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Abstract—In this paper, a video semantic retrieval frame-
work is proposed based on a novel unsupervised motion region
detection algorithm which works reasonably well with dynamic
background and camera motion. The proposed framework
is inspired by biological mechanisms of human vision which
make motion salience (defined as attention due to motion) is
more “attractive” than some other low-level visual features to
people while watching videos. Under this biological observation,
motion vectors in frame sequences are calculated using the
optical flow algorithm to estimate the movement of a block
from one frame to another. Next, a center-surround coherency
evaluation model is proposed to compute the local motion
saliency in a completely unsupervised manner. The integral
density algorithm is employed to search the globally optimal
solution of the minimum coherency region as the motion region
which is then integrated into the video semantic retrieval
framework to enhance the performance of video semantic
analysis and understanding. Our proposed framework is eval-
uated using video sequences in non-static background, and
the promising experimental results reveal that the semantic
retrieval performance can be improved by integrating the
global texture and local motion information.

Keywords-Video semantic retrieval, motion saliency, motion
detection, global feature, non-static background.

I. INTRODUCTION

In the latest two decades, semantic retrieval on text and
multimedia content has become an important research field
[1][2]. A number of text-based search engines appear in
the Internet for topic and event searching. Although the
text data shares certain correlation information with content
data, searching for a multimedia content is not as easy
because multimedia data, as opposed to text data, needs
more steps of pre-processing to yield indices relevant for
querying [3][4]. On the other hand, multimedia data (e.g., an
image or a video sequence) can be interpreted in many ways
and there is no commonly agreed-upon vocabulary [5][6][7].
Thus, for a large multimedia database, the traditional way
of manually assigning a set of labels to a record, storing
it and matching the stored label with a query obviously is
not feasible and effective. Specially, the rapid advances of
Internet and Web 2.0 make the amount of online multimedia
data increase in an explosive speed, which brings many
challenges to data searching, categorization, retrieval, and
browsing [8][9][10]. Manual annotations obviously cannot

catch up the speed of the increasing multimedia data. Recent
research has focused on the use of semantic features of
images and videos to automatically index or retrieve the
multimedia data [11][12][13][14].

Object-level information extraction is a key step in multi-
media semantic analysis frameworks and has attracted broad
attention these years. The common way is to segment a
visual frame into a set of semantic regions, each of which
corresponds to an object that is meaningful to the human vi-
sion system, such as a car, a person, and a tree. After years of
development, a batch of object detection models have been
proposed and achieved good performance in videos cap-
tured in controlled backgrounds. However, the uncontrolled
videos are the major challenges to the multimedia retrieval
engines on the Internet which call for rapid summarization
and processing algorithms, including videos recoded by an
amateur using a hand-held camera containing significant
camera motion, background clutter, and changes in object
appearance, scale, and illumination conditions. The most
existing techniques of object detection have the requirements
of either static cameras or approximate compensation of
camera motion; otherwise, they need the foreground objects
to move in a consistent direction or have faster variations
in appearance than the background. Of course, if explicit
background models are available, many methods can get
satisfied results [15]. However, the background learning
requires a training set of background-only images [16] or
batch processing (e.g., median filtering [17]) of a large
number of video frames, which must be repeated for each
scene and is difficult for dynamic scenes (where the back-
ground changes continuously). Toward model robustness, the
above requirements are mostly unrealistic and particularly
questionable when an ego-motion happens, e.g. a camera
that tracks a moving object in a manner such that the latter
has very small optical flow, or the background is dynamic.

On the other hand, neurophysiological experiments on
primates have shown that neurons in the middle temporal
visual area compute local motion contrast with center-
surround mechanisms. It has, in fact, been hypothesized
that such neurons underlie the perception of motion pop-out
and figure-ground segmentation [18]. This evidence suggests
that spatio-temporal saliency or foreground motion detection



(a) Airplane-flying (b) Animal

(c) Bicycling (d) Dancing
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Figure 1. Reference key frame examples extracted from the TRECVID
2010 video database of eight concepts with 9130 video shots.

techniques which 1) rely on grouping of features by mo-
tion similarity to identify foreground objects or 2) require
compensation of camera motion, will have difficulties to
match the performance of biological systems. To mimic the
human vision system, a center-surround coherency model is
proposed in the paper to address the detection limitations of
the salient motions under non-static background scenarios.
Saliency is defined that there is a region in a scene that
is more “attractive” than their neighbors and hence draws
lots of attention. Following the psychological finding, many
approaches have focused on the detection of feature contrasts
to trigger human vision nerves [19]. This research field is
usually called visual attention detection or salient object
detection. Liu, et al. [20] employed a conditional random
field method which is learned to effectively combine multi-
ple features (including multi-scale contrast, center-surround
histogram, and color spatial distribution) for salient object
detection. When the saliency concept is moved from static
image domain to video sequences, the motion saliency,
defined as attention due to motion [21], will dominate
the frames and human perceptual reactions will mainly
focus on motion contrast regardless of visual texture in the
scene. Several researchers have extended the study from the
spatial attention to the temporal domain where prominent
motion plays an important role. Mahadevan and Vasconcelos
proposed an algorithm for spatio-temporal saliency based on
a center-surround framework [15]. The algorithm combined
spatial and temporal components of saliency in a principled

manner, and is completely unsupervised. The main short-
coming of the work was its computational performance, so
it is not applicable in real time. A backtrack-chain-updation
split algorithm was proposed in [22] that can distinguish
two separate objects that were overlapped previously. It
found the split objects in the current frame and used the
information to update the previous frames in a backtrack-
chain manner. Thus, the algorithm could provide more
accurate temporal and spatial information of the semantic
objects for video indexing. Liu, et al. [23] extended Chen’s
work to process more generalized overlapped situations. In
[24], a spatio-temporal video attention detection technique
was proposed to detect the attended regions that correspond
to both interesting objects and actions in video sequences.
The presented temporal attention model in the paper utilized
the interest point correspondences (instead of the traditional
dense optical fields) and the geometric transformations be-
tween images. Motion contrast was estimated by applying
RANSAC (RANdom SAmple Consensus) on point corre-
spondences in the scene. Obviously, the performance of the
temporal attention model is greatly influenced by the results
of point correspondences.

The main contributions of this paper include: (1) Define
a center-surround coherency model to describe motion con-
trast computed by motion vectors obtained from the optical
flow algorithm. (2) Employ the integral density algorithm
to calculate the global minimum coherency as the motion
region in the frame. (3) Present a multimedia retrieval
framework to integrate global texture and local motion in
order to enhance the existing retrieval framework that uses
only global features.

The remainder of this paper is organized as follows. The
motion saliency region detection framework is presented in
Section II. Section III describes the new semantic retrieval
model that fuses the global texture and local motion features
to enhance the retrieval performance. The new content-based
multimedia retrieval framework is also introduced in this
section. Section IV presents the experimental results and
analyzes the performance on KTH and TRECVID 2010 data
sets from the detection and retrieval perspectives, respec-
tively. Section V concludes the proposed motion saliency
detection and semantic retrieval model.

II. MOTION SALIENCY REGION DETECTION

The studies on the human vision system reveal that it
perceives external features separately and is sensitive to the
diversity of the target region and its neighborhood [25][26].
The center-surround mechanisms of biological systems sup-
port the idea of motion saliency detection on the mea-
surements of local motion contrast. In order to build an
unsupervised detection framework on motion saliency while
avoiding the “global background model” or any type of
training processing, a center-surround coherency model is
proposed in our proposed framework (as shown in Fig. 2)



to measure the motion contrast of a local region and its
neighborhoods. After that, the integral density algorithm is
utilized to achieve global minimum coherency as the motion
region.

Figure 2. Motion region detection model

It is not necessary to train samples or pre-build a “global
background model” for the testing instances in the proposed
model. Instead, local motion information can be utilized to
compute the motion saliency, so that the model could im-
mediately adapt to different kinds of unknown backgrounds.
Moreover, the model is robust to the camera motion and
dynamic background because of the exploration of the global
minimum coherency.

A. Motion Vector by Optical Flow

The concept of optical flows was introduced by James J.
Gibson in the 1940s to describe the visual stimulus provided
to animals moving through the world. In 1981, Horn and
Schunck [27][28] conducted a performance analysis of a
number of optical flow techniques. Recently the term optical
flow has been co-opted to incorporate related techniques
from image processing and control of navigation, such as
motion detection, object segmentation, etc. The optical flow
methods try to calculate the motion between two image
frames which are taken at times t and t + ∆t. If the gray
value of a pixel on the image with its coordinates at time
t is I(x, y, t) and the pixel moves to new position at time
(t+∆t), its location on the image becomes (x+∆x, y+∆y),
and the gray value becomes I(x + ∆x, y + ∆y, t + ∆t).
Assuming that the intensity is conserved, we can have
Eq. (1) which can be re-written as Eq. (2). The gradient
constraint equation is easily derived from a Tayor expansion
of Eq. (2) as shown in Eq. (3).

dI(x, y, t)/dt = 0; (1)
I(x, y, t) = I(x+∆x, y +∆y, t+∆t); (2)
∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0. (3)

Let the two components of the optical flow along the
x and y coordinates be u = dx/dt and v = dy/dt, and

let Ix, Iy , and It denote the partial x coordinate, partial y
coordinate, and partial time derivatives of I(x, y, t). Eq. (4)
presents the basic optical flow equation.

Ixu+ Iyv + It = 0. (4)

The optical flow does not require any a priori knowledge
on the object appearance, which is an important merit.
However, its complex computation time makes it unsuitable
for real-time applications (if without special hardware). To
address such an issue, in this paper, motion vectors are used
to decrease its processing time, i.e., to use the optical flow
technique on the block-level motion instead of the pixel-level
one. An integral part of many video compression algorithms
is the motion vectors since they are used for motion com-
pensation. The idea of the so-called block matching is to
divide the current frame into a matrix of blocks that are then
compared with the corresponding block and its neighbors in
the previous frame to determine the motion vector. In other
words, the motion vector is calculated using the optical flow
method, but the motion information of the frame is presented
in the block-level.

(a) (b)

Figure 3. Illustration of a center-surround sample window. (a) the original
frame; (b) an illustrated center-surround region. The red area denotes the
center region, and the yellow area denotes the surround region.

B. Center-Surround Coherency Model

To deal with the issues raised by the camera motion
or the dynamic background, a center-surround coherency
model is presented, which enables the automatic adaption
of the background variations. There is no need to build or
train a global model of the background. Because coherency
compares the center and surrounded regions, it depends only
on the relative disparity between the motion values, and
therefore the new model is invariant to the camera motion.

Suppose an image is divided into m× n blocks, 1 ≤ i ≤
m, 1 ≤ j ≤ n, so ui,j and vi,j denote two components of
the motion vectors at block (i, j). Given a center-surround
region R which includes a center region Rc and a surrounded
region Rs as shown in the red and yellow areas in Fig. 3(b).
If the block (i, j) ⊂ R, then block (i, j) belongs to either Rc

or Rs, where 1 < i1 ≤ i ≤ i4 < m, 1 < j1 ≤ j ≤ j4 < n.
Here, i1, j1, i4, and j4 are the block boundary coordinates of
R; while i2, j2, i3, and j3 are the block boundary coordinates



Figure 4. Training phase in the proposed semantic retrieval framework

Figure 5. Testing phase in the proposed semantic retrieval framework

of Rc. The motion vectors Uc and Vc of the center region
Rc are computed by summing up the motion vectors of the
blocks located in the center region as shown in Eq. (5),
where ∀ block (i, j) ⊂ Rc.{

Uc =
∑

ui,j ;

Vc =
∑

vi,j .
i2 ≤ i ≤ i3; j2 ≤ j ≤ j3. (5)

The motion vectors U and V of the region R are computed
in the same manner by Eq. (6).{

U =
∑

ui,j ;

V =
∑

vi,j .
i1 ≤ i ≤ i4; j1 ≤ j ≤ j4. (6)

The motion vectors Us and Vs of the surrounded region Rs

are calculated by Eq. (7).{
Us = U − Uc;

Vs = V − Vc;
(7)

The coherency C of the center region Rc and the surrounded
region Rs can be obtained by computing the cosine similar-
ity over the center and surrounded areas (as shown in Eq.
(8)).

C = cos θ =
Mc ·Ms

∥Mc∥∥Ms∥
, (8)

where Mc = [Uc Vc] and Ms = [Us Vs] denote the motion
energy values in the center region Rc and the surrounded
region Rs, respectively. The smaller the value C is, the lower
the probability that the center region and the surrounded
region have similar motion activities.

The motion vector gives a quantitive measure of the block
movement in the image. The greater cosine similarity of the
two motion vectors, the more likely the two motion vectors
come from the same object. Considering the temporal con-
sistence of the object motion in continuous frame sequences,

the sum of the coherency Ct in △t time window is calculated
as the estimation criterion of the motion activity in region
R in Eq. (9).

Ct =
∑t+△t

t
C. (9)

C. Global Minimum Coherency

After the discussion of the temporal coherency Ct, how
to quickly find the global minimum coherency region in the
video frame turns into an urgent problem in the unsupervised
motion detection topic. Such a problem is a global search
issue, which is usually very time-consuming. To solve this
issue, a quick search method is presented to find the possible
motion regions that have a low center-surround coherency.
The integral density concept in [29], which was developed
based on the integral images in [30], is adopted for it
allowing a fast implementation of the box type convolution
filters. Each entry in the summed area table I∑(x) at a
location x=(x,y) represents the sum of all the values in the
input 2D matrix I of a rectangular region formed by the
point x and the origin (please see Eq. (10)). After I∑(x) is
calculated, the calculation of the sum of the values over any
upright rectangular areas, independent of their sizes, will
take only four additions.

I∑(x) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j). (10)

Inspired by the summed area table algorithm, the mo-
tion vectors of each block in an image are written as
a matrix. The summed area table of this motion matrix
is then generated for the fast computation of the center-
surround coherency of every location. After traversing the
center-surrounded region in the frame, the global minimum
coherency can be quickly obtained.



III. SEMANTIC RETRIEVAL MODEL

Based on the proposed motion saliency region detection
algorithm, a semantic retrieval model is presented. It consists
of a new multimedia semantic retrieval framework that
integrates the global texture and local motion features to
enhance the retrieval performance. The motivation of this
framework is to utilize the information obtained from the
motion saliency region detection part of the model so that
the local or object-level features can be integrated with the
commonly used global features for the retrieval. As shown
in Fig. 4, the training phase of the retrieval framework
includes two main modules: feature extraction and subspace
training, which work on the motion regions and original
frames, respectively. The representative subspace projection
modeling (RSPM ) algorithm [31] is adopted to train the
subspace in this proposed multimedia semantic retrieval
framework. That is, a subspace called the local subspace
will be trained for the local features extracted from the
motion regions, and a subspace called global subspace will
be trained for the global features extracted from the original
video frames.

In the testing phase given in Fig. 5, the feature extraction
process is the same as that in the training phase. The visual
features are projected onto the subspace obtained in the
training phase. That is, the local features extracted from
the motion regions in the testing data set will be projected
onto the local subspace obtained in the training phase (from
the motion regions in the training data set), and the global
features extracted from the video frames in the testing data
set will be projected onto the global subspace obtained in
the training phase (from the video frames in the training
data set). Each testing feature vector will be converted into
a similarity score after the subspace projection. A fusion
process is necessary to combine the similarity scores from
the local and global subspaces to give a final similarity
score to represent each video shot. A good fusion strategy
can further improve the final performance of the semantic
retrieval framework. In this paper, the logistic regression
algorithm is employed to combine the global and local
similarity scores. In future, more fusion methods will be
explored in our proposed model.

IV. EXPERIMENTAL RESULTS AND ANALYSES

We use two data sets, KTH [32] and TRECVID 2010 (in
semantic indexing task) [33], to evaluate the performance
of the proposed framework. In the KTH data set, there
are 25 actors performing six actions four times in four
different environments with a total number of 599 video
sequences. There are six action categories, namely boxing,
hand clapping, hand waving, jogging, walking, and running.
One characteristic of these video sequences is that they were
recorded in a controlled setting with slight camera motion
and a simple background.

Table I
TRECVID 2010 DATA SET USED IN THE EXPERIMENTS

Concept Concept Number
ID name of shots
4 Airplane-flying 196
6 Animal 1816
13 Bicycling 175
38 Dancing 666
59 Hand 1053
100 Running 890
111 Sports 1299
127 Walking 3087

Total 9182

On the other hand, the data set in the semantic indexing
task of TRECVID 2010 contains 130 queries, while the
majority belongs to static concepts. Eight queries describing
moving objects were chosen to build a subset for testing our
framework, namely airplane flying, animal, bicycling, danc-
ing, hand, running, sports, walking. These all involve salient
motion. More detailed information is shown in Table I.

A. Experiments on the KTH data set

This KTH data set is used to demonstrate that the pro-
posed framework is able to achieve pretty good performance
in videos recorded in a “clean” background, even though the
proposed framework is designed to deal with videos captured
in uncontrolled environments. In the frame extraction step,
we did not use a keyframe extraction algorithm to select
the representative keyframes such as in [34]. Instead, three
frames per second in average are used to compute the motion
saliency in the KTH data set.

First, the accurate localization of an action is verified.
Samples of motion saliency regions are illustrated in yellow
boxes in Fig. 6. We notice that the motion saliency of the
human body is accurately identified from the videos, while
the static part of the body are excluded from the boxes. This
property of the motion saliency detection model will later be
transferred to the advantage of moving object-level feature
extraction, and proved helpful for semantic retrieval.

In the experiments, we test the precision of the concept
retrieval using those features extracted in frame-wide and
region-wide, respectively. To avoid the feature bias, three
kinds of texture features (Gabor, LBP, and HOG) are em-
ployed to represent each frame and motion region. For Gabor
features, a set of Gabor filters with different frequencies
and orientations is convolved with the frame or region to
generate 108 features to describe the frame or region. LBP
(Local Binary Pattern) is a simple yet very efficient texture
operator which labels the pixels of a frame or region by
thresholding the neighborhood of each pixel and considers
the result as a binary number. After the summarization of the
binary numbers, 59 LBP features are returned to represent
the frame or region. Histogram of Oriented Gradients (HOG)
are feature descriptors and used in computer vision and
image processing. HOG features count the occurrences of



(a) Boxing (b) Hand clapping

(c) Hand waving (d) Jogging

(e) Running (f) Walking

Figure 6. Samples of motion saliency detection on KTH data set

the gradient orientation in the localized portions of an image.
It is computed on a dense grid of uniformly spaced cells
and uses the overlapping local contrast normalization for
improved accuracy. The dimension of the HOG features used
in the experiment is 135.

The Mean Average Precision (MAP) value is used to
evaluate the performance of different approaches in the
paper. MAP is the mean of the Average Precision (AP) of
all queries. For approaches that return a ranked sequence of
video shots, the AP value is a criterion that considers the
order in which the returned shots are presented. In the other
word, AP is the precision value averaged across all recall
values between 0 and 1. Let k be the rank in the sequence
of retrieved shots, n be the number of retrieved shots, P (k)
be the precision at cut-off k in the list, and rel(k) is an
indicator function with 1 if the item at rank k is a relevant
shot, and 0 otherwise [35]. AP is defined as

AP =

∑n
k=1(P (k)× rel(k))

number of relevant shots
(11)

In the KTH data set, we select the frames of ‘person’
01 - 15 as the training set and the frames of ‘person’ 16
- 25 as the testing set. In each frame, Gabor, HOG, and
LBP features are extracted in frame-wide and region-wide,
respectively. The purpose of extracting frame-wide features
is to estimate the performance of only using global features
and ignoring the object-level features. Then, the features of
the object-level are estimated as region-wide features. We
expect the features from a small area, but the motion saliency
should be more discriminative than those from frame-wide.

Meanwhile, considering the possibility of the complemen-
tary information among different methods, we also test the
performance of the fused similarity scores of frame-wide and
region-wide. The scores are fused by Logistic Regression
(LR) method. Tables III, IV, and II present the retrieval

Table II
MAP COMPARISON WHEN DIFFERENT NUMBERS OF VIDEOS ARE

RETRIEVED (%) - LBP FEATURES

LBP 5 10 20 50 100
Frame-wide 3.33 5.42 9.42 15.09 18.14
Region-wide 32.36 39.48 40.82 43.29 44.24

Fused 49.17 49.51 47.29 42.24 41.08
Impr. % to
frame-wide 1376.58 813.47 402.02 179.92 126.46
Impr. % to
region-wide 51.95 25.41 15.85 −2.43 −7.14

Table III
MAP COMPARISON WHEN DIFFERENT NUMBERS OF VIDEOS ARE

RETRIEVED (%) - GABOR FEATURES

Gabor 5 10 20 50 100
Frame-wide 52.99 53.88 48.10 43.02 39.02
Region-wide 42.92 36.60 33.88 33.13 33.56

Fused 67.78 65.07 54.34 52.01 47.25
Impr. % to frame-wide 27.91 20.77 12.97 20.90 21.09
Impr. % to region-wide 57.92 77.79 60.39 56.99 40.79

results in terms of MAP. The columns show the number
of videos requested in each method. Note that the region-
wide method outperforms the frame-wide one using the
LBP features, while using Gabor features, the frame-wide
method exceeds the region-wide one. For HOG features, if
retrieving the top 5, 10, or 20 related videos, the region-
wide method performs better than frame-wide one; while
if retrieving more than 50 related videos, the frame-wide
approach obtains a higher MAP. This result indicates that a
single method does not achieve good precision on all kinds
of features. Thus, a fusion technique is utilized to integrates
the advantages of frame-wide and region-wide methods.

The experimental results of the fused method (labeled
as “Fused”) are shown in Tables IV, III, and II. The last
two rows of Tables IV, III, and II list the improvement of
the fused method compared to the frame-wide and region-
wide methods, respectively. It can be observed that the fused
method prominently improves the retrieval performance.

The average improvements of the fused method by using
the Gabor and HOG features are 39.75% and 14.52%,
respectively. For the LBP features, the poor performances of
the frame-wide method affect the fusion results, resulting in
the decrease in MAP comparing to the region-wide method
in the top 50 and 100 retrieved videos. However, in the top
5, 10, and 20, the fused method achieves an increase in MAP
though the performances of the frame-wide and region-wide
methods are not commensurable. The overall performance
of the fused method verifies that the global (frame-wide)
and local (region-wide) information has the complementary
discriminative potential for information retrieval.

B. Experiments on the TRECVID 2010 data set

TRECVID 2010 video collection provides one reference
key frame (RKF) per shot to represent the content of the



Table IV
MAP COMPARISON WHEN DIFFERENT NUMBERS OF VIDEOS ARE

RETRIEVED (%) - HOG FEATURES

HOG 5 10 20 50 100
Frame-wide 57.57 62.58 67.07 68.06 65.25
Region-wide 70.09 67.35 67.33 63.91 62.10

Fused 78.68 78.14 74.33 71.54 69.09
Impr. % to frame-wide 36.67 24.86 10.82 5.11 5.89
Impr. % to region-wide 12.26 16.02 10.40 11.94 11.26

video shot. The proposed framework first computes the
optical flow field on the RKF and the estimate the motion
region using the center-surround coherency model. For the
fast computation purpose, the searching pace in the integral
density method is set to 0.05 times of the shorter dimension
size of the frame and the minimum side-length of the motion
region is set to 0.4 times of the shorter dimension size of
the frame based on the assumption that a small region only
includes a part of a moving target.

(a) Airplane-flying (b) Animal

(c) Bicycling (d) Dancing

(e) Hand (f) Sports

(g) Running (h) Walking

Figure 7. Some results of motion saliency region detection

Fig. 7 shows several detection results of motion saliency.
The RKFs in the first and third columns come from
TRECVID 2010 training data set; while the ones in the
second and fourth columns are from TRECVID 2010
testing data set. These RKFs are extracted from videos
containing non-static background, and most of them have
camera motion and background clutter. Please note that
as an unsupervised motion region detection framework,
the proposed motion saliency region detection algorithm
successfully identifies the main motion region in various
backgrounds. This provides a good foundation for the further

semantic retrieval task which views the motion regions as
a kind of local information that describes the object-level
texture of the shot. This may be complementary to the global
information for multimedia semantic retrieval task.

V. CONCLUSIONS

Inspired by the biological mechanisms of human visions
that motion saliency attracts more attention than other low-
level visual features in videos, a new semantic retrieval
framework for videos in non-static background is proposed,
based on a novel motion saliency region detection algorithm.
This framework defines a center-surround coherency model
to describe the motion contrast computed by the motion
vectors obtained via the optical flow algorithm, and it utilizes
the integral density algorithm to calculate the global optical
minimum coherency as the motion region in the frame.
Further, our semantic retrieval framework integrates the
global texture and local motion information obtained from
the proposed motion region detection method in order to
enhance the existing retrieval framework that uses only the
global features.
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