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Abstract

Long-term (multi-step-ahead) time series prediction is a
much more challenging task comparing to the short-term
(one-step-ahead) time series prediction. This is due to the
increasing uncertainty and the lack of knowledge about
the future trend. In this paper, we propose a multi-model
integration strategy to 1) generate predicted values using
multiple predictive models; and then 2) integrate the pre-
dicted values to generate a final predicted value as the out-
put. In the first step, a k-nearest-neighbor (k-NN) based
least squares support vector machine (LS-SVM) approach
is used for long-term time series prediction. An autoregres-
sive model is then employed in the second step to combine
the predicted values from the multiple k-NN based LS-SVM
models. The proposed multi-model integration strategy is
evaluated using six datasets, and the experimental results
demonstrate that the proposed strategy consistently outper-
Sforms some existing predictors.

Keywords: long-term time series prediction, multi-model
integration, k-nearest-neighbor, least squares support vector
machine (LS-SVM), autoregressive model

1. Introduction

Time series prediction has been widely studied because
of its general applications in transportation prediction [4],
power prediction [12][16], health care study [6], etc. The
essence of time series prediction is to predict future values
of a time series based on the patterns or knowledge learnt
from the past sequential values of the time series. Time se-
ries prediction tasks can be broadly divided into two groups:
short-term and long-term time series prediction. Short-term
time series prediction is to predict the next value one step
ahead, while long-term time series prediction is to predict
future values multi-step ahead. Comparing to short-term
time series prediction, long-term time series prediction is
much more difficult. Especially, when the prediction hori-
zon increases, the uncertainty of the future trend also in-

creases, and it becomes harder to model and capture the
inherent relationships of a time series.

For short-term time series prediction, there have been
plenty of classical time series prediction approaches, such
as exponential smoothing [11], linear regression [13], au-
toregressive model (AR) [21], autoregressive integrated
moving average (ARIMA) [24], support vector machines
(SVM) [20], artificial neural networks (ANN) [10][24],
Kalman filter [3], and fuzzy logic [10]. In order to utilize
these short-term time series prediction models for long-term
time series prediction, there are two approaches: recursive
approach and direct approach [5][18]. The recursive ap-
proach trains one prediction model by optimizing the pre-
diction performance at the next time step, and then iterates
the same model using the previously predicted values as
a part of the input to generate the prediction for a higher
horizon. This approach suffers from the error propagation
problem. On the other hand, the direct approach trains one
prediction model for each prediction horizon by optimizing
the prediction performance at each prediction horizon. This
approach needs to train multiple models, so it takes a longer
time in the training stage; while it avoids the error accumu-
lation problem. The direct approach usually outperforms
the recursive approach on the prediction accuracy aspect.
A multi-input multi-output local learning (LL-MIMO) ap-
proach [1][23], which is used as one of the comparison ap-
proaches in the experiment, predicts the future values as a
whole simultaneously. However, it could still be decom-
posed into multiple independent models, and thus it can be
considered as a direct approach.

Due to the difficulties that arise in long-term time series
prediction, not every model that works for short-term time
series prediction would work well in long-term prediction.
For example, the autoregressive model is a linear prediction
method that attempts to predict the next value based on the
previous observations [21], which is typically applied to au-
tocorrelated time series data. Because of its linear nature, it
is not able to achieve a good prediction precision if the time
series contain non-linear components. In the case of long-
term time series prediction, the mapping function is usu-



ally non-linear. Therefore, the autoregressive model is not
preferable. In addition, the Kalman filter [3] is an optimal
recursive filter for linear functions subjected to Gaussian
noise. In order to build a suitable Kalman filter, the mecha-
nism which generates the time series should be known, or at
least enough information of the mechanism should be avail-
able to model the dynamics of the target. This limitation
narrows the application of the Kalman filter method. Mean-
while, the recursive approach has to be applied to conduct
long-term time series prediction in the case of the Kalman
filter. Error propagation makes the Kalman filter unreliable,
especially when the prediction horizon is high. The least
squares support vector machine (LS-SVM), a fundamen-
tal approach for classification and function estimation, has
been successfully applied to time series prediction [7][22],
since the kernel trick extends the LS-SVM theory to a non-
linear technique without an explicit construction of the non-
linear mapping function. The most frequently used kernels
in LS-SVM are linear kernel, polynomial kernel, radial ba-
sis function (RBF) kernel, and multilayer perceptron (MLP)
kernel.

In this paper, a multi-model integration framework uti-
lizing LS-SVM for long-term time series prediction is pro-
posed. In our proposed framework, a k-nearest-neighbor
(k-NN) based LS-SVM approach is first employed to con-
duct long-term time series prediction, where the k-NN
method is utilized to obtain a smaller training dataset to
train an LS-SVM regressor for each given testing instance.
The distance function used in the k-NN method integrates
the Euclidean distance and the dissimilarity of the trend of
a time series. The direct approach for long-term time series
prediction is adopted to avoid the error propagation prob-
lem. Next, an autoregressive model is employed to com-
bine the predicted values from multiple k-NN based LS-
SVM models, which makes the prediction more robust and
reliable. Several experiments are conducted to evaluate the
proposed multi-model integration strategy, and the experi-
mental results demonstrate that the proposed strategy per-
forms better than those predictors used in the performance
comparisons.

The rest of the paper is organized as follows. Section 2
illustrates the proposed multi-model integration framework
for long-term time series prediction. The experiments and
discussions of the experimental results are presented in Sec-
tion 3. The paper is concluded in Section 4.

2. Proposed Framework

Given a time series d for training with T'length data
points, represented as (21 ,. . ., TTiength—1> LTlength)> lOng-
term time series prediction is to predict the future n values
based on the most recent p observations, where n. > 1 and
p > 1. According to the direct prediction strategy, one pre-

diction model f; is obtained for each prediction horizon i,
respectively as shown in Equation (1).
Tipi = fi(Toopr1, oo Too1,24), 1<i<n (1)
As mentioned earlier, in order to avoid error propaga-
tion and to achieve higher prediction precision values, the
direct prediction strategy for long-term time series predic-
tion is adopted in the proposed framework. The prediction
problem becomes how to construct the mapping function
fi- Figure 1 shows the proposed multi-model integration
framework for long-term time series prediction. As can be
seen from this figure, it constructs the prediction function
using a k-NN based LS-SVM method, and then integrates
the results using an autoregressive model to generate the
output. The details of each component are described in the
following subsections.

Training Time
Series d

k-NN Selection

Reduced Training
Dataset D’

LS-SVM Regressor

k-NN Based LS-SVM

Autoregressive Model

Predicted Values

Figure 1. System architecture of the proposed
multi-model integration framework

2.1. k-NN Based LS-SVM Component

As shown in Figure 1, the k-NN based LS-SVM com-
ponent utilizes the k-NN method to dynamically select k
instances from the training time series d to form a reduced
training dataset D’ for each testing instance. D’ is then em-
ployed to train the LS-SVM regressors. This is based on the



observation that analyzing the instances, which have simi-
lar inputs, could render a better prediction model in terms
of better capturing the relationship between the inputs and
the corresponding outputs. Therefore, instead of the whole
training dataset, the training instances which are closer to
the testing instance are used for training. The training time
series d is formed by the most recent T'length data points,
which enables the prediction model to capture the latest pat-
tern. Even though the instance selection process takes some
time, it reduces the size of the training data for LS-SVM.
Parameter £ is usually much smaller than the number of
instances in the training dataset, and thus instance selec-
tion significantly decreases the complexity of training the
LS-SVM regressor. Therefore, the k-NN based LS-SVM
method is able to obtain more reliable prediction results in
a more efficient manner.

For the k-NN method, the selection of the distance met-
ric is crucial, and it directly influences which instances are
selected as neighbors. We define a distance metric specif-
ically for evaluating the similarity of time series segments,
which incorporates both the Euclidean distance and the sim-
ilarity of the trend of a time series. The trend of a time series
is described by a vector, which is the first derivative of the
time series. The detailed definition of this distance metric
and an example of the instance selection can be found in
[8].

The length of the input vector in each training/testing
instance is p. The most recent p; values are used as the
input of the k-NN method, where p; < p. Similarly,
the most recent p, values are used as the input of the fol-
lowing LS-SVM regressor component, where ps < p and
p = MAX(p1,p2). For an n-step ahead prediction prob-
lem, the k-NN based LS-SVM component is set to generate
a prediction over a horizon n’, which is larger than the re-
quired prediction horizon n, i.e., n’ > n. Accordingly, n’/
regressors are trained in order to predict n’-step ahead. In
this case, the value of the time series at time ¢ + n would
have been predicted n’ — n + 1 times at time ¢. It is consid-
ered that these multiple predicted values may provide addi-
tional information to generate a more robust final predicted
value. Hence, an autoregressive model is then employed to
integrate these multiple predicted values to generate the n-
step ahead prediction result for that testing instance. The
details of the autoregressive model are illustrated in the fol-
lowing subsection.

2.2. Autoregressive Model for Integration

There are some existing studies on combining prediction
results from individual models. Due to the fact that there
is no single prediction model that is able to outperform all
other methods on any time series, a combination of multiple
models becomes the solution to make the prediction model

more general, which is able to predict well for a group of
time series. There are different opinions on which types
of the models should be combined, different methods with
distinct nature or very similar models. Some studies claim
that these are not many values added in combining the mod-
els which are not significantly different, because the mod-
els access the same information set and capture similar pat-
terns [2]. On the contrary, some other researchers claim that
it is also important to combine forecasts from very similar
models [25]. We agree that even when very similar mod-
els are combined, the model uncertainty could be gener-
ally reduced. Some of our primary study has validated this
claim [8].

In the proposed framework, we obtain the predicted val-
ues over a horizon n’ from the previous k-NN based LS-
SVM component. Each predicted value is corresponding
to a unique LS-SVM regressor. n’ LS-SVM regressors are
trained using the same input vectors but generating different
outputs, as described in Equation (1). Let the current time
be T'. The testing input vector is < Tr_py1 , ..., TT—1,
xp >, and the length of the vector is p. k-NN based LS-
SVM component generates n’ predicted values, which can
be denoted as < Tp41 , .-vs TT4ns - - TT4n’ >, Where
the prediction value at time 7" 4 n is the expected output.
The prediction for the value at time 7"+ n is also conducted
in the previous n’ — n testing instances. Instead of simply
returning T4, as the output for the prediction at horizon
n, we integrate the previous h predictions of the time series
value at time 7'+n, where 0 < h < n/—n, together with the
current prediction T7,, by using an autoregressive model.
The autoregressive model takes h + 1 predicted values as
the input and generates the final output. In order to better
illustrate how the approach works, an example is given in
Table 1.

Table 1. An example of autoregressive model
for integration

1 T T T3 T4 T5 Tg
2 Ty w3 Ty Ty Ty Ty
3 T3 Ty Ty Tg Ty Ty
4 ry x5 Ty Ty Ty Ty

In this example, the first column is the instance index.
The values of the parameters are p = 2, n = 2, n' = 4,
and T' = 5, which means that the prediction takes the past 2
values (p = 2) as the input vector, predicts the next 4 values
(n’ = 4), while the goal is to predict the next 2 values (n =
2), and the current time is 5 (I = 5). The current testing
instance is instance 7' — p + 1 = 4, and the input vector is
(xr—1,21) = (24, x5). h can be an integer within the range
of [0,2]. Let the autoregressive model that is employed to



combine the predicted values be f,,.

e If h = 0, it renders the prediction value at time 7" +

n =7, ie.,Z% as the final prediction value at horizon
2

e If A = 1, it integrates the previous one prediction of
the time series value at time 7' +n = 7, i.e., E’7’ , with

the current prediction T4’ as the final output, which is

fa(7,77).

e If h = 2, it integrates the previous two predictions of
the time series value at time 7'+ n = 7, i.e., T, and
T+, with the current prediction T/’ as the final output,

which is f,(z5, 77, T}').

The autoregressive model is a linear prediction formula
that is commonly used to predict an output of a system
based on the previous outputs. In the proposed frame-
work, parameter i determines the order of the autoregres-
sive model. For a given h, the corresponding order of the
autoregressive model should be h + 1. An autoregressive
model of order 4 + 1 is defined in Equation (2).

h+1
Te=c+ Y oitii+e, 2
i=1
where 1, -+, pp4+1 are the parameters of the model, c is

a constant and ¢ is white noise. There are many ways to
estimate the coefficients. In the experiments, we estimate
the coefficients by minimizing the root mean square error
in the training process. The training instances for the au-
toregressive model are formed by the predicted values (as
the input) and the corresponding true value (as the output).
Take the dataset given in Table 1 as an example, and let h
be 2. Accordingly, the order of the autoregressive model is
3. For instance, the input of one training instance is (Tg, Tg s
Ty¢'), and the output is the real value at time 6, which is .
In reality, there could be many more training instances with
the progression of time. The time series is much longer than
the one given in this simple example. A set of the training
instances can be used to estimate the coefficients for the au-
toregressive model. Given an input of a testing instance, for
example, (T4, T7, T/"), the trained autoregressive model f,
returns a value as the final prediction for time 7.

The input values to this integration component are all
predicted values from the k-NN based LS-SVM method,
and thus a linear function is more suitable to combine these
values than a non-linear function. We compared autore-
gressive model with some other methods, such as LS-SVM,
nonlinear autoregressive moving average, and the autore-
gressive model is able to achieve the highest prediction pre-
cision.

3. Experiments and Results

We conduct experiments on various datasets to evaluate
the performance of the proposed framework. The datasets
used in the experiments are described in Section 3.1. Sec-
tion 3.2 introduces the two measurements used to evaluate
the performance. Comparison results with LL-MIMO [1],
LS-SVM [19][22], AR [21] and autoregressive moving av-
erage (ARMA) [24] methods are presented in Section 3.3.
The experiments are conducted on an Intel Core 2 machine
with two 2.66 GHz CPUs and 3.25 GB of RAM.

3.1. Datasets

Three types of datasets are used in the comparative ex-
periments: the Mackey-Glass time series benchmark, four
time series provided by NNGC1 competition, and a chaotic
laser time series. These datasets are selected because of
their diverse sequential patterns.

The Mackey-Glass time series [15] is generated by the
following delayed differential equation:

dx(t) _ ax(t — )
dt 1+z(t—71)

5 — ba(t). 3)

This time series is generally used to evaluate and
compare the performance of time series prediction ap-
proaches [5][14][17]. For the experiments, 2201 data points
are generated with an initial value z(0) = 1.2, where
a = 0.2,b = 0.1, and 7 = 17 by using the 4th order
Runge-Kutta method. The last 2000 data points of the time
series are used in the experiments.

NNGCI1 competition [4] provides diverse non-stationary,
heteroscedastic transportation time series data with differ-
ent structures and frequencies. The datasets are frequently
used in the related publications as well. Four longest series
collected hourly from the provided datasets are used in the
experiments. The length of each time series is 1742.

The chaotic laser time series is a univariate time record of
a single observed quantity, measured in a physics laboratory
experiment. It comprises the measurements of the intensity
pulsations of a single-mode Far-Infrared-Laser NV Hgs in a
chaotic state [9]. The length of the time series is 1000.

3.2. Evaluation Measures

Two measurements, namely the root mean squared error
(RMSE) and the fit measure (F'IT), are used to evaluate
the performance of the prediction models. Let X be the real
time series, and X be the predicted time series obtained at
the prediction horizon n. The length of both X and X is
m. RMSE is the square root of the variance, which is
defined in Equation (4). RMSFE is closely related to the



value range of the time series data. For this error measure,
a smaller value implies a better performance.

RMSE = | 2t (7 = T)° )
m

Let the mean value of X be mean(X). The fit measure
is defined in Equation (5).

IX = X1,

FIT =100 1-—
X S imean(X) 11,

)%, ()

where 1, =< 1;...;1 >, and the length of 1, is m. FIT
reaches the maximum value (100%) when the prediction X
exactly matches with the real time series X, i.e., the predic-
tion error RM S E is 0. Other than this ideal situation, F'IT
is always a number smaller than 100%. FIT describes how
fit the prediction is to the real time series, and thus a larger
FIT value implies a better prediction performance.

3.3. Experimental Results

We present the results of the performance comparison
with LL-MIMO, LS-SVM, AR and ARMA methods. In the
experiment, the prediction horizon n is set to 20. For the
proposed framework, n’ is set to 30 for all the time series.
Grid searching was done to tune the rest of the parameters
one by one within a preset value range. The parameters
include the length of the training time series 7T'length, the
length of the input vector for the k-NN component p;, the
length of the input vector for LS-SVM model ps, the pa-
rameter k in the k-NN approach, v and o used in LS-SVM
with the RBF kernel, and the parameter / in the autoregres-
sive model. To conduct a fair comparison, the parameters
required in LL-MIMO, LS-SVM, AR and ARMA meth-
ods are set to be the same values as the ones used in the
proposed framework. Table 2 shows the selected parameter
values for each dataset.

Table 2. Preset parameter values

Dataset Tlength | p1 | pe k vy | o |h
Mackey- 1 74 1530 | 80 | 30|50 1
Glass

NNGCI-1 | 600 2020 70 [ 10| 10 | 3
NNGCI-2 | 600 2020 60 | 5|10 7
NNGCI1-3 | 600 35 |25 | 110 | 10 | 10 | I
NNGC1-4 | 600 3020 70 | 5 | 105
Chaotic | 75, 6 25|70 |20 |17 |7
laser

The comparison results on six time series datasets at the
prediction horizon n = 20 are reported in Table 3 and Ta-
ble 4, in terms of RMSE and FIT, respectively. As we

can see from these two tables, the proposed multi-model
integration approach can always achieve the lowest predic-
tion errors in terms of RM SFE, and the highest fit measure
in terms of F'IT. Mackey-Glass time series is a synthetic
data series without any noise, and the chaotic laser time se-
ries is measured in a physics laboratory experiment. Both
of the time series datasets have steady sequential patterns.
The prediction results for these two time series datasets are
relevantly better than the results for the datasets from the
NNGC1 competition, which are collected from daily traf-
fic, and thus contains a lot of noise and uncertainties. Also,
the NNGCI1 data represents a much more dynamic and com-
plicated model, which renders more challenges for the pre-
diction; while the proposed approach is still able to gener-
ate fair prediction results on this real-world dataset. The
RMSE is related to the value range of the time series, and
therefore, its value differs a lot among different time series
datasets for one prediction model. FIT is a relative mea-
sure, and it is independent from the absolute values of a time
series. In this sense, F'IT is a better measurement to eval-
uate different algorithms across multiple datasets. On aver-
age, the proposed multi-model integration framework pre-
forms 75.7% better than the LL-MIMO method and 130.2%
better than the AR method in terms of F'IT'.

We present some of the 20-step ahead prediction results
by all five approaches for each of the three types of time se-
ries in Figure 2 to Figure 4. The figures include the results
for Mackey-Glass time series, NNGC1-4 time series (rep-
resenting the NNGCI time series), and Chaotic laser time
series. Figure 2 shows some of the 20 steps ahead predic-
tion results for time series Mackey-Glass. To make the plot
clear, only the 250 predicted data points out of the 1281
testing data are shown in the figure. The corresponding real
values of the time series are also plotted. As shown in Fig-
ure 2, the predicted time series by LS-SVM and the pro-
posed framework are very close to the real time series; while
the proposed multi-model integration framework achieves a
lower error measure referring to Table 3. The prediction
result of AR goes off the pattern the most. Comparing to
AR, ARMA includes a moving average part, which incor-
porates the prediction error in constructing the prediction
model. This makes ARMA more capable and faster in fol-
lowing the trend of a time series. It can be also observed
from Table 4 that ARMA always outperforms AR.

Figure 3 shows some of prediction results for the
NNGC1-4 time series. The first 50 predicted data points out
of the 1123 testing data points are shown in the plot. It is
observed that the predicted values by the proposed multi-
model integration approach follow the real values quite
closely, and it outperforms all the rest approaches signif-
icantly. The LL-MIMO, AR and ARMA approaches fail
to predict and preserve the trend of the time series dataset,
especially from x = 32 to x = 50. The traditional LS-



Table 3. Performance in terms of RV SE

Dataset LL-MIMO | LS-SVM AR ARMA | Multi-Model Integration
Mackey-Glass 0.0735 0.0080 | 0.1610 | 0.0854 0.0015
NNGCI-1 6594.2 4039.9 | 66054 | 6497.9 3362.8
NNGCI1-2 155.84 113.10 158.60 | 155.91 101.12
NNGCI1-3 7462.1 4771.5 | 7286.4 | 6788.7 4265.9
NNGC1-4 2394.7 1683.0 | 2553.6 | 2542.5 1433.8
Chaotic laser 20.528 54761 | 26978 | 9.7876 2.0260

Table 4. Performance in terms of F'IT (in %)

Dataset LL-MIMO | LS-SVM | AR | ARMA | Multi-Model Integration
Mackey-Glass 67.25 96.44 28.22 | 6191 99.33
NNGCI1-1 29.43 56.77 29.31 | 30.46 63.67
NNGCI1-2 30.63 49.65 29.40 | 30.59 54.57
NNGCI1-3 34.05 57.83 35.61 | 40.01 62.03
NNGC1-4 40.10 57.90 36.13 | 36.41 63.88
Chaotic laser 48.20 86.18 31.93 | 75.30 95.18

X(t)
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t
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¢= =1 LL-MIMO

- @ = LS-SVM

—o— Multi-Model Integration

Figure 2. Prediction results for Mackey-Glass
time series

SVM approach generates fair prediction results, but it con-
sumes a much longer time because of using a large training
dataset, which makes it impractical to do prediction in real
time. On average, it took 28.76 seconds for the traditional
LS-SVM approach to execute a 20-step ahead prediction,
while the proposed approach only requires 0.54 seconds.
NNGCI time series contain some dynamic pattern changes,
and there are delays for the prediction models to adapt to
the new pattern. Therefore, the overall F'IT measures for
NNGCI time series are lower comparing to the other two
datasets. Figure 4 shows a part of the prediction results

Traffic

Index

—8— Real value

- = =AR

—— ARMA

== LL-MIMO

- & = LS-SVM

—&— Multi-Model Integration

Figure 3. Prediction results for NNGC1-4 time
series

for chaotic laser time series. The first 25 predicted data
points out of the 381 testing data points are shown in the
plot. The prediction by our framework again follows the
real values very well. LS-SVM and ARMA methods give
fair prediction results as well, while the prediction results
by LL-MIMO and AR shift away from the real time series.

4. Conclusions

In this paper, a multi-model integration framework is
proposed to perform long-term time series prediction. The
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Figure 4. Prediction results for chaotic laser
time series

main idea of the proposed framework is to consider utiliz-
ing multiple predicted values to generate a more robust final
prediction. For this purpose, an autoregressive model is em-
ployed to integrate those multiple predictive values gener-
ated by a group of k-NN based LS-SVM models. The pro-
posed framework incorporates the non-linear £-NN based
LS-SVM models with a linear autoregressive model seam-
lessly to effectively reduce the uncertainty of the predic-
tive model and decrease the prediction error. The experi-
mental results have validated that the proposed framework
constantly outperforms the LL-MIMO, LS-SVM, AR and
ARMA approaches with lower prediction errors and higher
fit measures under various time series datasets. Although
LS-SVM approach generates fair prediction results, high
computational cost makes it impractical to perform predic-
tion in real time. The proposed multi-model integration
framework significantly reduces the computational com-
plexity by downsizing the training dataset. Therefore, the
proposed framework is able to perform long-term time se-
ries prediction efficiently and effectively.
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