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Abstract—Accurate annotation of different protein features
becomes increasingly important in enriching gene ontology
databases. In this work, we present a framework to predict the
bioluminescence of any given protein sequence. Bioluminescent
proteins are produced by living organisms and emit light nat-
urally. Bioluminescence is deemed to have different functions
in living organisms including camouflage, attraction to prey,
communication, etc. In addition, bioluminescent proteins are
also widely used as labels in assay development, reporters
of gene expression, and imaging agents in biotechnology.
Currently, bioluminescent proteins are mainly curated by
researchers through experimental analysis, which is a time
consuming process. However, the data mining based algorithms
provide an efficient way to detect candidate bioluminescent
proteins and suggest prioritization of the experimental work.
While traditional alignment based algorithms (such as BLAST)
show promising results in terms of sequence analysis, it suffers
from the limitation that the testing sequence should show
homology to the sequences in the available training data
sets. In order to overcome such a limitation, our proposed
framework uses a set of homology-independent features that
are extracted directly from the primary sequences to represent
the global physicochemical properties as well as the sequence
order characteristics of proteins. In addition, a novel subspace-
based data filtering algorithm is proposed to eliminate noise
from the training data. One existing framework addressing
the same problem was implemented and compared with our
proposed framework. The experimental results indicate that
our proposed framework shows promising performance. In
addition, the proposed framework is generic and could easily
be applied to annotations of other protein properties.

Keywords-Bioluminescence, Classification, Lasso, Subspace-
based filtering.

I. INTRODUCTION

In recent years, next generation sequencing (NGS) has
revolutionized biological research. For example, researchers
can sequence the entire human genome and produce data in
roughly one week, for a cost of less than $5000. However,
the first human genome required 10 years to sequence and
an additional three years to finish analysis, for a cost of
nearly 3 billion USD. With the help of this technology,
the amount of available protein/DNA sequences increases
exponentially. This large volume of sequence data poses
great challenges for data storage, search, and knowledge
discovery in the bioinformatics and database research do-
main [1][2][3]. Since protein sequences often contain im-
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portant hidden patterns and semantic information, automatic
annotation of high level features of proteins based on their
primary sequence has become a research challenge in the
bioinformatics domain. In order to address this challenge,
we propose a fully automatic framework for protein semantic
information annotation and mining in this paper. Specifically,
we use the annotation of the bioluminescent proteins as an
application to present our framework.

Bioluminescence is common in various environments in
which the light is emitted by a living organism. Light emit-
ting mostly occurs in a remarkable variety of sea creatures,
from bacteria to fish [4]. They display an extensive palette of
visible fluorescence and coloring via the chemical generation
of light for finding food, attracting mates, evading predators,
camouflage, communication between bioluminescent bacte-
ria (quorum sensing), illumination of prey, burglar alarm,
etc. [4][5][6].

In part, the vibrant coloration, from violet through red,
is due to a growing family of intrinsically fluorescent
proteins [7]. Among these fluorescent proteins, the best
understood so far is the green fluorescent protein (GFP) [8]
that has been changed from a nearly unknown protein
to a commonly used molecular imaging tool in biology,
chemistry, genetics, and medicine. Consequently, the 2008
Nobel Chemistry Prize was awarded to Shimomura, Chalfie
and Tsien for their pioneering discovery and development
of GFP [9]. In the past decade, GFP and its numerous
variants have led research in post-genomic era to direct vi-
sualization of biological functions as a powerful set of tools
for living cell imaging [10]. They hold great promises for
enabling the researchers to examine complex cellular context
as biosensors [11][12][13][14][15], to study the protein-
protein interactions using bioluminescence resonance energy
transfer (BRET) [16][17], to act as live-cell markers in drug-
discovery assays [18][19], and to guide the thermal treatment
of cancer [20].

Regarding the potential biomedical and commercial im-
portance, the identification of new bioluminescent proteins
is desirable to be detected that may help to understand more
functions in live-cell and to design new medical applications.
Until now, both experimental and computational methods
have been developed to investigate the bioluminescent pro-



teins [21][22][23]. However, the experiments for the annota-
tion of proteins are in general time-consuming and expensive
with the limited application to the available huge amount
of data by the advanced sequencing techniques [24]. On the
other hand, the data mining and machine learning techniques
could provide fast, high-throughput, and automatic solutions
to many biological problems and have been widely used
in the bioinformatics domain [25][26][27][28][29]. This
motivates us to develop a data mining based application to
detect bioluminescent proteins automatically.

There have been some existing studies that attempted to
address bioluminescent prediction research issues. In [30],
the Positive Specific Iterated BLAST (PSI-BLAST) algo-
rithm is utilized to extract the evolutionary information for
each protein sequence. In essence, this method is a sequence
alignment based approach and relies on sequence homology.
Therefore, although the reported accuracy was relatively
high in their work, the performance could be adversely
affected in the case that the testing protein sequences do not
show homology to the training protein sequences. In [31],
the researchers used the amino acid index [32] to represent
each protein sequence. The amino acid index based features
capture the physicochemical properties of the protein and do
not rely on the sequence homology, which shows an advan-
tage. On the other hand, the amino acid index features of the
protein lose all sequence order information which sometimes
determines the properties of the protein. Therefore, it would
be better to develop a new framework which does not rely
on homology but is able to capture the sequence order
information of the protein in order to further improve the
accuracy of the bioluminescent protein prediction.

Given the practical needs and the limitations of the
previous work, a high-throughput bioluminescent protein
prediction pipeline is proposed in this paper. In order to
capture the homology-independent characteristics of the
protein, a new feature representation that includes the amino
acid index [32], pseudo amino acid composition [33], and
other sequence-based features is proposed to represent each
protein sequence. Among these features, the pseudo amino
acid composition feature is one of the well-acknowledged
protein features used in data mining and machine learning
fields, and it not only covers the composition of each type
of amino acid in a protein sequence, but also contains the
sequence order information. This extra information could
recover the lost information by using the amino acid index
features alone. Because of the internal diversity and the
fuzziness of the biological sequences, the data could contain
noise, which hurts the classification model. Accordingly, we
also propose a novel subspace-based data/instance filtering
algorithm to clean the training data set with an attempt to
train a better classification model. In this paper, the Support
Vector Machine (SVM) classification model is utilized to
build the classifier using the pruned training data set. In
addition, other data processing modules such as feature

selection are also integrated into the pipeline to improve
the final predication results. The whole pipeline is fully
automatic and could be easily deployed in a biological
research lab for practical use. To evaluate our proposed
framework, several experiments are conducted and compar-
ison with the “BLProt” framework [31] demonstrates the
promising performance of our proposed framework as well
as our proposed feature representation and subspace-based
instance filtering algorithm.

The paper is organized as follows. The proposed frame-
work is introduced in Section II. The experimental results
and our observations are described in details in Section III.
Section IV concludes the paper and discusses some future
research directions.

II. THE PROPOSED FRAMEWORK

Figure 1 and Figure 2 show an overview of the proposed
framework. It consists of the training phase (Figure 1)
and the testing phase (Figure 2). In the training phase, a
novel feature representation including a set of sequence-
based features is proposed to represent the protein sequence.
These features are extracted based on the training protein
sequences. Since they are of different scales, the features
are normalized to prevent the features of a large scale from
overshadowing the features of a small scale. Next, the feature
selection module is included to select the most significant
features for this classification task. The training instances
are selected randomly from the database and could contain
noise which affects the accuracy of the classification model.
Accordingly, a novel subspace-based instance filtering algo-
rithm is applied to eliminate the outliers in the training data
set. The support vector machine (SVM) with the radial basis
function (RBF) kernel is used as the classification model.
The parameters of the model are selected in a ten-fold cross
validation process. The normalization parameters, selected
feature indices, and the SVM model with the optimized
parameters are stored for the testing phase.

In the testing phase, the same set of features are extracted
for the testing protein sequences. Using the normalization
parameters computed in the training phase, the testing
features are normalized in the same way. Next, only the
features corresponding to the selected feature indices are
kept. The testing data are then classified by the trained
SVM model. Different evaluation criteria are adopted to
evaluate the framework. Because the testing instances are
independent, they are not exposed to the training process.
As a result, the evaluation done on these instances simulates
a real world case. The details of each component are
introduced in the following subsections. For convenience,
the bioluminescent protein sequences are named positive
data instances or positive instances in this paper; while the
non-bioluminescent protein sequences are named negative
data instances or negative instances.
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A. Feature Extraction and Feature Normalization

Before applying any classification model, each protein
sequence is represented numerically as a feature vector
which captures the characteristics of the original sequence.
In this paper, a new feature representation is proposed to
represent the protein sequence, which includes the amino
acid index (AAlndex) [32], pseudo amino acid composi-
tion [33], and peptide property features provided by the
BioJava framework [34].

The AAindex database stores the numerical indices rep-
resenting different physicochemical and biochemical prop-
erties of all the amino acids and pairs of amino acids.
The AAindex database contains AAindex1, AAindex2, and
AAindex3 data sets. The AAindex1 data set which contains
544 amino acid indices is used to represent each protein
sequence as a 544-D vector. Specifically, for each protein
sequence S, let 5@ indicate the g-th amino acid in S and
[ is the total number of amino acids in S. Suppose for any
amino acid A, f;,(A) (1 <b < 544) indicates the b-th index
for amino acid A in the AAindex1 data set. The b-th feature
F,, for protein sequence S is computed using Equation (1).

1 l
Fy =5 Y fo(8'9). (1)
g=1

Pseudo amino acid composition (PAAC) is one of the most
popular features used in the protein sequence mining field.
The advantage of this method is that it is able to capture
the sequence-order information of the protein sequence. The
details of the feature extraction algorithms are introduced
in [33] and [35]. The open source application PseAAC-
Builder [36], which implements the pseudo amino acid
composition computation algorithm, is used to extract the
features from all the sequences automatically. The algorithm
provides flexibility so that the users can set the parameters
according to specific applications. Based on the results of the
empirical study, we use the Type I PAAC and set the number
of features and the weight factor to 40 and 0.4, respectively.

BioJava [34] is an open source framework for DNA and
protein sequence analysis built on the Java platform. The
“IPeptideProperties” class provides several properties for a
protein sequence including molecular weight, absorbance
and extinction coefficient, etc. We capitalize on this facility
and extract 41 features which supplement the original feature
set.

After extracting the aforementioned three kinds of fea-
tures, all the feature values are concatenated to form the final
feature vector which is 625-dimensional. Since the features
are of different scales, Z-score normalization is applied to
make all features comparable. Assume X ;) represents the
d-th feature of protein sequence i and the total number of
the training instances is m, the feature value after Z-score
normalization is Z(E;) which is computed using Equation (2).
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U; and o, are the normalization parameters which are
computed using the training data and saved for the testing
phase. For a testing instance, the same equation is used to
compute the normalized feature value after plugging in these
parameters.

B. Feature Selection

A large set of features usually increases the computational
cost and affects the accuracy of classification because of the
curse of dimensionality problem. Therefore, finding the most
significant features before applying the classification model
helps improve the overall performance of the framework.
However, the feature selection problem is NP-hard under
many different cases and calls for a heuristic solution.
We choose one of the shrinkage methods, which is Lasso
regression [37], as the feature selection algorithm because
it can select the important features and safely discard the
unimportant ones by setting the corresponding weights to
zero. In addition, the selected features usually reveal some
biological insights. The classic Lasso regression method
aims at solving the following optimization problem:

m
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Here, m indicates the total number of tr_aining instances,
D is the dimension of the feature vector, x? (I1<i<m,1<
d < D) indicates the feature value for feature d of instance
i; while /) is the response of instance i. B=[Bo,B1,..., Bp] is
the regression coefficient vector and A is the regularization
parameter. By choosing different parameters A, the features
corresponding to the non-zero coefficients of B are selected.
The method was extended in [38] to be used in the classifi-
cation task and is used in our framework. The Glmnet [39]
software implementation of the Lasso algorithm is integrated
into our framework. The selection of the regularization
parameter A and more discussions of the selected features
are introduced in Section III-B.

C. Subspace-based Instance Filtering

Most supervised classification models need to learn im-
portant parameters from the training instances in order to
construct the models. Therefore, the quality of the training
data could affect the performance of the overall classification
model directly. If the data set contains a lot of outliers
or noise, the model built on these data could be biased.
Accordingly, an important question is how we can detect
the outliers and eliminate noise from the training data set.

Some previous work eliminates noisy data based on
Mahalanobis distance [25][26]. However, such a method
suffers from the limitation that if the number of features is
greater than the number of data instances and the covariance
matrix is singular, the Mahalanobis distance can not be com-
puted. In order to overcome this difficulty, we propose the

subspace-based algorithm based on the idea of collateral rep-
resentative subspace projection modeling (CRSPM) to filter
the noisy instances [40][41][42][43]. Specifically, suppose
all the positive instances form a matrix P = {p,,}, u =1, 2,
.,2U,andv=1,2, ..., V, where U indicates the total number
of positive training data instances and V is the total number
of selected features. The principal component analysis is
applied on matrix P and the first K principal components
are retained so that 99% of the variance of the positive
instances is kept. Suppose the retained principal components
span the K-dimensional subspace which is represented by
W, by projecting P to W, a new data matrix E = {e,} in
which the row vector e, = [ey1,€12,---Cu, -, eux] (K < V)
is the projection of the instance p., = [pu1,Pu2, ..., puv] in
the original matrix P. For each instance u in E, a distance
value C for instance u is computed using Equation (3).

K 2

cw — Z Cuk (3)
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where oy is the singular value corresponding to the k-th
principal component and indicates the variance on the k-th
dimension. The C values for all the U positive instances
could be computed and sorted in an ascending order. If the
sorted C value list is represented as L, where

L={L(1),L(2),...,L(U)},

and L(1) < L(2) < ... < L(U). The data instances whose C
values are greater than a certain threshold 7 are eliminated
from the training data set. The threshold is determined using
Equation (4).

T =

where G =

L(G) 4)

arginaX(L(g +1)—L(g))

subjectto 1 < g<(U-1)

The same algorithm is also applied to the negative in-
stances. In order to illustrate this idea clearly, a numerical
example is given here. In one round of the experiments, we
use 300 positive instances. For all positive instances, the C
values are computed and the list L is formed. The C values
in the list according to the ranks are plotted in Figure 3.
The G computed in this case is 295. Correspondingly, as is
shown in the figure, the gap between L(245) and L(246) is
the largest.

D. Classification Model and Evaluation Criteria

The support vector machine (SVM) is a supervised pattern
classification model [44]. It is extended from the maximal
margin classifier and utilizes the kernel trick to map the data
instances to a higher dimensional space where they could
be classified easier than the original space. The main idea
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of SVM is to find the optimal hyperplane to maximize the Sensitivity(R) = L
distance between the hyperplane and the support vectors of TP+FN
the two classes. Specifically, given the training data set of the Fl— 2PR
instance-label pairs (x(),y()), i=1,2,...,m, where m is the P+R

total number of data instances, x) € R” and y) € {1, -1}
indicating the instance is positive or negative. The SVM
model requires the solution of the following optimization
problem:

1o g (i
argmin—w/w+0QY g0
whi 2 I;

subject to y(i)(wT(p(x(i)) +b)>1-¢0
&(i) >0

The training vectors x(!) are mapped to a higher dimen-
sional space using the function @. In order to apply the
kernel trick, the kernel function H(x®) x/)) = @(x))T"
¢ (x\)) is defined. The RBF kernel in Equation (5) is applied
in this paper. More details of SVM could be found in [44]
and are skipped here.

H(xD D) = exp(—y wa ) Hz), 5)
The implementations of the SVM classification model used
in this paper is the LIBSVM [45] package which is an off-
the-shelf SVM software implementation. The parameter Q
and 7y are optimized by the grid search approach using 10-
fold cross validation.

In order to evaluate the current framework, the following
evaluation criteria for binary classification are used in this

paper.
TP+TN
TP+FP+TN+FN
TP
TP+FP

Accuracy =

Precision(P) =

TP+xTN —FPxFN
\/(TP+FP)(TN+FN)(TP+FN)(TN +FP)
AUC : area under the ROC curve

mcc

Here, TP, FP, TN, and FN stand for the numbers of true
positive instances, false positive instances, true negative in-
stances, and false negative instances in the prediction result.
The MCC stands for the Matthew’s correlation coefficient.
The range of MCC is from —1 to 1. MCC =1 indicates
the algorithm gives the best possible predictions; while
MCC = —1 indicates the algorithm gives the worst possible
predictions. Among these evaluation criteria, the accuracy
and MCC evaluate the performance of the framework from
the perspectives of both the positive instances and the
negative instances. F1 focuses on the positive instances only.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Several experiments are conducted to evaluate our pro-
posed framework as well as the feature selection (feature
representation) module and the subspace-based instance
pruning algorithm.

A. Data Set

In order to compare with the existing framework, the
data set provided in [31] is utilized to evaluate the pro-
posed framework. The data set contains 441 bioluminescent
proteins (positive instances) and 18202 non-bioluminescent
proteins (negative instances). Following the same procedure
in [31], we randomly select 300 positive instances and 300
negative instances to form the training data set and leave the
rest 141 positive instances and the 17902 negative instances
as the independent testing data set. It could be seen that
the number of negative instances is about 126 times of the



number of positive instances in the testing data set. This
simulates the real world case that most proteins are non-
bioluminescent. It is important to point out that the negative
instances in the training data set and the testing data set are
not exactly the same as those in [31] because the authors
of [31] did not provide the exact 300 training negative
instances they used in their paper.

B. Feature Selection Result

As described in Section II-B, the LASSO algorithm is
applied in this paper to select the significant features. By
increasing the A value in Equation (3), more significant
features are selected. In order to decide the suitable value
for parameter A, an empirical study is carried out to select
the A value to maximize the cross validation accuracy.

As a result, a total number of 87 features are selected.
Among these features, the features of the protein composi-
tion of the Tryptophan (W) and Tyrosine (Y) are selected.
As is well-acknowledged, both of these two amino acids
contain aromatic amino acid residues and contribute to
the fluorescence of the proteins. From this point of view,
the feature selection procedure could also provide some
insights about the features and these insights could further
the understanding of the relative domain.

C. Classification Performance

In order to train the framework, the 10-fold cross valida-
tion is applied to decide several important parameters. Since
the “Accuracy” values could reflect the performance of the
model on both positive and negative instances, they are used
as the optimization criterion in this work.

Table I shows the experimental results for the inde-
pendent testing data set that compare the performance of
three frameworks, namely “BLProt”, “Proposed (No Filter)”,
and “Proposed (Filter)”. “BLProt” indicates the framework
proposed in [31]. “Proposed (No Filter)” indicates the pro-
posed framework without applying the proposed subspace-
based instance filtering strategy introduced in Section II-C.
“Proposed (Filter)” indicates the proposed framework with
the proposed subspace-based instance filtering strategy. It
is apparent that the proposed framework outperforms the
“BLProt” framework in terms of all the evaluation crite-
ria with and without utilizing the subspace-based filtering
strategy. This suggests that our new feature representation
and feature selection module are able to select a better set of
features to represent the protein sequences. By incorporating
the pseudo amino acid composition features and the peptide
property features, the performance of the framework can be
enhanced significantly. It could also be observed that the
proposed subspace-based instance filtering strategy could
further improve the performance of the framework. It is
well understood that the support vector machine (SVM)
classification model relies on the support vectors which
are close to the decision boundary, and hence the noisy

data could significantly affect the performance of the SVM
model. Our proposed filtering approach helps reduce the
noise and improve the performance of the SVM model.
Another observation from the results is that the precision
is especially low, which leads to the low F1 value. One
possible reason for this is the relative high negative to
positive ratio in the independent testing data set. Such an
imbalanced data set may lead to the misclassification of
many negative instances as positive. This suggests that a
proper testing data instances filtering module may further
improve the overall performance of the framework.

IV. CONCLUSION AND FUTURE WORK

In this paper, an automatic pipeline framework for pre-
dicting bioluminescent proteins is proposed. The protein
sequences are first converted to a new feature representation
- a feature vector based on three different types of features.
The most significant features are then selected from the
feature pool and may be used to provide insight on the
application domain. By applying the proposed subspace-
based instance filtering strategy to the training data set,
the noisy data in the training data set are eliminated. The
retained training data are then used to train the LIBSVM
classification model. Different evaluation criteria are adopted
to evaluate the performance of the proposed framework on
a relatively large independent testing data set. The proposed
framework is compared with the state-of-the-art framework
using the same data set. The experimental results reveal that
our proposed framework with the novel feature represen-
tation and the subspace-based instance filtering algorithm
outperforms the existing framework in the comparison under
all evaluation criteria.

Our proposed framework is relatively generic and could
be utilized to annotate other protein properties by adjusting
the relevant parameters. Therefore, we plan to extend our
current framework to cover other protein properties in the
future work. In addition, including the module to filter the
testing instances will be investigated. Finally, more features
will be explored to improve the classification performance.
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