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Abstract

Various motion detection methods have been proposed
in the past decade, but there are seldom attempts to inves-
tigate the advantages and disadvantages of different detec-
tion mechanisms so that they can complement each other to
achieve a better performance. Toward such a demand, this
paper proposes a human action detection and recognition
framework to bridge the semantic gap between low-level
pixel intensity change and the high-level understanding of
the meaning of an action. To achieve a robust estimation
of the region of action with the complexities of an uncon-
trolled background, we propose the combination of the opti-
cal flow field and Harris3D corner detector to obtain a new
spatial-temporal estimation in the video sequences. The ac-
tion detection method, considering the integrated motion
information, works well with the dynamic background and
camera motion, and demonstrates the advantage of the pro-
posed method of integrating multiple spatial-temporal cues.
Then the local features (SIFT and STIP) extracted from the
estimated region of action are used to learn the Universal
Background Model (UBM) for the action recognition task.
The experimental results on KTH and UCF YouTube Action
(UCF11) data sets show that the proposed action detection
and recognition framework can not only better estimate the
region of action but also achieve better recognition accu-
racy comparing with the peer work.

Keywords: Spatio-temporal Motion Information Inte-
gration, Action Detection, Action Recognition, Univer-
sal Background Model (UBM), Gaussian Mixture Models
(GMM), GMM Supervector.

1. Introduction

In the recent years, video content analysis and human
action recognition have been used in a broad range of appli-
cations in real-time surveillance, activity monitoring, video
indexing and retrieval, human-computer interaction, etc.
[6, 20, 22, 30]. A batch of action detection and recogni-
tion models have been proposed and achieved good per-
formance in videos captured under controlled backgrounds
(as shown in Figure 1) [15, 23, 27]. Nevertheless, more
progresses toward model robustness are expected in order
to handle the complexities of unconstrained backgrounds,
such as videos recoded by an amateur using a hand-held
camera containing significant camera motion, background
clutter, and changes in object appearance, scale, and illumi-
nation conditions. These uncontrolled videos are the major
challenges to the multimedia retrieval engines on the Inter-
net, which call for rapid summarization and processing al-
gorithms. The drawbacks of the most existing techniques
include the requirements of (1) static cameras or approxi-
mate compensation of camera motion; (2) foreground ob-
jects that move in a consistent direction or have faster varia-
tions in appearance than the background; and (3) explicit
background models [26]. These requirements are gener-
ally unrealistic and particularly questionable when an ego-
motion happens, e.g., a camera that tracks an action in a
manner such that the latter has a very small optical flow, or
the background is dynamic. In addition, background learn-
ing requires a training set of background-only images [33]
or batch processing (e.g., median filtering [9]) of a large
number of video frames, which must be repeated for each
scene and is difficult for dynamic scenes (where the back-
ground changes continuously).



Figure 1. Examples of UCF Youtube action
(UCF11) data set with approximately 1,160
videos in 11 categories [23]

To overcome the above challenges, we propose a robust
action detection and recognition framework that integrates
multiple motion detectors and takes the complementary ad-
vantages of the motion cues to estimate the region of ac-
tion. Features extracted from the region are minimally dis-
turbed by scene noise and represent the characteristics of
the action. To the best of our knowledge, not much work
has been reported on the region detection of action from
unconstrained videos in an unsupervised way. One related
work is by Liu et al. on recognizing actions from videos
“in the wild” [23]. They estimated the centroid of the re-
gion of action by using the mean of the coordinates of the
interest points. The dimensions of the region are calculated
by the second central moments of the corresponding cen-
troid. This strategy can obtain good results when the in-
terest points are mainly located on the action, but it would
fail when the background is non-static since it contributes
a lot of interest points. Ikizler-Cinbis et al. [15] estimated
the location(s) of the person(s) by using the human detector
proposed by Felzenswalb et al. [12]. To fill the gap in which
the person detector did not fire due to the motion blur and
pose variations, the mean-shift tracking method was used
to locate the person in every frame [7]. The approach, to
some degree, was able to capture the human-related features
in the video. However, it is not particularly designed from
the perspectives of action detection and recognition and en-
hance consequently fails to contribute to the action-oriented

information. Optical flow is utilized by Reddy et al. [27] to
give a rough estimate of the velocity at each pixel given
two consecutive frames. They, then, applied a threshold on
the magnitude of the optical flow to decide if the pixel is
moving or stationary. The stationary pixels are regarded as
background, while the moving pixels are viewed as the re-
gion of action. This method performs well in videos with
static scenes, but the strategy fails in the realistic videos
with the unconstrained background.

In this paper, we investigate the ideas of motion detec-
tors and propose a framework that detects region(s) of ac-
tion by integrating multiple spatial-temporal cues and rec-
ognizes actions by using static and motion features on the
region of action. The main contributions of this paper are
summarized as follows.

1. A weighted integration approach is proposed to fuse
spatial-temporal information from the optical flow
field and the Harris3D detector into a new robust mo-
tion representation in the videos.

2. The idea of integral density is utilized to estimate the
region of action by using the new motion field. The re-
gion of action is defined as the area with a high density
of motion.

3. SIFT and STIP features extracted from the region of
action are employed to train the universal background
model (UBM) for the purpose of action recognition,
instead of using the whole feature set. This method is
verified to be an effective and efficient way of training
recognition model.

To the best of our knowledge, no one has trained UBM
by using only action-related features (less than 20% of the
whole feature set) and is able to receive a better perfor-
mance than using the full feature set.

The rest of the paper is organized as follows. Section
2 describes the details of the region of action estimation
by integrating multiple spatial-temporal motion fields and
quickly locating the high density area of motion. In Section
3, we present the method of action recognition that uses
multiple features from the region of action to train UBM
and classifies the actions. The experiments and results of
the KTH and UCF11 data sets with discussions are provided
in Section 4. Finally, a conclusion is given in Section 5.

2. Action Region Estimation by Integrating
Spatial-Temporal Motion Information

The state-of-the-art action recognition approaches
mainly use the features extracted from the whole frame, no
matter the background or the region of action, to generate
the code book which inevitably involves unrelated scene

2



information that may affect the recognition performance.
In order to decrease the influence of the background on
the action recognition task, a new action region estimation
method is presented in this section. The proposed algo-
rithm comprehensively analyzes and integrates the motion
information on space and time in an unsupervised manner,
and is robust to non-static scene and camera motion. The
motion features extracted from the estimated region of ac-
tion later are employed to learn the Universal Background
Model (UBM) for the action recognition purposes, which is
able to achieve a good performance. The proposed frame-
work is shown in Figure 2.

Figure 2. Proposed Framework

2.1 Biological Motivation

Psychological studies find that a human vision system
perceives external features separately [31] and is sensitive
to the difference between the target region and its neighbor-
hood. Such kind of high contrast is more likely to attract hu-
man’s first sight than their surrounding neighbors [11]. Ex-
tensive psychophysics experiments have shown that these
mechanisms can be driven by a variety of features, in-
cluding intensity, color, orientation, or motion, and local
feature contrast plays a predominant role in the percep-
tion of saliency. Neurophysiological experiments on pri-
mates have also shown that neurons in the middle tempo-
ral (MT) visual area compute local motion contrast with
center-surround mechanisms. In fact, it has been hypoth-
esized that such neurons underlie the perception of motion
pop-out and figure-ground segmentation [2]. The center-
surround saliency mechanisms of biological systems sup-
port the idea of motion region estimation on measurements
of local motion contrast. There is no need for training sam-
ples or pre-build a “global background model” for the test-

ing instances, which is one of the advantages of the pro-
posed method. Instead, a motion region can be efficiently
calculated using merely local motion information and could
immediately adapt to different kinds of unknown scenes.
Also, using local motion contrast could make the model ro-
bust to the camera motion and dynamic background.

2.2 Apparent Motion Descriptor - Optical Flow

Optical flow is the pattern of motion of objects, surfaces,
and edges in a visual scene caused by the relative motion
between an observer (an eye or a camera) and the scene. In
1981, Horn and Schunck [1, 14] deduced a basic equation
of optical flow estimation when the interval of consecutive
frames was short, and the gray change in the image was also
small. If at time t, the coordinates of a pixel on the image
with its gray value is I(x, y, t), and at time (t + 4t), the
pixel has moved to new position, its location on the image
becomes (x + 4x, y + 4y), and the gray value becomes
I(x + 4x, y + 4y, t + 4t). dI(x, y, t)/dt = 0 is got
based on the assumption that intensity is conserved. Then
the equation can be re-written as I(x, y, t) = I(x+4x, y+
4y, t+4t), whose Tayor expansion can derive the gradient
constraint equation as below.

∂I
∂x

dx
dt + ∂I

∂y
dy
dt + ∂I

∂t = 0.

Suppose u and v are two components of the optical flow
along the x coordinate and y coordinate, and they are de-
fined as u = dx/dt, v = dy/dt. Then the basic optical
flow equation is obtained as Ixu + Iyv + It = 0, where Ix

denotes the partial x coordinate derivative of I(x, y, t), Iy

denotes the partial y coordinate derivative of I(x, y, t), and
It denotes the partial time derivative of I(x, y, t).

The advantage of using the optical flow is that it does
not require any priori knowledge on the object appearance
which satisfies the requirement of an unsupervised method
in this paper. The disadvantage is that the computation is
usually too complex to be used in real-time applications if
there is no special hardware support. With the attempt to
reduce the computation complexity of the optical flow tech-
nique, the motion vector idea using the optical flow tech-
nique to work on the block-level instead of pixel-level mo-
tion is adopted.

Motion vector is an integral part of many video com-
pression algorithms which are used for motion compensa-
tion. The idea behind block matching is to divide the current
frame into a matrix of blocks that are then compared with
the corresponding block and its neighbors in the previous
frame to determine a motion vector that estimates the move-
ment of a block from one frame to another. For fast motion
estimation purposes, we employ the optical flow method to
describe the spatial motion of blocks in the frame.
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2.3 Harris3D Corner Detector

If the video sequences are captured by a moving camera
or in a non-static background, no satisfactory results can be
obtained by simply relying on the motion described by opti-
cal flow to estimate the action region. Thus, in our proposed
framework, the space time interest point detector, Harris3D
corner detector [18], is employed to integrate the motion
presented by optical flow. The Harris3D corner detector
is used to detect the spatial-temporal corners with velocity
changes over a sequence of frames.

We consider a 3D window about a space-time point
I(x, y, t) and analyze the average intensity change (gradi-
ent) as the window is shifted by a small amount (σ, τ ) in
spatial as well as temporal dimensions (σ is the spatial scale
and τ is the temporal scale). The space-time gradient is ob-
tained as ∇L = (Lx, Ly, Lt)T . The interest point is iden-
tified by evaluating the distribution of ∇L within a local
neighborhood. The matrix µ of the second moments (a 3-
by-3 matrix composed of the first order spatial and tempo-
ral derivatives being averaged using a Gaussian weighting
function g(·; σ2

i , τ2
i )) that measures the variation of the gra-

dients. A high variation of ∇L implies large eigenvalues
of µ, and the spatial-temporal corners are obtained from the
local maxima of H over I(x, y, t). That is,

H = det(µ)−k · trace3(µ) = λ1λ2λ3−k(λ1 +λ2 +λ3)3,

where λs are the eigenvalues of H and k is a constant with
a value close to 0.15.

2.4. Integrated Spatial-Temporal Motion

The above discussion shows that the optical flow field
and Harris3D corner detector have their individual charac-
teristics in the spatial-temporal motion calculation. The in-
tegration of these two sources of motion information may
provide the complementary motion information to improve
the region of action estimation.

Suppose N key frames are sampled from an action video
sequence, and N − 1 optical flow fields are generated.
Spatial-temporal volumes created around the Harris3D cor-
ners are illustrated in gray boxes in Figure 3. All volumes
are clustered into N − 1 groups based on the time stamp of
the key frames. As shown in Figure 3, if the center of the
volume is between [n − 0.5, n + 1.5], the volume belongs
to group (n, n + 1). The histogram of Harris3D volumes
of group (n, n + 1) is then generated based on the distri-
bution of the volumes along the time line. The new motion
M(x, y) at pixel (x, y) between key frames n and n + 1 is
calculated as given in Equation (1).

M(x, y) = O(x, y) ∗H(x, y) (1)

where O(x, y) is the the motion vector of optical flow and
H(x, y) is the histogram of Harris3D volumes at pixel (x,y).
This method is also viewed as a weighted optical flow ap-
proach which uses the histogram of Harris3D volumes to
weigh the optical flow field. In this way, two sources of mo-
tion information are integrated in terms of the key frames.

Figure 3. Illustration of the histogram of Har-
ris3D volumes

2.5. Region of Action Estimation

An unsupervised action region estimation method is pro-
posed in this paper by analyzing the new motion field gen-
erated from the optical flow and the histogram of Harris3D
volumes. The idea of an integral density, as defined in [21],
is adopted since it allows fast implementation of the box
type convolution filters. The entry of a summed area table
IP(x) at a location x=(x,y) represents the sum of all values
in the input 2D matrix I of a rectangular region formed by
the point x and the origin, i.e.,

IP(x) =
∑i≤x

i=0

∑j≤y
j=0 I(i, j).

With IP(x) calculated, it takes only four additions to calcu-
late the sum of the values over any upright rectangular areas,
independent of their sizes. In the same way, the maximal
motion region is identified as the region of action. We de-
fine the maximal motion region as an area having the high-
est motion density as shown below, where v(x, y) indicates
the integrated motion at pixel (x, y).

arg max
R

∫ ∫

R

v(x, y)dxdy.

3. Action Recognition Framework

Gaussian Mixture Models (GMM) are employed in
our proposed framework, whose probability density func-
tion (pdf) is given by p(x|θ) =

∑K
k=1 ωkN(x|µk,

∑
k),
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where K is the number of Gaussian mixtures, and θ =
{ωk, µk,

∑
k}K

k=1 is a set of parameters including a mix-
ing coefficient ωk and a pdf of Gaussian distribution
N(x|µk,

∑
k) with the mean vector µk and the variance ma-

trix
∑

k. The GMM parameters are estimated by using an
expectation maximization (EM) algorithm. The EM algo-
rithm is known as a method for finding the maximum like-
lihood estimators of a model with latent variables.

SIFT [25] and STIP [18] features are used to describe
the action video sequences in the action recognition. How-
ever, the number of features (SIFT or STIP) from each video
is not enough to estimate the GMM parameters precisely.
Thus, we first learn a global GMM (called universal back-
ground model (UBM)) by using the features from all train-
ing videos, then adapt the UBM parameters in order to fit
each particular data distribution. This adaptation is made
by using the Maximum A Posteriori (MAP) approach [28].
The first step consists of determining the probabilistic align-
ment of the training vectors with the UBM Gaussian com-
ponents. For a Gaussian i in the UBM, we compute:

Pr(i, xt) =
ωipi(xt)∑M

j=1 ωjpj(xt)
;

ni =
T∑

t=1

Pr(i, xt);

Ei(x) =
1
ni

T∑
t=1

Pr(i, xt)xt.

Here, Xt represents the tth feature vector of the video to be
modeled. These statistical values are then used for adapting
the mean vector µ̂ of each Gaussian.

µ̂i = αiEi(x) + (1− αi)µi;

αi =
ni

ni + r
,

where r is a fixed “relevance factor”, usually set between
8 and 20 [5]. The concatenation of all the mean vectors of
the N Gaussian components is called the GMM supervector
which is first proposed as a speaker recognition method [3]
and then has been applied to semantic indexing [16] and
music similarity [5]. Knowing the parameter of the UBM,
a particular video model can be resumed by the mean vec-
tors of its Gaussian mixture components. The testing videos
are classified by using the support vector machines (SVMs)
with the RBF kernel [8]. In this paper, to save UBM train-
ing time, only features extracted from each region of action
are used to model the overall data distribution.

4. Experiments

The detection and recognition experiments were con-
ducted on the KTH and UCF Youtube Action (UCF11) data

sets. The KTH data set has 25 actors performing six ac-
tions four times in four different environments, resulting in
599 video sequences in total. The video sequences were
recorded in a controlled setting with slight camera motion
and a simple background. The six categories of actions are
boxing, hand clapping, hand waving, jogging, walking, and
running [29]. UCF Youtube Action (UCF11) data set is
more challenging than the KTH data set since it includes
1,160 videos and has 11 categories of actions collected from
YouTube with the non-static background, low quality, cam-
era motions, poor illumination conditions, etc. [23].

4.1. Experimental Setup

For the interest point detection, the Difference of Gaus-
sian (DoG) edge detection method proposed by Lowe [25]
and the Harris3D corner detector proposed by Laptev [18]
are used to locate the interest points of SIFT and STIP, re-
spectively. Three key frames equally sampled along the
video for SIFT feature extraction and optical flow compu-
tation. The dimensions of the SIFT and STIP features are
reduced to 32 by applying the Principle Component Anal-
ysis [17] from 128 and 162, respectively. The number of
Gaussian components in GMM (i.e., K) is set to 256 for the
KTH and UCF11 data sets. SVM is used to cope with the
multi-class classification task. We adopt the empirical set-
ting in libSVM [4], and for comparison purposes, the leave
one out cross validation (LOOCV) scheme is employed to
compare with some existing approaches.

4.2. Experimental Results on the KTH Data Set

Though the proposed framework is mainly designed to
deal with videos captured in unconstrained environments, it
is also proved to achieve pretty good performance in videos
recorded in a “clean” background, such as the KTH data
set. First, the accurate localization of an action is verified.
Sample regions of action estimation results are illustrated
in Figure 4. The features extracted from the regions of
action were used to learn UBM and a classification accu-
racy of 93.67% is obtained if combining the SIFT and STIP
similarity scores, whereas the accuracy is 84.65% if using
the SIFT features alone and is 90.65% if using the STIP
features alone. The combination of two kinds of features
achieves 3% improvement in the performance. Table 1 lists
several state-of-the-art performance results on the KTH data
set, and indicates that our proposed framework outperforms
the peer work. Please note that the amount of features used
to train UBM is less than 15% of the total features over all
video sequences, which clearly shows to reduce lots of of-
fline training time.

Figure 5 shows the confusion table containing the de-
tailed confusion values between action categories. Based
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Table 1. Accuracy comparison on the KTH
data set (%)

Algorithm Accuracy (%)
Proposed framework 93.67

Reddy et al. [27] 89.79
Dollar et al. [10] 81.2

Liu et al. [24] 91.3
Wong et al. [32] 83.9
Laptev et al. [19] 91.8

on the moving part of a person, the six action categories can
be grouped into the limb action (boxing, hand clapping, and
hand waving) and leg action (jogging, running, and walk-
ing). Please note that the confusion happens either within
limb action or leg action videos. From the figure, it can be
seen that no limb action is misclassified as leg action, and
vice versa. This indicates our proposed framework is rea-
sonably good.

(a) Boxing (b) Handclapping

(c) Handwaving (d) Jogging

(e) Running (f) Walking

Figure 4. Region of action detection results
on sample frames in the KTH data set.

4.3. Experimental Results on the UCF11 Data Set

The UCF11 data set is more challenging than the KTH
data set, since it contains realistic actions, camera mo-
tions, and complicated backgrounds. Figure 6 illustrates
some sample results of motion region estimation of the pro-
posed framework (on the left of each sub-figure) and felzen-
szwalb’s part-based models (on the right of each sub-figure)
[12]. The codes we used to conduct felzenszwalb’s algo-
rithm was downloaded from [13]. Note that felzenszwalb’s
method works well with human vertical positions in simple

Figure 5. Confusion matrix of 6 action cate-
gories on the KTH data set with an average
performance of 93.67%.

backgrounds, such as in Figures 6(d), 6(f) and 6(k). Since
the method does not consider temporal information, it may
fail in cluttered scenes such as in Figure 6(a) which has a
lot of trees having similar appearances with the person. In
contrast, since our proposed framework is unsupervised, it
could effectively locate the region of action without many
appearance constraints obtained from the training data. Fur-
thermore, our proposed framework is motion-driven so it is
more suitable for action detection which includes the in-
teraction of humans and objects like biking (Figure 6(b)),
horse riding (Figure 6(e)), etc.

Figure 7. Confusion matrix of 11 action cat-
egories on the UCF data set with an average
performance of 76.06%.

In addition, unlike previous approaches that use all fea-
tures in the videos (extracted from the scene and object), we
use only those features extracted from the region of action
to train UBM, which significantly reduces the training time.
In this experiment, the action-related features are about 20%
of the full feature set (scene and object), but our proposed
framework achieves better performance than the previous
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(a) Basketball (b) Biking (c) Diving

(d) Golfswing (e) Horseriding (f) Soccerjuggling

(g) Swing (h) Tennisswing (i) TrampolineJumping

(j) VolleyballSpiking (k) Walkingwithdog

Figure 6. Sample results of the proposed region of action detection method (left) and felzenszwalb’s
part-based models [12] (right) in UCF11 data set.

approaches which use a full set of features. Please note
that our proposed framework achieves the performance of
76.06% (as presented in Figure 7) after fusing the similarity
scores of SIFT and STIP; while the performance obtained
from the SIFT descriptor alone is 55.85% and that from the
STIP descriptor alone is 72.82%. In our proposed frame-
work, the size of the code book used in the experiments is
only 256, which is relatively smaller than those in the state-
of-the-art work, and it also achieves good performances.
This demonstrates that the features are extracted from the
correct regions of actions and can describe the class-related
information. The recognition performance reported by Liu
et al. is 71.2% using hybrid features obtained by pruning
the motion and static features [23]. Another similar work
that split the moving foreground from the static background
and then combined the motion and the scene context fea-
tures obtained 73.2% [27].

5 Conclusions

In this paper, a new action detection and recognition
framework that integrates the spatial-temporal motion ob-

tained from the optical flow field and the Harris3D corner
detector is proposed. It is motivated by taking the advan-
tages of the two sources of motion information identified
by different methods to obtain the complementary motion
information which is kept in the new motion representation.
A fast region of action estimation method is also proposed
by using the integral density algorithm. The SIFT and STIP
features extracted from the regions are used to learn UBM
for the action recognition proposes. The experimental re-
sults verify that the proposed framework achieves good per-
formance on both action detection and recognition tasks.
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