0.2. Therefore, we choose w? to b
0.1 by considering the performance on all the metrics. The
value of w! is set to 0.9 to ensure their summation is equal to
1. These parameters indicate that the information from textual
modality is more reliable or accurate since w' is much larger

than w?.
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Fig. 4. The performance of LWM varied by w?

For MSLIM, we first tune the parameter of ot and o2 with
fixed B and X since o' and o play a local role in integrating
textual and visual modality. Therefore, we set 5 = 1.0 and
A = 0.01 empirically first, and fix o' to 1.0 and only vary
o?. Figure 5 shows the performance of MSLIM with o2 set
to {0.1,0.5,1.0,2.0,5.0} and the other parameters are set to
the fixed values. As shown in the figure, on average, a?=0.5
gives the best overall performance when considering all the
metrics.

The next step is fixing o' and o2 to the optimal value
we find which are 1.0 and 0.5 respectively, and then us-
ing grid search to find the optimal value of S and A.
The search range for 8 is from 0.001 to 10.0 with points
at {0.001,0.005,0.01,0.05,0.1,0.5,1,5,10}, and the search
points for A\ are at {0.001,0.005,0.01,0.05,0.1}. Figure 6
and Figure 7 display the performance using AUC and prec@5
from different views with 8 and A as two variables. The

MSLIM performance

—c— AUC
— — prec@5
—— prec@10
recall@5
recall@10

MAP
—&— NDCG

Fig. 5. The performance of MLIMS varied by a?

performances varied by [ and A depict similar pattern on
the rest metrics. As can be seen from both figures, there
is a big decrease when A keeps increasing after 0.01, and
the performances drop to 0 after A reaches beyond 0.05.
It’s because the ¢;-norm parameter A controls the sparsity of
the coefficient matrix. If A is too large which means high
sparsity, then there is no item can be recommended since the
coefficients with the target item are all 0. For 3, the perfor-
mances increase from a relatively low value to the maximum
when S increases from 0.001 to 1.0, and stays almost stable
when [ keeps increasing from 1.0 to 10. This indicates a
small /o-norm regularization improves model performances
but after a certain point, in this case when 8 = 1.0, it doesn’t
affect the performances anymore. From both figures, we can
see the maximum performance forms a flat area bounded by
A € (0,0.01] and 8 € [1.0,10]. Hence, we fix A to its upper
bound 0.01, and 3 to its lower bound 1.0 as the empirical
values we decide when tuning o' and o2. In fact, any value
of )\ and [ within the aforementioned boundaries could assure
the maximum model performances.

E. Experimental 2: Comparison Results

The comparison results of MSLIM against TM, VM, and
LWM are shown in Figure 8. VM using visual information
results inferior performance compared to the other three
methods. One reason is that we only use one visual feature
which is CEDD. It achieves relatively good performance
compared to other visual features, but one single visual feature
is very limited. If introducing more types of visual features,
the performance of VM would be better. The other reason
is that the semantic gap between low-level visual features
and high-level semantic concepts. Take the brand of a bag
for example, it’s not easy to capture the pattern of a brand
using visual features, but from the textual point of view, the
exact words of a brand are probably already contained in
the item descriptions. MSLIM achieves the best results on
all the metrics, followed by LWM and then TM. Its absolute
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improvements compared to TM, VM, LWM are summarized
in Table I. The last row shows the average increase over all
the seven metrics. MSLIM outperforms VM by a large margin,
which is 0.3556, so does TM and LWM, but with a slightly
smaller margin. The results from TM and LWM are close, and
are outperformed by MSLIM by about 0.072 on average.

V. CONCLUSION

In this paper, a multimodal sparse linear integration method
MSLIM is proposed for content-based item recommenda-
tion. It formalizes the integration problem into a regularized
optimization problem in the least-squares sense. Coordinate
gradient descent is applied to solve the problem and parallel
computing can be used to speed up the process. Aggregation
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Fig. 8. The comparison performance

TABLE I
IMPROVEMENTS BY MSLIM COMPARED TO TM, VM AND LWM
Metric ™ VM LWM

AUC 0.0600 | 0.2475 | 0.0316
prec@5 0.0998 | 0.4403 | 0.1076
prec@10 | 0.0288 | 0.3494 | 0.0371
rec@5 0.0630 | 0.2777 | 0.0669
rec@10 0.0404 | 0.4112 | 0.0401
MAP 0.1229 | 0.4374 | 0.1283
NDCG 0.0911 | 0.3260 | 0.0932
avg 0.0723 | 0.3556 | 0.0721

coefficients of items are learned in an unsupervised manner
during this process, based on which k-nearest neighbor (k-
NN) is used to calculate the neighbors and generate the top-N
recommendation results. Evaluation compares MSLIM with
other three methods and proves its effectiveness on a handbag
dataset.

One limitation of MSLIM is that the number of features
from different modalities should be in the similar scale,
otherwise the aggregation coefficients learned would lean
toward the modality with more features and thus contain more
information from it. To solve this issue, one option is to apply
feature selection technique to reduce feature dimensions and
make sure the features from different modalities are in the
same scale. Another limitation of our current work is that
we learn the full M x M item coefficient matrix, which is
tedious for top-N recommendation. Instead, we can only take
the necessary neighbors into consideration.

REFERENCES

[1] T. Meng and M.-L. Shyu, “Leveraging concept association network for
multimedia rare concept mining and retrieval,” in IEEE International
Conference on Multimedia and Expo, July 2012, pp. 860-865.

[2] Q. Zhu, L. Lin, M.-L. Shyu, and D. Liu, “Utilizing context information
to enhance content-based image classification,” International Journal
of Multimedia Data Engineering and Management (I/MDEM), vol. 2,
no. 3, pp. 34-51, 2011.



[3

=

[4

=

[5

=

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30-37, Aug. 2009.
S. Rendle and L. Schmidt-Thieme, “Online-updating regularized kernel
matrix factorization models for large-scale recommender systems,” in
Proceedings of the 2008 ACM conference on Recommender systems,
2008, pp. 251-258.

R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix factor-
ization using markov chain monte carlo,” in Proceedings of the 25th
international conference on Machine learning, 2008, pp. 880-887.

D. Agarwal and B.-C. Chen, “Regression-based latent factor models,”
in Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009, pp. 19-28.

Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-
Thieme, “Learning attribute-to-feature mappings for cold-start recom-
mendations,” in Proceedings of the 2010 IEEE International Conference
on Data Mining, 2010, pp. 176-185.

X. Ning and G. Karypis, “Sparse linear methods with side information
for top-n recommendations,” in Proceedings of the sixth ACM conference
on Recommender systems, 2012, pp. 155-162.

M. Larson, M. Soleymani, P. Serdyukov, S. Rudinac, C. Wartena,
V. Murdock, G. Friedland, R. Ordelman, and G. J. F. Jones, “Automatic
tagging and geotagging in video collections and communities,” in
Proceedings of the 1st ACM International Conference on Multimedia
Retrieval, 2011, pp. 51:1-51:8.

S. Siersdorfer, J. San Pedro, and M. Sanderson, “Automatic video tag-
ging using content redundancy,” in Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information
retrieval, 2009, pp. 395-402.

X. Ning and G. Karypis, “Slim: Sparse linear methods for top-n
recommender systems,” in 2011 IEEE 11th International Conference
on Data Mining (ICDM), 2011, pp. 497-506.

D. Liu and M.-L. Shyu, “Effective moving object detection and retrieval
via integrating spatial-temporal multimedia information,” in Proceedings
of the 2012 IEEE International Symposium on Multimedia, 2012, pp.
364-371.

C. Chen, Q. Zhu, L. Lin, and M.-L. Shyu, “Web media semantic concept
retrieval via tag removal and model fusion,” ACM Transactions on
Intelligent Systems and Technology, 2013, in press.

P. Atrey, M. Hossain, A. El Saddik, and M. Kankanhalli, “Multimodal
fusion for multimedia analysis: a survey,” Multimedia Systems, vol. 16,
no. 6, 2010.

C. G. M. Snoek, M. Worring, and A. W. M. Smeulders, “Early versus
late fusion in semantic video analysis,” in Proceedings of the 13th annual
ACM international conference on Multimedia, 2005, pp. 399-402.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
vol. 58, pp. 267-288, 1996.

H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301-320, 2005.

J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” Journal of Statistical
Software, vol. 33, no. 1, pp. 1-22, 2010.

D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the International Conference on Computer Vision, 1999,
pp. 1150-1157.

S. A. Chatzichristofis and Y. S. Boutalis, “Cedd: color and edge direc-
tivity descriptor: a compact descriptor for image indexing and retrieval,”
in Proceedings of the 6th international conference on Computer vision
systems, 2008, pp. 312-322.

C. Fellbaum, WordNet: An Electronic Lexical Database.  Bradford
Books, 1998.



