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Abstract 
 

In current developmental research, one of the 
challenging tasks is to understand the spatio-temporal 
gene expression patterns and the relationships among 
different genes. In situ hybridization (ISH) assay which 
shows mRNA spatio-temporal expression patterns in 
cells and tissues directly is currently widely utilized in 
the bench work. With the increasing of available ISH 
images, automatic annotation systems are highly 
demanded. In this paper, an automatic classification 
system is proposed for annotating the in situ 
hybridization images with respect to the developmental 
stages. The embryo is first segmented from the original 
image, registered and normalized. The segmented 
embryo image is then divided into 100 blocks from 
which the pixel intensity and texture features are 
extracted and discretized. The multiple correspondence 
analysis (MCA) based association classification 
approach is proposed to generate classification rules for 
different stages based on the training data set. The 
testing instance is classified by applying the rules 
generated in the training process and a classification 
coordination module is incorporated to resolve the 
conflicts utilizing the weights derived from angle values 
in the MCA procedure. Experimental results show that 
our proposed method achieves promising results and 
outperforms other state-of-the-art algorithms.  
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1. Introduction 
 

In the current post genomic era, biomedical 
researchers are not only interested in the primary 
sequences of genes but also the functions of individual 
genes, interactions among different genes, and how these 

interactions affect gene expression and phenotypes 
correspondingly. The research of the development of the 
model organism such as Drosophila has shed light on 
these issues [1]. By using the state-of-the-art techniques, 
such as DNA microarray [2] and in situ hybridization 
(ISH) techniques [3], the expression patterns of different 
genes could be captured during developmental stages for 
a specific species. Currently, there are several ongoing 
projects which collect the ISH images at a whole-genome 
scale. For example, the Berkeley Drosophila Genome 
Project (BDGP) [4] contains around 97000 digital images 
of the spatio-temporal expression patterns across six 
developmental stages for over 7000 genes using ISH 
technologies. Therefore, researchers could track the 
changes of patterns in different developmental stages.  

Within developmental research, expression pattern 
comparison is the most biologically meaningful when the 
images from a similar developmental stage range are 
compared. However, little work has been done for 
annotating the developmental stages of the embryos. In 
[5], the authors extracted Gabor features [6] from the sub-
block and used the Regularized Uncorrelated Linear 
Discriminant Analysis (RULDA) to sort 2705 images 
from the BDGP database into three developmental ranges 
(1-3, 4-6, 7-8). In [7], they further improved the 
regularization to develop the LdaPath algorithm for 
solving the same classification problem. They claimed 
that the highest accuracy reached 87.19% in their 
framework. However, the computational cost is very high 
and the classification is only based on three of the six 
developmental stage ranges, which limits the usage of 
their framework. In [8], using the ISH images from the 
same database, the researchers proposed the framework to 
first segment four blocks from the original image based 
on human inspection and extracted Gabor features to 
represent the texture information of these blocks. After a 
PCA-based dimension reduction, the multi-class SVM 
was utilized for classification and the maximum accuracy 
was 93.27%. Their framework suffers from two 



 

Figure 1.  The proposed framework

problems. First, it relies on human inspection to select the 
sub-blocks for further processing. Therefore, it leads to 
another problem that the blocks are suitable for their 
specific task, which is to classify the images into four 
categories, stages 3, 4, 5, and 6. In addition, the previous 
two frameworks only took into consideration of the 
texture information of the embryo without considering the 
relationship between the expression patterns and 
developmental stages. Currently, there is no framework to 
classify the ISH images automatically based on the six 
stage ranges which span the whole process of Drosophila 
early development.  

Multiple Correspondence Analysis (MCA) is a 
descriptive data analytic technique in multivariate 
statistics to analyze simple two-way and multi-way tables 
for more than two variables, containing a measure of 
correspondence between the rows and columns. By 
capturing the correlation between the feature value pairs 
and classes, it has been utilized to generate association 
classification rules used in binary classifiers in our 
previous work [9][10]. Experimental results showed that 
it achieved relatively promising performance in video 
concept detection. 

In this paper, a MCA-based classification system is 
proposed for annotating the ISH images from the BDGP 
database for all six developmental stage ranges. 
Compared with the previous work, the main contributions 
of our proposed framework are threefold. First, the 
proposed framework is able to classify the embryo images 
into the 6 developmental stage ranges, which match the 
labels in the database. Second, the proposed framework 
builds a model to represent the spatial expression patterns 
and considers the correspondence between the expression 
patterns and the developmental stages by utilizing MCA-
based association classification. Last but not least, MCA 
used in our previous work did only solve the binary 
classification problem, but this work extends it to address 
the multi-way classification problem by reusing the 
information (angle values) from MCA. Experimental 
results show that our proposed framework outperforms 
other state-of-the-art frameworks and other classifiers in 
Weka [11]. 
 
2. Proposed Framework 
 

 The proposed framework is shown in Fig. 1. The 
framework consists of the Data Preprocessing Module 
(1) and Classification and Coordination Module (2).  

 In the Data Preprocessing Module, the embryo areas 
are first segmented from the raw images. Afterwards, the 
segmented embryo images are registered to the same 
orientation and size (1200x460) before the normalization 
step. Each embryo image is then divided into 100 blocks 
for feature extraction. Three-fold cross validation is used 
in this framework so that the data set is split into a 

training data set (two thirds of the whole data) and a 
testing data set (one third of the whole data). The training 

data set is reorganized to fit the classification module 
properly. For simplicity of the description, the class label 
used in the rest of the paper and the corresponding 
meanings are described here, namely, Class 1 for 
Developmental Stage Ranges 1-3, Class 2 for Ranges 4-6, 
Class 3 for Ranges 7-8, Class 4 for Ranges 9-10, Class 5 
for Ranges 11-12, and Class 6 for Ranges 13-16.  

In the Classification and Coordination Module, the 
MCA model for a certain class is trained and a set of rules 
of that class is built during the training process. A 
coordination scheme is developed to make the final 
decision by reusing the information obtained in MCA in 
the training process. The classification results are 
evaluated using accuracy to compare with several existing 
frameworks.   

  
2.1. Image Preprocessing 
 

The raw images in the BDGP database are of the size 
(1520x1080) in jpeg format. Because the pictures were 
taken under the 96-well plate in the experiments, the 
embryos in the pictures are of different orientations. Due 
to the fact that the embryo regions have relatively high 
variance compared with the uniform background, the 
Otus’ method [12] is used to set the threshold for 
extracting the embryo. After the contour of the embryo 
images is defined from the previous step, the anterior 
posterior axis is found by applying principal component 
analysis (PCA) on the binary images derived from the 
contour. The embryo images are then rotated so that the 
anterior posterior axis is aligned horizontally with the 



anterior side on the left. Afterwards, a minimum 
bounding rectangle is calculated for the embryo images 
and the region within that bounding rectangle is 
segmented from the grey image generated based on the 
raw image. Further, all the segmented images are resized 
to 1200x460 and normalized by applying histogram 
equalization which uniforms the histogram distribution. 
Fig. 2 shows an example of the processed image 
compared with the raw image. 

In order to capture the relationship between the 
expression patterns and the developmental stages, the 
segmented images are further divided into small blocks 
and each block carries the information for a certain 
region. In this study, the images are divided into 100 
blocks. The division scheme is shown in Fig. 3 and each 
block is assigned an ID using a sequential number in a 
left to right, top to bottom way. Based on our preliminary 
experimental results, the division scheme represents the 
local information of each region relatively well. 

 

 
 

 
 
2.2. Feature Extraction 

 
In our proposed framework, the mean pixel value and 

entropy for each block are extracted. Specifically, they 
represent the relative expression levels as well as the 
texture information of a block. In this way, each block is 
represented by the two-dimensional vector. The vectors 
of all blocks are concatenated sequentially from Block 1 
to Block 100. Therefore, each embryo image is 
represented by a 200-dimensional feature vector and the 

spatial information is retained in the sequence of the 
features.  

2.3. Data Splitting, Feature Selection, and Data 
Organizing 
 

The whole dataset is split to a training data set (2/3 of 
all data instances) and a testing data set (1/3 of all data 
instances). The training data set is organized into N 
training subsets labeled as 1, 2, …, N, where N is the total 
number of classes in an application. N equals to 6 in this 
application. Assuming that the total number of instances 
in the training set is F, the pseudo code of generating the 
SubSet is given as follows. 

 
SUBSET-GENERATION 
1       for classk  class1  to  classN 

2           t=0; 
3           SubSet_k={};  
4           NegtiveSet_k={};  
5                for instancei  instance1  to  instanceF  
6                     if instancei is of classk  then      
7                        ;__ }{instancekSubSetkSubSet i  
8                                 1tt  ; 
9                    else  
10                      };__ i{instancekNegtiveSetkNegtiveSet   
11                 next instancei  

12         SelNegtiveSet_k=select t instances from  
             NegativeSet_k randomly; 
13        ;___ ktNegativeSekSubSetkSubSet   
14     next classk  

 
Since the feature selection and discretization steps are 

beyond the scope of this study, the Chi-square feature 
selection approach and MDL method [13] for 
discretization implemented in Weka [11] are utilized. In 
the feature selection step, after computing the ranking 
scores, the features whose scores are greater than or equal 
to the sum of the mean value and the standard deviation 
of all ranking scores are retained. In this study, 45 
features are retained and they are sorted by their block ID 
incrementally to maintain the spatial information. The 
feature values are then discretized into nominal intervals. 
The testing data set is discretized using the same intervals 
derived in the training stage. 

 
2.4. MCA-based Classifier Model 

 
MCA is an extension of the standard correspondence 

analysis to more than two variables [14] and is applicable 
for nominal features. The procedure of the MCA is shown 
in the following example. Supposing there are C data 
instances in the training data set and E features (E =45 in 
this study) after feature selection and each feature has He 
(e=1…E) intervals generated from the discretization step. 

 
Figure 2. The comparison between the raw 

image and processed image 

  
 

Figure 3.   The division scheme 



Let J  be the summation of H1, H2,…, HE. Therefore, the 
indicator matrix (denoted as X) has the dimension of C×J. 
The Burt Matrix B is calculated using Equation (1). 

                        XXB T .                            (1) 

If the grand total of the Burt Matrix is A, the probability 
matrix P is calculated by dividing each element in B by 
the scalar A. The vector of the column totals of P forms 
the vector M. Let D be the diagonal matrix with the 
elements on the diagonal being the corresponding 
component in M. By using singular value decomposition 
(SVD) shown in Equation (2), MCA provides the 
principal components.  
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The training data are projected to the new principal 
component space by using the first and second principal 
components. The correspondence between the feature 
value pair and positive class label can be represented as 
the angle between the two vectors. The smaller the angle 
is, the more correlated the feature value pair to the class 
is. Because each SubSetk (k=1…N, where N is the total 
number of classes) contains only the positive data 
instances and negative data instances for Class k, it is 
used to build the MCA model k, which corresponds to 
Class k. MCA is applied to the training data set to 
measure the correspondence between each 1-feature value 
pair and the positive class label. Specifically, each 1-
feature value pair and the positive class label are 
projected to the new principal component space and the 
angle between them is calculated as the measure of the 
correspondence between them. Similarly, the 
correspondence between each 1-feature value pair and the 
negative class label is also calculated. For example, the 
feature “mean pixel value” (Feature11 or F11) of Block 6 
is selected and discretized into three intervals from the 
previous step, labeled as F11_1, F11_2 and F11_3. 
Therefore, this feature has three 1-feature value pairs. By 
applying MCA to the data instances in training SubSet3 
(i.e., for Class 3), the projections of the 1-feature value 
pairs could be calculated, as illustrated in Fig. 4. The 
absolute values of the angles between each 1-feature-
value pair and the positive class label are 63.0718, 
20.5302, and 156.5062 degrees, respectively. In this 
example, F11_1 and F11_2 have relatively higher 
correlations with the positive class label; while F11_3 has 
a higher correlation with the negative class label.  

After calculating the correlation between each 1-
feature-value pair and the class label and selecting the 
threshold value properly based on the training data, a set 
of one-item rules is generated for both positive and 
negative classes, respectively. An example one-item rule 
can be {Feature11=F11_1} => Class 3. The similar 
analysis could be generalized to G-feature value pairs 

(2≤G≤E and E is the total number of features). The 
specific procedures for the rule generation and pruning 
process are described in our previous work [14]. In this 
paper, the maximum number of G is 8. In this way, the 
MCA-based Classification Modelk which consists of a set 
of positive rules and negative rules is built for each 
SubSetk (for Class k). It should be pointed out the G-item 
rules carry the information of the spatial patterns of the 
embryos. For example, one of the positive rules in Model1 
is:{Feature11=F11_1, Feature54=F54_3, Feature77=F77_2}  
=> Class 1. Feature11, Feature54, and Feature77 are the 
mean pixel value of Block 6, the entropy value of Block 
27, and the mean pixel value of Block 39. It represents 
the spatial patterns of the embryo image. 

  
2.5. Classification and Coordination 
 

After building the MCA-based classification models, 
the testing procedure is relatively simple. Specifically, let 
Sk (k=1…N) be the set of positive and negative rules of 
modelk. The testing instance l is checked to compute the 
number of positive rules and negative rules it matches for 
Sk. If the number of matched positive rules is greater than 
the number of matched negative rules, the testing data 
instance is labeled positive for Class k and vice verse. If 
there is a tie, the positive label is assigned to l. Using this 
method, each testing data instance l is checked per rule 
set and the corresponding classification results generated 
forms a sequence R1, R2, …, RN. Ideally, there should be 
one and only one positive label in the sequence.  
However, we need to handle two issues under practical 
conditions: all the values are negative (i.e., no label), or 
there are positive labels from more than one MCA model 
(i.e., ambiguity). The coordination module is designed to 
address these issues.  

As described in Section 2.4, each rule carries certain 
local information of the spatial patterns. Therefore, the 
global information which is extracted by considering all 
the nominal features of a data instance together is 
missing.  Given this fact, a new scheme is used in the 
coordination module. In Section 2.4, the absolute angle 
value between each 1-feature-value pair and positive class 

   
Figure 4. Projections of feature value 

pair 



is calculated for one SubSet. Here, this information is 
reused to calculate the weight for making the final 
decision. Assuming in a training SubSetk (k=1...N) 
corresponding to Class k, there are E number of features 
and each feature e has He number of different intervals 
after discretization. If Ye

a (a=1…He) denotes the 1-item 
feature value pair which Feature e = Fe_a and Oe

a is the 
angle between  Ye

a and the positive class label of Class k, 
the weight We

a is computed using Equation  (3) in the 
training process.  

                        901 a
e

a
e OW  .                       (3) 

Because Oe
a is between 0 and 180, the weight value is 

between 1 and -1. The greater the weight value, the 
higher the correlation between the 1-item feature value 
pair and the positive class label is. For a testing data 
instance l, let each feature value be f(e), which indicates 
the interval the feature e falls into. For example, if the 
first feature of l falls into the second interval, then f(1) = 
2. The total score is calculated using Equation (4). Here E 
is the total number of features after feature selection. 
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Now, this Score value is used to address the 
aforementioned issues. If the testing data instance is 
deemed to be negative by all classification models, the 
Score value will be calculated for each class and the 
testing data instance is assigned to the label which has the 
largest Score. If the testing data instance is recognized as 
positive for more than two classes, all these classes are 
candidate classes and the Score values are computed for 
these candidate classes, respectively. Similarly, the class 
corresponds to the largest score is assigned to the testing 
instance. Experimental results show that the proposed 
coordination module is successful in solving these two 
issues. 

 
3. Experimental Results 
 

The BDGP database [4] currently contains 97842 
images of 7152 genes. Some of the images are out-of-
focused and some contain malformed embryos. These 
images carry little meaningful information and are thus 
eliminated from the data set. In addition, some images 
were taken under high resolution and do not contain one 
intact embryo. These images are also eliminated from the 
data set because the global information is missing. As the 
raw images taken represent different views of the 
embryos and only the comparison of data instances from 
the same view is meaningful, two sets of data 
corresponding to the lateral views and dorsal views, 
respectively, are formed and called “Lateral View 

Dataset” and “Dorsal View Dataset.” After removing 
those unqualified images and a manually check process, 
7471 and 6337 images are selected from the lateral view 
and dorsal view raw image pool, respectively.   

In order to evaluate the performance of our 
framework, we implemented two other published 
algorithms for comparison purposes, namely the LdaPath 
based classification algorithm [7] and support  vector  
machine  based  algorithm [8]. The parameters used, such 
as number of scales and the orientations in Gabor filters 
are tuned to give the best performance on the training 
data sets. The performance of our proposed framework is 
also compared with other common classifiers in Weka 
[11], including C4.5, JRIP, AdaBoost (with C4.5), k-
Nearest Neighbors (k=3), Support Vector Machine (with 
poly kernel). The evaluation criterion is the classification 
accuracy, which is the percentage of the images in the 
testing dataset whose classification labels determined by 
the classifiers match the ground truth. Ten-times three-
fold cross validation is used as the testing scheme. The 
average accuracies and standard deviations for the two 
data sets are shown in Table 1 and Table 2. In both tables, 
“MCA-based classifier” indicates our proposed 
framework, “LdaPath” indicates the framework described 
in [7], and “Gabor+SVM” is the algorithm implemented 
based on [8]. 

From the comparison between the two data sets, it 
could be seen that the performance of all classifiers on the 
first data set is better than those of the second one. It 
matches the fact that the gene expression patterns and 
texture information are, in general, illustrated more 
clearly in the lateral view. The LdaPath based 
classification method which projects the data instances to 
a new space in order to maximize the inter-class 
differences and minimize the intra-class differences gives 
relatively good performance. However, the computational 
cost is quite high due to the large dimensionality in the 
feature vector (1280 features are extracted). The method 
proposed in [8] that extracts texture features from four 
blocks at the specific positions shows relatively poor 
performance because it does not take the global 
expression patterns and texture information into 
consideration. The method performed well in [8] because 
it was specifically tuned into their classification task and 
is not feasible to be generalized to solve other problems 
The relatively high standard deviation values also indicate 
this problem. For other classifiers in Weka [11], the 
AdaBoost+C4.5 algorithm gives relatively good and 
stable performance. AdaBoost is a meta-algorithm which 
improves the performance of the classifiers using a multi-
step optimization and usually performs well on the data 
set with few noisy data instances. The images in the 
database are inspected so that the number of noisy data 
instances is small, which benefits the AdaBoost 
algorithm. After all, it shows that our proposed 



framework outperforms other frameworks in terms of 
both the average classification accuracy and the stability 
of performance. The results indicate that our proposed 
framework can capture the correspondence between 
spatial patterns and the developmental stages, and thus is 
quite useful to improve the classification performance. 

 

 

 

4. Conclusion 
 

In this paper, a MCA-based multi-class classification 
framework is proposed to classify the ISH images based 
on the developmental stages. By using MCA-based 
correspondence analysis, a set of rules is generated for 
each class. Each testing data instance is evaluated using 
the rules. The coordination module is incorporated to 
address the “no label” and “ambiguity” issues by 
integrating the information from the previous step. 
Experimental results show that our proposed framework 
outperforms several state-of-the-art algorithms and other 
common classifiers significantly, which demonstrates the 
effectiveness of our proposed framework. 
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Table 1. Performance of lateral view data set 
Classification   

Framework 
Average 

Accuracy 
Standard 
Deviation 

MCA-based 
classifier 90.14% 1.86% 

LdaPath 81.43% 2.14% 

Gabor +SVM 77. 86% 5.49% 

C4.5 80.07% 2.92% 

JRIP 78.73% 2.67% 

AdaBoost+C4.5 82.29% 1.96% 

3NN 81.26% 4.71% 

SVM 82.57% 2.89% 

Table 2. Performance of dorsal view data set 
Classification   

Framework 
Average 

Accuracy 
Standard 
Deviation 

MCA-based 
classifier 87.78% 2.27% 

LdaPath 79.76% 3.71% 

Gabor +SVM 73.67% 7.53% 

C4.5 74.81% 5.46% 

JRIP 71.88% 3.12% 

AdaBoost+C4.5 81.33% 2.74% 

3NN 78.65% 4.82% 

SVM 80.88% 3.77% 


