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Abstract—In current biological image analysis, the temporal
stage information, such as the developmental stage in the
Drosophila development in situ hybridization images, is impor-
tant for biological knowledge discovery. Such information is
usually gained through visual inspection by experts. However,
as the high-throughput imaging technology becomes increas-
ingly popular, the demand for labor effort on annotating,
labeling, and organizing the images for efficient image retrieval
has increased tremendously, making manual data processing
infeasible. In this paper, a novel multi-layer classification
framework is proposed to discover the temporal information
of the biological images automatically. Rather than solving
the problem directly, the proposed framework uses the idea
of “divide and conquer” to create some middle level classes,
which are relatively easy to annotate, and to train the proposed
subspace-based classifiers on the subsets of data belonging to
these categories. Next, the results from these classifiers are
integrated to improve the final classification performance. In
order to appropriately integrate the outputs from different
classifiers, a multi-class based closed form quadratic cost
function is defined as the optimization target and the param-
eters are estimated using the gradient descent algorithm. Our
proposed framework is tested on three biological image data
sets and compared with other state-of-the-art algorithms. The
experimental results demonstrate that the proposed middle-
level classes and the proper integration of the results from the
corresponding classifiers are promising for mining the temporal
stage information of the biological images.

Keywords-temporal stage information; biological image min-
ing; model fusion; biological image classification

I. INTRODUCTION

With the fast development of the biological scientific
research domain, data of different categories, such as DNA
sequences generated by the second generation sequencing
technology, DNA Microarray, RNA-Seq, and biological im-
ages like in situ hybridization (ISH) images, and micro-
scopic images increase dramatically. Such large amounts of
heterogeneous data have revolutionized biological research.
Mining significant patterns from these data sets to gain
new insights about biological phenomena has become an
important problem. The problem becomes more challenging
when it comes to mining the biological image domain
because of the large volume and special characteristics of
the bio-image data. The classic approach is to invite domain
experts to inspect the images visually and assign labels. This
approach provides qualitative results while suffering from

scalability and subjectivity. Recently, the multimedia seman-
tic analysis becomes one of the central topics in multimedia
research domain [1][2][3][4]. Therefore, many researchers
in multimedia and pattern recognition domains bring new
techniques into the biomedical image analysis research and
a relatively new research area of bio-image informatics has
been formed and developed vigorously [5]. The approaches
developed in this area do not only address the issue of
scalability and provide quantitative and objective solutions,
but also provide the capability to detect visual features which
are not readily detectable by humans. Many applications
tackling different problems including cell detection [6] and
tumor classification [7][8], etc., have been developed to
facilitate the research in both the biological and clinical
fields.

A biological process usually consists of several temporal
stages. The sequential events such as gene expressions and
protein-protein interactions at the correct stages, are vital
for normal biological activities. For example, the mitosis
process consists of the stages of prophase, prometaphase,
metaphase, anaphase, and telophase. In each stage, certain
steps are taken to promote the progress of the mitosis.
In the process of Drosophila embryogenesis, the correct
sequence of gene expressions and interactions ensure the
normal development of an individual organism from embryo
to adult. Recently, owning to the rapid advances of the high-
throughput microscopic imaging technology, middle-to-large
scale biological image repositories have been built and the
number of available images instances increases exponen-
tially. A case in point, the BDGP database [9] which is a
public database constructed by the University of California
at Berkeley, currently contains 112995 ISH images spanning
6 developmental stage ranges of Drosophila. The total size
of these images is already over 100GB [10].

Such a large volume of data sets makes the manual
annotations of the temporal stage information impractical
and calls for automatic computational solutions. The existing
approaches generally fall into two categories: the general
bio-image classification frameworks and the ad hoc solutions
for a certain data set. As for the general solution, one of the
most famous automatic bio-image classification and pattern
recognition platforms is the Wndchrm [11]. This application
extracts up to 2873 visual features including polynomial



decompositions, high contrast features, pixel statistics, and
textures derived from the raw images, transforms of the
images, and compound transforms of the images. All fea-
tures in the feature pool go through a feature selection step
so that the least informative features are eliminated. The
modified weighted nearest neighbor algorithm is adopted to
assign a class label to a testing image. The software was
tested using the IICBU [12] benchmark data sets and the
performance was given as a baseline. A similar software
package is Bioimagexd [13], which focuses more on the
cell microscopic image analysis. However, in terms of the
temporal stage classification, the general solution ignores
the internal relationships among classes. For example, the
instances from two consecutive stages are usually more
similar and therefore more difficult to be classified than the
instances from two non-consecutive stages.

The ad hoc solution is application oriented. For example,
it is an essential and non-trivial problem to annotate devel-
oping stage ranges for the ISH embryonic developmental
images since the comparison of different genes is the most
meaningful for the embryos in the same developmental stage
range. The framework proposed in [14] is the first study
to address this problem. The researchers extracted Gabor
texture features [15] from the sub-blocks of the raw im-
ages and the Regularized Uncorrelated Linear Discriminant
Analysis (RULDA) was utilized to classify 2,705 images
from the BDGP database into three developmental stage
ranges (Stages 1-3, Stages 4-6, and Stages 7-8). In [16], the
researchers first segmented the four blocks from one raw
image by manually observing the most significant regions
for classification and then extracted Gabor features to feed
the multi-class Support Vector Machine (SVM) with the
linear kernel for the classification purpose. Their framework
was relatively successful for the specific task. However,
their proposed framework relies on human inspection and
is difficult to be generalized. Another work addressing the
same problem is proposed in [17].

In this paper, we focus on the multi-stage classification
problem in which the number of stages is greater than or
equal to three. This problem is essentially a multi-class
classification problem. Such a problem is usually much more
challenging than the binary classification problem, which
only has two classes. Some binary classification algorithms
could be generalized to solve the multi-class classification
problem, such as the nearest neighbor approach, Bayes net
classifier, and neural network classifier. Some researchers
convert the problem to a set of binary classification prob-
lems and use the methods of one-versus-all (OVA) [18],
all-versus-all (AVA) [19], and error-correct output-coding
(ECOC) [20] to address the multi-class classification prob-
lem. The one-versus-all (OVA) approach trains one binary
classifier for each class. When a testing instance comes,
the classifier which outputs the highest probability or score
becomes the winner. On the other hand, the all-versus-all

approach trains a binary classifier for each pair of classes
and uses majority voting to make the final decision. In terms
of these approaches, the biggest problem is how to integrate
the outputs from different classifiers to make a decision,
especially when there is a conflict. In addition, the all-versus-
all approach becomes less feasible with the increase of the
total number of classes. In order to resolve such issues, hier-
archical based classification becomes increasingly popular.
Yang [21] proposed one approach to build the classification
tree and utilized the relationship between the parent class
and child class to help the classification. In that work, a set
of binary classifiers forms a binary tree and a testing instance
is classified by traversing this tree from the root to the leaf.
However, there are two remaining issues which have yet to
be solved. The first problem is how to generate the non-leaf
class nodes so that the relationships of the classes could
be taken into account properly. The second problem is the
error propagation issue that once the parent classifier makes
an incorrect decision, there is no chance that the instance
could be correctly classified. Consequently, there is lack of
“cooperation” among different layers of classifiers.

In order to address the aforementioned issues, we develop
a multi-layer classification framework based on subspace
modeling, middle class creation, and multi-layer regression.
In order to utilize the internal relationship of the temporal
classes, some middle classes, which are not the classification
targets but are closely related and relatively easy to be
classified, are created, and the corresponding classifiers are
trained. Next, by minimizing the total cost, a proper fusion
strategy to integrate information from different classifiers
is applied. It is important to point out that the proposed
framework is different from the hierarchical approach since
our proposed algorithm does not enforce the sequence of
decisions, and all the classifiers contribute to the final
decision in a proper way.

The paper is organized as follows. The proposed frame-
work is introduced in Section II. The experiment config-
uration and results are described in details in Section III.
Section IV concludes this paper and discusses some future
work for further study.

II. THE PROPOSED FRAMEWORK

Our proposed framework is shown in Figure 1 and Figure
2. It consists of the training phase and the testing phase. In
the training phase, the training images are first preprocessed,
where visual descriptors including color, texture, edge, etc.
are extracted from each image. The feature selection step
selects the most significant features. Afterwards, the target
layer subspace-based classifiers are trained and the middle
classes are created based on the output scores from the
target layer classifiers. The subspace-based classifiers are
trained for each middle layer class and the final classification
decision is made by fusing the scores from the middle layer



Figure 1. The training phase of the proposed framework

Figure 2. The testing phase of the proposed framework

classifiers and target layer classifiers. The parameters for
fusion and all the classifiers are saved for the testing phase.

In the testing phase, the testing images are preprocessed
in the same way as in the training procedure. The same set
of features are extracted and the features corresponding to
the selected features in the training stage are retained. Next,
a testing image is input into the middle layer classifiers
and target layer classifiers, and the generated scores are
fused as a final ranking score. The details of each step and
formal definitions for middle layer classifier and target layer
classifier are explained in the following subsections.

A. Image Preprocessing

Since the proposed framework is geared towards the
classification of a wide range of biological images, the
images may contain a variety of characteristics. As a result,
the input raw images are preprocessed in a sequence of
steps such as histogram equalization and normalization, if
necessary. Particularly, for those bio-images in which the
object is clearly discernible from the background, object
segmentation is performed. It is important to point out that
this step is a regular image processing step but not the focus
of this work.

B. Feature Extraction and Feature Selection

In order to apply the machine-learning based approach,
the first step is to represent the image using a set of
descriptors or features. Such a representation should cover
most of the information contained in the images. In fact, a
good feature representation of the object/target is an active
research field itself and it never stops developing. Therefore,
the proposed framework is designed to be flexible so that it
can accept the inputs of any feature descriptors provided
by the users. If there are no features specified by the user,
we provide a default feature set consisting of 640 visual
descriptors. The detailed description of these features could
be found in [22]. Next, the chi-square feature selection
approach is applied to select the most significant features and
the number of retained features is decided in an empirical
study.

C. Subspace-Based Classifier

The subspace-based model receives a lot of attention in
the pattern recognition research field [23]. In this work, the
CRSPM model [24] is used as the classification model. The
general idea is to build an array of Principal Component
Classifiers (PCCs) and each of which is trained to learn the
similarities among the data instances from a particular class.
The details of this algorithm were elaborated in [24] and
omitted. Formally, assuming there are N classes in total, the
approach builds N binary classification models denoted as
PCCs and each of which outputs a posterior probability that
a data instance belonging to a certain Classn(1≤ n≤N). The
final classification decision is made by choosing the class
label which corresponds to the highest posterior probability.
If there is a tie, the decision will be purely determined by
the prior probabilities.

D. Middle Class and Multi-Layer Model Collaboration

The preceding classification framework aims at solving
the problem directly and differentiates all the classes at
once. This relatively strict requirement presents challenges
to the model. On the other hand, when facing a difficult
problem, humans usually adopt the strategy of “divide and
conquer” to break the problem into small pieces, solve them
first, and integrate the solutions to solve the difficult one.



Figure 3. Architecture of the two-layer classifiers. The dashed rectangles
indicate the middle classes which consist of different numbers of target
classes

Inspired by this strategy, some middle level classes which
are not our targets but are helpful in solving the target
problem are created. Correspondingly, the proposed PCCs
are built for these middle level classes. In order to eliminate
ambiguity, we define the class created as a middle class
and the corresponding classifier as the middle layer classifier
while defining the class for the initial classification task as
a target class and the corresponding classifier as the target
layer classifier. Figure 3 shows an example of the structure of
two-layer classifiers. In this figure, without loss of generality,
C1, C2, ... Cn ..., CN represent N target classes, C′1, C′2, ...,
C′k, ..., C′K represent K middle classes. T1, T2, ..., Tn, ..., TN
represent N target layer classifiers corresponding to N target
classes; while M1, M2, ..., Mk, ..., MK represent K middle
layer classifiers corresponding to K middle classes. In the
special case, the middle class could just have one target
class and the middle layer classifier is the same as the target
layer classifier. For example, C′k in the figure only contains
Cn and Mk = Tn in this case. Please note that the number
of layers is not limited to two and it could be extended for
more complicated tasks. Also, the formation of the middle
level classes could be changed.

In order to deploy this multi-layer classification architec-
ture, two essential problems need to be solved. First, how
to create middle classes properly to capture the internal
temporal relationship among the target classes? Second,
how to combine the probabilities or scores output from
different layers of classifiers without bringing the problem
of error propagation? In this work, we propose the solutions
described as follows.

In terms of creating the middle classes, one way is to
consult the domain expert. If such information is unavailable,
the data-driven determination strategy is proposed here. The
main idea of this approach is that the middle classes should
benefit each target class and also match the sequential
relationships of the temporal stages. The whole procedure
of creating the middle classes is shown in Figure 4.

The target classifiers are first trained using the training
instances and the classification results are obtained on the
validation data set. Based on the classification results, the
confusion matrix is computed so that the row of the matrix
is sorted according to the temporal sequence of the classes.

Figure 4. Flowchart of the procedure to “create” middle classes

Figure 5. A numerical example of the confusion matrix and the division
scheme. The candidate division points are labeled as the vertical bars in
the confusion matrix. The final decision of the division points is illustrated
at the bottom of the figure.

Next, the candidate division points are found for each target
class by identifying the class which corresponds to the
largest classification error and the final grouping strategy
is decided by combining the candidate division points of
each target class using the majority voting strategy with the
constraint that the total number of middle classes is less than
or equal to half of the total number of target classes and
greater than or equal to two. Figure 5 shows the confusion
matrix for the classification results based on the validation
data set for a specific example with 6 target classes. In this
matrix, the rows indicate the ground truth class labels and
the columns indicate the predicated class labels. The classes
1, 2, ..., and 6 represent the 6 consecutive temporal stages.



Each element in the row represents the ratio of the number
of instances predicted as a certain class so all the diagonal
elements are correct while all the off-diagonal elements are
incorrect. For instance, for all the instances which are from
Class1, 93% are predicted as Class1, 3% are predicted as
Class5, and 4% are predicted as Class6. Therefore, the class
which corresponds to the largest error is the Class6 and the
candidate division points are between Class1 and Class6
(shown as the vertical bars in the figure). Next, the final
decision is made using the majority voting strategy. In this
example, given the constraint that the number of middle
classes should be less than or equal to three, two division
points are chosen and three middle classes are created.
For the special case that overall accuracy is 100% which
indicates the target classifiers are perfect for the testing
data and two middle classes are formed so that the total
number of positive instances for each middle class are as
close as possible. It is noticed that the temporal sequence of
different classes is not changed so that only the consecutive
stages could be grouped together. In this way, the internal
connections among classes are properly integrated into the
proposed classification model.

After the middle classes are created, the PCCs described
in Section II-C are trained for middle classes. When a testing
instance is input into the system, each classifier of the middle
classes and target classes is going to output the posterior
probability. Therefore, another important problem is how to
combine the outputs from different layers of classifiers to
generate the final score for each target class. In this paper,
a multi-layer regression model is proposed.

Formally, for an instance i (1≤ i≤m) where m is the total
number of instances, the output score from the middle layer
classifier Mk is represented as SM(i)

k and the output score
from the target layer classifier Tn is represented as ST (i)

n . In
addition, a weight matrix α with a dimension of (K+2) by
N is defined so that each column of the matrix corresponds
to the weights to combine the outputs for a target class. The
final score of instance i for a target class n is represented
using SF(i)

n which is defined using Equation (1).

SF(i)
n = 1 ·α0,n +

K

∑
k=1

SM(i)
k ·αk,n +ST (i)

n ·α(K+1),n (1)

In this paper, the linear model is utilized here to save the
computational cost. In order to estimate parameter matrix α,
let y(i) represent the ground truth label for instance i, where
1≤ y(i)≤ N. The cost function is defined in Equation (2).

J =
1
m
·

m

∑
i=1

[(SF(i)
y(i)−1)2 +

N

∑
n=1,n6=y(i)

(SF(i)
n )2] (2)

From the equation above, the cost function measures the
distance between the prediction and the ground truth label
represented as a vector. In addition, it is a quadratic function
with respect to α so minimizing this cost function turns

out to be a convex optimization problem. In this paper, the
problem is solved using the gradient descent algorithm. The
corresponding derivative with respect to the element of α is
defined in Equation (3), Equation (4), and Equation (5). For
one instance, SF(i)

n will be the final output for Classn, and
the instance is assigned to the class which has the largest
SF value.

∂J
∂α0,n

=
1
m

m

∑
i=1

δ
(i)
n , (3)

where δ
(i)
n =

{
2 · (SF(i)

y(i)−1) i f n = y(i)

2 ·SF(i)
n i f n 6= y(i)

∂J
∂αk,n

=
1
m

m

∑
i=1

θ
(i)
k,n(1≤ k ≤ K), (4)

where θ
(i)
k,n =

{
2 · (SF(i)

y(i)−1) ·SM(i)
k i f n = y(i)

2 ·SF(i)
n ·SM(i)

k i f n 6= y(i)

∂J
∂αK+1,n

=
1
m

m

∑
i=1

ξ
(i)
n , (5)

where ξ
(i)
n =

{
2 · (SF(i)

y(i)−1) ·ST (i)
n i f n = y(i)

2 ·SF(i)
n ·ST (i)

n i f n 6= y(i)

(a) (b)

(c)

Figure 6. Sample images from the three data sets: (a) a sample image
from D1; (b) a sample image from D2; and (c) a sample image from T1.



III. EXPERIMENTAL RESULTS

A. Data Sets and Evaluation Criterion

In order to evaluate our proposed framework, three data
sets were used in experiments. We randomly selected 1475
lateral view images and 2000 dorsal view images from the
BDGP database to form the Lateral View data set (D1)
and Dorsal View data set (D2). In addition, The terminal
aging data set (T1) was selected from the IICBU database
as it proves to be the most challenging problem among all
the classification tasks [11]. The distributions of the data
instances corresponding to class labels are shown in Table I
and Table II. The sample images from D1, D2 and T1 data
sets are shown in Figure 6.

In this study, we adopted classification accuracy, which is
a common evaluation criterion in multi-class classification
domain, to test the performance of different frameworks.
Assuming for one instance i (1≤ i≤m) where m is the total
number of instances, C(i) is the output class label, y(i) is
the ground truth label, and I(Condi) is the indicator function
which outputs 1 if the Condi is true and otherwise zero.
The accuracy measure is defined in Equation (6). Three-fold
cross validation was used in the experiment and the average
accuracy is reported here.

Accuracy =
1
m

m

∑
i=1

I(C(i) = y(i)) (6)

Table I
DISTRIBUTION OF INSTANCES AMONG CLASSES IN D1 AND D2

Meaning No. of Images (D1) No. of Images (D2)
Stages 1-3 187 9
Stages 4-6 270 142
Stages 7-8 146 197

Stages 9-10 145 263
Stages 11-12 380 422
Stages 13-16 347 967

Total 1475 2000

Table II
DISTRIBUTION OF INSTANCES AMONG CLASSES IN T1

Meaning Number of Images (D1)
day 0 106
day 2 218
day 4 159
day 6 176
day 8 195
day 10 62
day 12 54
Total 970

B. Significance of Applying the Multi-Layer Collaboration
Model

In order to evaluate the contribution of middle class
classifiers, experiments were carried out to compare the

Figure 7. The effect of applying the multi-layer regression model

performance of the framework with and without multi-layer
regression. In Figure 7, “End Layer Classifier” indicates
the performance of using target-layer classifiers only; “End
Layer Classifier + Middle Layer Classifier ” indicates the
performance of using the multi-layer collaboration model. It
could be seen that the middle class helps improve the target
class classification accuracies by 2.3% to 6% for D1, D2
and T1 data sets. It proves that proposed the multi-layer
collaboration model is effective in improving the overall
classification accuracy.

C. Comparison with Other Classification Algorithms

In order to better evaluate the framework, the proposed
framework was compared to other multi-class classification
algorithms. Table III shows the performance of different
classification algorithms for D1, D2 and T1. “Proposed”
denotes the proposed subspace-based classification frame-
work with multi-class regression. The other classifiers used
are from Weka [25] where “J48” is the C4.5 decision tree
classifier with error reduce pruning; “BN” denotes Bayes
network; “NN” indicates the nearest neighbor classifier;
“KNNX” stands for the X nearest neighbors; “RFX” is the
Random Forest with X trees. “LSVM+L” and “LSVM+R”
are LibSVM [26] with linear kernel and RBF kernel cor-
respondingly. “ADA.+LSVMX” is the Adaboost algorithm
with LibSVM and X denotes the number of iterations.
“NeuroNW” indicates the neuro network algorithm. It could
be seen that the proposed algorithm outperforms the other
classifiers for all three data sets. For the other classifiers, The
neuro network algorithm gives the second best performance,
which indicates that the multi-layer classification is suitable
for the classification task. However, during experiments we
find the performance is highly sensitive to the parameter of
the number of hidden layers and the difference could be
as large as 40%-50% in terms of accuracy. Accordingly,
this raises another research topic of how to choose the
number of hidden layers. Besides, the back propagation
approach suffers from the time complexity issue. For D1
and D2, the LibSVM with linear kernel performs relatively



well. The nearest neighbor approach gives relatively inferior
performance which indicates that the training data contain a
significant amount of noise. In our proposed subspace-based
model, the data in each class are first pruned to remove noise
which is one of the reasons that the our proposed algorithm
performs better. Random Forest algorithm builds a set of
decision tree classifiers and is a relatively popular ensemble
learning algorithm. However, it also suffers from the noisy
data issue in these two data sets.

Table III
COMPARISON OF OTHER CLASSIFICATION ALGORITHMS

Classification Algorithm D1 D2 T1
Proposed 80.66% 82.25% 69.86%

J48 53.22% 52.00% 43.67%
BN 46.44% 58.50% 50.61%
NN 53.56% 59.50% 53.06%

KNN10 57.29% 56.75% 59.59%
KNN20 52.88% 54.50% 57.96%
KNN30 54.24% 53.75% 59.18%
RF10 59.32% 61.50% 49.80%
RF20 64.07% 66.25% 53.88%
RF30 64.75% 66.50% 53.88%
RF40 65.08% 66.75% 53.06%
RF50 67.46% 66.75% 55.92%
RF60 66.78% 66.25% 55.92%

LSVM+L 76.98% 78.75% 40.82%
LSVM+R 58.31% 51.00% 22.45%

ADA.+LSVM20 78.30% 79.75% 41.22%
ADA.+LSVM50 78.30% 79.75% 41.22%

NeuroNW 78.33% 80.21% 60.41%

D. Comparison with Other Existing Frameworks

The previous frameworks on the similar tasks were imple-
mented to compare with our current framework. For the data
sets D1 and D2, the following two frameworks were used
as comparison methods. In the first work [14], the original
image was divided into 640 blocks of size 8 x 8 pixels.
The Log Gabor features were extracted from each block
and formed a 24-dimension vector. Therefore, one original
image was represented using a 640×24 = 15360-dimension
vector. The vector was then projected to a lower dimensional
space to form a 1280-dimension vector using the modified
version of LDA. The nearest neighbor algorithm was then
utilized to perform classification. In the second work [16],
the authors followed the relatively similar path while picking
the significant blocks of the embryos based on human
observation as the starting point for feature extraction, the
Gabor features were used and the LibSVM was utilized
as the classifier. The classification results are shown in
Table IV. “RULDA” and “Gabor+LibSVM” represent the
approach in [14] and [16], respectively. Since the significant
areas in [14] were just selected for lateral view images so
that the classification result is not available for D2. It could
be seen that the proposed framework outperforms other
existing frameworks in terms of classification accuracies on
both data sets.

For the data set T1, the Wndchrm framework introduced
in [11] was deployed for comparison. For this data set,
the same set of features were extracted for our framework
and the comparison framework. The comparison results are
shown in Table V. In [11], the reported cross-validation
accuracy for the same data set is 49%. In our experiments,
we got 47.53% as the three fold cross-validation result,
which indicates the our implementation was successful. It
could be seen that the proposed framework could outperform
the comparison framework by a relatively large margin.

Table IV
COMPARISON OF EXISTING FRAMEWORKS

Framework D1 D2
The proposed 80.66% 82.25%

RULDA 75.25% 74.75%
Gabor+LibSVM 65.29% NA

Table V
COMPARISON OF EXISTING FRAMEWORKS

Framework T1
The proposed 69.86%

Wndchrm 47.53%

IV. CONCLUSION AND FUTURE WORK

In summary, a subspace-based multi-layer classification
framework for annotating temporal stages for biological im-
ages is proposed in this paper. Given the internal sequential
relationships among different classes, a prudent and effec-
tive grouping strategy is designed to create middle classes
to help target class classification. By defining a suitable
optimization function and providing a numerical solution,
a novel multi-layer model integration algorithm is given to
overcome the notorious error propagation issue in the multi-
layer classification model. As the detailed comparison results
shown in Section III-C and Section III-D, the proposed
framework consistently outperforms other classic multi-class
classification algorithms in Weka and several state-of-the-
art frameworks. It indicates that the proposed framework
provides a promising as well as robust automatic solution
to the biological temporal stage classification problem and
hence could be broadly applied in a research lab.

In the future, a more wide range of biological image data
sets will be processed and tested. The middle class creation
scheme will be further improved. In order to improve the
multi-layer integration algorithm, the proper weights are
going to be added to terms in the optimization criterion and a
regularization parameter is going to be introduced to address
the overfitting issue. Besides, the proposed work is going to
be extended to handle the more general case that the classes
do not have a sequential relationship.
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