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Abstract

In many real-world applications, there are features (or
attributes) that are continuous or numerical in the data.
However, many classification models only take nominal fea-
tures as the inputs. Therefore, it is necessary to apply dis-
cretization as a pre-processing step to transform numerical
data into nominal data for such models. Well-discretized
data should not only characterize the original data to pro-
duce a concise summarization, but also improve the classifi-
cation performance. In this paper, a novel and effective su-
pervised discretization algorithm based on correlation max-
imization (CM) is proposed by using multiple correspon-
dence analysis (MCA) which is a technique to capture the
correlations between multiple variables. For each numeric
feature, the correlation information generated from MCA is
used to build the discretization algorithm that maximizes the
correlations between feature intervals/items and classes.
Empirical comparisons with four other commonly used dis-
cretization algorithms are conducted using six well-known
classifiers. Results on five UCI datasets and five TRECVID
datasets demonstrate that our proposed discretization al-
gorithm can automatically generate a better set of features
(feature intervals) by maximizing their correlations with the
classes and thus improve the classification performance.

Keywords: Supervised Discretization, Multiple Corre-
spondence Analysis (MCA), Correlation, Classification.

1 Introduction

Nowadays, manual organization of the data/information
can be very expensive or simply not feasible when time is
limited or when the amount of data is enormous. To ex-
tract information and discover useful knowledge from it,
data mining has become a dominant approach in the re-

search community [1][2][10][12]. Classification, one of the
main data mining techniques, has shown its attractive per-
formance in several areas such as document categorization,
image tagging, and video retrieval. However, features (or
attributes) extracted from raw data are often numerical (or
continuous). Some classification algorithms can only take
nominal data as inputs, such as associative classifier, and
some discretize numeric data into nominal data during the
learning process, such as decision tree and rule-based learn-
ing. Therefore, discretization is needed as a pre-processing
step to partition each numeric feature into a finite set of ad-
jacent distinct intervals/items. A good discretization algo-
rithm should not only characterize the original data to pro-
duce a concise summarization, but also help the classifica-
tion performance.

Discretization algorithms can be categorized into unsu-
pervised and supervised based on whether the class label
information is used. Equal Width and Equal Frequency are
two representative unsupervised discretization algorithms.
Compared to supervised discretization, previous research
[6][9] has indicated that unsupervised discretization algo-
rithms have less computational complexity, but may result
in much worse classification performance. When classifica-
tion performance is the main concern, supervised discretiza-
tion should be adopted. Algorithms such as IEM (informa-
tion entropy maximization) [3], IEM’s variant (IEMV) [5],
class-attribute interdependence maximization (CAIM) [7],
and class-attribute contingency coefficient (CACC) [11] be-
long to supervised discretization category.

In this paper, a novel and effective supervised discretiza-
tion algorithm based on correlation maximization (CM)
is proposed by using multiple correspondence analysis
(MCA). MCA has been shown to be an effective technique
to capture the correlations between multiple variables [8].
For each numeric feature, the candidate cut-point that max-
imizes the correlation between feature intervals and classes



is selected as the first cut-point, then this strategy is carried
out in the left and right intervals recursively to further parti-
tion the intervals. Empirical comparisons with IEM, IEMV,
CAIM, and CACC supervised discretization algorithms are
conducted using six well-known classifiers. Results on
five UCI datasets and five concepts from TRECVID2009
demonstrate that our proposed discretization algorithm can
automatically generate a better set of feature intervals by
maximizing their correlation with classes and thus improves
the classification performance.

The rest of the paper is organized as follows. Related
work is introduced in Section 2. Our proposed correlation-
maximization-based discretization is presented in Section 3,
followed by an analysis of the experimental results in Sec-
tion 4. Lastly, we conclude and discuss the future work in
Section 5.

2 Related Work

Two main questions need to be answered when develop-
ing a discretization algorithm: when to cut and how to cut.
Many discretization algorithms are based on information
entropy, such as maximum entropy which discretizes the
numeric attributes using the criterion of minimum informa-
tion loss. IEM [3] is a widely used one due to its efficiency
and good performance in the classification stage. IEM se-
lects the first cut-point that minimizes the entropy function
over all possible candidate cut-points and recursively ap-
plies this strategy to both induced intervals. The Minimum
Description Length (MDL) principle is employed to deter-
mine whether to accept a selected candidate cut-point or
not, and thus stop the recursion if the cut-point does not
satisfy a pre-defined condition.

Compared to [3], the discretization algorithm in [5] uses
the same strategy to select the best cut point but a different
criterion to decide when to stop the recursion. Thus, it is
considered as a variant of IEM (called IEMV). The goal is
to compress the feature during the partitioning. Empirical
studies have shown that this criterion is always negative for
irrelevant features, which means irrelevant features are non-
compressive.

In addition to entropy maximization, another well-
known discretization criterion is class-attribute inter-
dependence redundancy (CAIR) which measures the inter-
dependence between classes and each discretized attribute,
though it may be overfitting. CAIM [7] is a representa-
tive algorithm that maximizes mutual class-attribute inter-
dependence and generates possibly the smallest number of
intervals for a given numeric feature. The larger the value
of CAIM, the higher the inter-dependence between the class
labels and the discrete intervals. Instead of using the re-
cursive strategy, CAIM selects the first cut-points from all
candidates and then selects the next one from the rest of

the candidate cut-points. It keeps the one with the highest
CAIM value, and stops until the CAIM value of the next se-
lected cut-point being smaller than the current highest one.

However, as pointed out in [11], CAIM gives a high fac-
tor to the number of generated intervals, which is usually
very close to the number of classes. Also, CAIM only
considers the majority class and ignores the rest. A dis-
cretization algorithm that follows the same strategy to select
cut-points but uses contingency coefficient to measure the
strength of dependence between the variables was proposed
in [11]. Experiments on both real and artificial datasets in-
dicated that CACC can generate a higher CAIR value com-
pared to CAIM and improve classification accuracy like the
decision trees.

3 The Proposed Discretization ALGO-
RITHM

Multiple correspondence analysis (MCA) is a technique
used to measure the correlation between multiple vari-
ables [4]. In this paper, for a candidate cut-point, MCA is
used to measure the correlation between intervals/items and
classes. The one that gives the highest correlation with the
classes is selected as a cut-point. The geometrical represen-
tation of MCA not only visualizes the correlation relation-
ship between intervals/items and classes, but also presents
an elegant way to decide the cut-points. In this paper, we
start with discretizing the numeric features with two classes,
but it can be extended to a dataset with more than two
classes.

3.1 Correlation Information from MCA

MCA can be considered as an extension of the standard
correspondence analysis (CA) to more than two variables.
It first constructs an indicator matrix (a two-way frequency
cross tabulation table) with instances as rows and intervals
of variables as columns. Given a feature ofM intervals,
and total number of data instances isN , the size of the in-
dicator matrix denoted byZ is N × (M + K), whereK
is the number of classes. MCA analyzes the inner prod-
uct of the indicator matrixZT Z, called the Burt Matrix
which is symmetric with the size of(M + K)× (M + K).
P = ZT Z/N is called the correspondence matrix with each
element denoted aspij . Let r andc be the row and column
mass vectors ofP , i.e.,ri =

∑
j pij andcj =

∑
i pij . The

centering involves calculating the differences(pij − ricj)
between the observed and expected relative frequencies,
and normalization involves dividing these differences by√

ricj and leading to a matrix of standardized residuals
sij = (pij − ricj)/

√
ricj , as shown in Equation (1).

S = D−1/2
r (P − rcT )D−1/2

c , where (1)



Dr andDc are diagonal matrices with these masses on the
respective diagonals. Singular Value Decomposition (SVD)
is performed onS asS = UΣV T , whereΣ is the diagonal
matrix with singular values, andΛ = Σ2 is the diagonal
matrix of the eigenvalues, which are also called principal
inertias. The summation of each principal inertia is the to-
tal inertia which is also the amount that quantifies the total
variance ofS. The objective of MCA is to represent the
maximum possible variance in a map of a few dimensions.
Usually, the first two dimensions could capture over95% of
the total variance.

The graphical representation of MCA, called the sym-
metric map, can visualize the intervals of a feature and the
classes as points in a two dimensional map. Thus, the cor-
relation between an interval and a class can be well repre-
sented by the cosine angle between these two vectors in the
first two dimensions. The larger the cosine value of the an-
gle is, the stronger the correlation between them is. Fig. 1
shows a featureFi with two intervalsF 1

ij andF 2
ij given the

candidate cut-point istj and two classesC1 (positive class)
andC2 (negative class).a1

ij is the angle betweenF 1
ij and

C1, anda2
ij is the angle betweenF 2

ij andC1. Since there
are two intervals and two classes, if one interval is corre-
lated with one class, then the other interval is negatively
correlated with this class to the same degree, which means
the sum of these two angles is180 degrees. Thus Equa-
tion (2) stands.

cos(a1
ij) = −cos(a2

ij). (2)

As shown in Fig. 1,a1
ij is much smaller than90 degrees,

which indicates that there is a higher correlation between
F 1

ij and the positive class, whileF 2
ij and the positive class

are negatively correlated to the same degree which is given
by |cos(a1

ij)| or |cos(a2
ij)|. This motivates us to use the cor-

relation information calculated from MCA to measure the
quality of intervals generated by a candidate cut-point. A
discretization scheme should contain cut-points that maxi-
mize the correlation between the feature intervals and the
classes, so the discretized feature could give the most in-
formation of the class labels when used for classification.

Figure 1. The symmetric map of the first two
dimensions

3.2 Correlation Maximization (CM) Discretiza-
tion

For a numeric featureFi, all values of this feature are
sorted to form a set ofn + 1 distinct values. Candidate
cut-points are the midpoints of all adjacent pairs in the set.
For a candidate cut-pointtj , |cos(a1

ij)| or |cos(a2
ij)| is the

value associated withtj that is used to measure the correla-
tion between the interval and the class, and thus represents
the “discretization quality” oftj . The one with the largest
cosine value is selected as the first cut-pointT1. Then the
same strategy can be carried out separately in the left and
right intervals in a binary recursive way.

Figure 2. The symmetric map of interval par-
tition

After selecting the cut-points, we need to decide when to
stop the splitting recursion. In fact, the geometrical repre-
sentation of MCA provides a clear way to define the stop-
ping criterion. The idea is to terminate the recursion if the
correlation between the current intervals and the classes is
lower than the correlation between their predecessor and
the classes. For featureFi, suppose the first cut-pointT1

has been selected, the correlation associated withT1 is
|cos(a1

i1)|, and the left intervalF 1
i1 and the right interval

F 2
i1 are displayed as Fig. 2. TakeF 1

i1 as an example. The
“discretization quality” of each candidate cut-point within
this interval is calculated. If the selected cut-point produces
a larger absolute cosine value than that ofT1, then the two
generated subintervals withinF 1

i1 will lie inside the dark re-
gions below the dashed lines, as shown in Fig. 2. This indi-
cates that the subintervals have higher correlations with the
classes than their predecessorF 1

i1, and the overall correla-
tion between featureFi and the classes is improved because
of F 1

i1’s two subintervals. In contrast, if the subintervals of
F 1

i1 fall into the region above the dashed lines, then the cor-
relation between the subintervals and the classes is lower
thanF 1

i1 with the classes, and so the overall quality ofFi

is decreased if such a cut-point is accepted. The same cri-
terion is adopted to decide whether to further partition the
right intervalF 2

i1. The pseudo code of the CM Discretiza-
tion Algorithm is as follows.



CM DISCRETIZATION ALGORITHM

1 for each featureFi

2 setpre correlation = 0
3 initialize an empty discretization schemeDi

4 select the distinct values ofFi

5 sort the values in ascending order
6 calculate the midpoints of each adjacent pair
7 setmax correlation = 0
8 for each midpointtj in the current interval
9 calculatecorrelation between the interval

and the classes by MCA
10 if correlation > max correlation
11 setmax correlation = correlation
12 end
13 if max correlation > pre correlation
14 add the cut-pointtj into Di

15 setpre correlation = max correlation
16 else
17 return the discretization schemeDi

18 end
19 For the left interval, go to Line 7
20 For the right interval, go to Line 7
21 end

4 Experimental Results

To evaluate the proposed CM discretization algorithm,
several experiments using the data from two benchmark
sources: UCI datasets and TRECVID2009 datasets were
conducted. First, three-fold across validation is applied to
split each dataset into three subsets with an approximately
equal number of data instances and an equal P/N ratio (pos-
itive class to negative class ratio). Next, discretization is
applied on the training dataset, and the same discretiza-
tion scheme obtained from the training dataset is used to
discretize the testing dataset. The final classification re-
sult is the average of these three folds. The performance
of the proposed CM discretization algorithm is evaluated
against four popular supervised discretization algorithms
described in Section 2: IEM, IEMV, CAIM, and CACC. Six
well-known classifiers in WEKA [12] are used to compare
the final classification results. They are Adaptive Boosting
(Ada), Decision Tree (DT), Rule based JRip (JRip), K Near-
est Neighbor (KNN) where k=3, Native Bayes (NB), and
Support Vector Machine (Sequential Minimal Optimiza-
tion) (SVM). Precision (pre), recall (rec), and F1-score (F1)
are adopted as our evaluation metrics for classification. The
F1-score is the most important metric since it considers both
precision and recall values. The classification results of the
5 UCI datasets are first analyzed. Then we discuss the re-
sults of5 concepts from the TRECVID datasets which are
more challenging for classification due to the highly imbal-
anced P/N ratio. Finally, some other criteria of evaluating a

Table 1. UCI datasets
No. data name instances features

1 pima diabetes 768 8
2 haberman 306 3
3 hill valley 606 100
4 ionosphere 351 34
5 breastcancer 569 30

Table 2. TRECVID datasets
No. concept name P/N ratio

1 chair 0.07
2 traffic intersection 0.01
3 personplaying musicalinstrument 0.04
4 personplaying soccer 0.01
5 personriding bicycle 0.02

discretization algorithm are considered.
The major properties of the5 UCI datasets and the5

TRECVID datasets are described in Table 1 and Table 2, re-
spectively. Compared to the UCI datasets, the5 TRECVID
datasets contain various P/N ratios and semantic meanings,
and they have12669 data instances and48 numeric fea-
tures. According to the P/N ratios, the TRECVID datasets
are highly imbalanced with very few positive data instances.

For the UCI datasets, from the results shown in Table 3,
IEM and IEMV produced very similar classification results
(in pre, rec and F1) across all classifiers. CAIM is close to
IEM and IEMV in general, and has about2% or 3% less
in F1-score, but sometimes outperforms them by a consid-
erable margin. The results from CACC are comparable to
CAIM but not as stable as CAIM. For example, in dataset
No. 2, JRip and NB generate the best F1 value, while Ada
and SMO give the worst. CM has the best performance in
F1, achieving4% to 5% higher than the other four methods
(on average). In addition, as can be seen from Table 3, its
performance is quite stable. As for the TRECVID datasets,
as can be seen from Table 4, the performance of IEM and
IEMV are very similar again, which is consistent with our
observation on the UCI datasets. CAIM has the worst per-
formance, especially in concepts No. 3, No. 4, and No.
5, followed by CACC. CM generates the best results, and
outperforms IEM and IEMV by6%, CACC by 10%, and
CAIM by 15% in F1-score (on average).

Another important criterion of evaluating a discretization
algorithm is the number of intervals, since a smaller number
of intervals can speed up the classifier training process and
also produce a more concise summarization of the original
data. CAIM generates the lowest number of intervals, dis-
cretizes the features of all datasets into two intervals (which
leads to less desirable classification results), and also con-
firms the conclusion from [11]: the number of intervals of



CAIM is very close to the number of classes. The number
of intervals of CM is slightly higher than IEM and IEMV
on average. For CM, each feature is discretized into at least
two intervals. While for IEM and IEMV, about1/5 to 1/2
of the features of TRECVID datasets have only one interval,
which means these features are useless in the classification
stage. Though this increases the efficiency of the classifiers,
it results in worse classification performance compared to
CM due to some mis-removed features. CACC generates
the largest number of intervals, especially on TRECVID
datasets. The concept “chair” (No. 1) has several features
being discretized to a range from400 to 700 intervals with
many having1 or few data instances. For other concepts,
many intervals of features also contain few data instances,
which is overfitting and clearly should be merged together
or with other intervals.

Last, we compare the computational complexity of each
algorithm. Due to the implementation issue, it is probably
not fair by just looking at the running time, so we also an-
alyze the time complexity. All these five algorithms need
to sort the distinct values in a feature. Suppose there aren
candidate cut-points, IEM, IEMV and CM use a binary re-
cursive way to partition the intervals, so the time complexity
is O(nlog2(n)). While CAIM and CACC examine all the
rest of the candidate cut-points at each round, so their time
complexity is quadraticO(n2) to the number of instances.
As can be seen from Table 3 and Table 4, checking every
candidate cut-point does not generate a better discretization
scheme for classification.

5 Conclusion and Future Work

Discretization is an important and necessary pre-
processing step for many classification models. In this pa-
per, a novel and effective discretization algorithm based
on correlation maximization is proposed. MCA is utilized
to measure the correlation between feature intervals and
classes. The candidate cut-point that maximizes the cor-
relation between feature intervals and classes is selected as
a cut-point. This strategy is carried out in each interval re-
cursively to further partition it. It stops when the correla-
tion between the current intervals and the classes is lower
than that of its predecessor. Experiments and analyses com-
paring our proposed discretization algorithm against other
four discretization algorithms on six classifiers demonstrate
that our proposed algorithm generates the best discretiza-
tion scheme for classification, while containing a relatively
small number of intervals and having a low computational
complexity. Currently, CM focuses on discretizing a dataset
with two classes and shows promising results. We will ex-
tend it to deal with a dataset with more than two classes in
our future work. Furthermore, more datasets will be tested
to evaluate the proposed CM discretization algorithm.
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Table 3. Classification Results of UCI Datasets

No. Methods
Ada DT JRip KNN NB SMO

pre rec F1 pre rec F1 pre rec F1 pre rec F1 pre rec F1 pre rec F1

1

IEM 0.63 0.59 0.61 0.66 0.60 0.63 0.65 0.59 0.62 0.67 0.46 0.55 0.63 0.62 0.62 0.68 0.53 0.60
IEMV 0.63 0.59 0.61 0.66 0.60 0.63 0.65 0.59 0.62 0.67 0.46 0.55 0.63 0.62 0.62 0.68 0.53 0.60
CAIM 0.62 0.54 0.58 0.64 0.47 0.54 0.62 0.53 0.57 0.62 0.49 0.55 0.62 0.53 0.57 0.65 0.50 0.57
CACC 0.63 0.59 0.61 0.63 0.58 0.60 0.63 0.59 0.61 0.65 0.53 0.58 0.61 0.62 0.61 0.64 0.52 0.57
CM 0.62 0.61 0.61 0.67 0.63 0.65 0.65 0.62 0.63 0.66 0.53 0.59 0.62 0.67 0.64 0.64 0.60 0.62

2

IEM 0.47 0.44 0.45 0.14 0.16 0.15 0.14 0.16 0.15 0.29 0.30 0.29 0.30 0.20 0.24 0.14 0.16 0.15
IEMV 0.47 0.44 0.45 0.14 0.16 0.15 0.14 0.16 0.15 0.29 0.30 0.29 0.30 0.20 0.24 0.14 0.16 0.15
CAIM 0.52 0.35 0.42 0.34 0.20 0.25 0.33 0.21 0.26 0.37 0.19 0.25 0.51 0.22 0.31 0.34 0.20 0.25
CACC 0.34 0.27 0.30 0.28 0.23 0.25 0.32 0.36 0.34 0.33 0.23 0.27 0.63 0.26 0.37 0.09 0.09 0.09
CM 0.50 0.49 0.49 0.32 0.28 0.30 0.37 0.39 0.38 0.32 0.31 0.31 0.56 0.35 0.43 0.36 0.23 0.28

3

IEM 0.5 0.49 0.49 0.49 0.49 0.49 0.49 0.45 0.47 0.49 0.49 0.49 0.48 0.55 0.51 0.49 0.49 0.49
IEMV 0.5 0.49 0.49 0.49 0.49 0.49 0.49 0.45 0.47 0.49 0.49 0.49 0.48 0.55 0.51 0.49 0.49 0.49
CAIM 0.49 0.57 0.53 0.49 0.57 0.53 0.48 0.46 0.47 0.49 0.74 0.59 0.47 0.52 0.49 0.49 0.49 0.49
CACC 0.48 0.48 0.48 0.48 0.48 0.48 0.51 0.49 0.50 0.48 0.47 0.47 0.50 0.48 0.49 0.51 0.49 0.50
CM 0.52 0.59 0.55 0.51 0.64 0.57 0.51 0.49 0.50 0.54 0.69 0.61 0.51 0.57 0.54 0.56 0.51 0.53

4

IEM 0.9 0.94 0.92 0.9 0.96 0.93 0.90 0.95 0.92 0.86 0.99 0.92 0.89 0.93 0.91 0.92 0.95 0.93
IEMV 0.91 0.93 0.92 0.88 0.94 0.91 0.92 0.89 0.90 0.87 0.99 0.93 0.89 0.93 0.91 0.91 0.94 0.92
CAIM 0.91 0.93 0.92 0.9 0.94 0.92 0.89 0.93 0.91 0.83 0.99 0.90 0.92 0.90 0.91 0.91 0.95 0.93
CACC 0.92 0.93 0.92 0.92 0.94 0.93 0.93 0.89 0.91 0.86 0.99 0.92 0.90 0.93 0.91 0.92 0.94 0.93
CM 0.92 0.96 0.94 0.9 0.96 0.93 0.95 0.94 0.94 0.87 0.99 0.93 0.94 0.95 0.94 0.95 0.94 0.94

5

IEM 0.95 0.96 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.97 0.97 0.97 0.95 0.96 0.95 0.96 0.97 0.96
IEMV 0.97 0.97 0.97 0.97 0.93 0.95 0.94 0.95 0.94 0.97 0.96 0.96 0.95 0.95 0.95 0.96 0.97 0.96
CAIM 0.94 0.96 0.95 0.94 0.95 0.94 0.94 0.97 0.95 0.95 0.98 0.96 0.95 0.96 0.95 0.95 0.97 0.96
CACC 0.92 0.94 0.93 0.93 0.97 0.95 0.95 0.93 0.94 0.96 0.97 0.96 0.96 0.96 0.96 0.96 0.97 0.96
CM 0.97 0.97 0.97 0.95 0.98 0.96 0.97 0.95 0.96 0.98 0.97 0.97 0.95 0.98 0.96 0.96 0.97 0.96

Table 4. Classification Results of TRECVID Datasets

No. Methods
Ada DT JRip KNN NB SMO

pre rec F1 pre rec F1 pre rec F1 pre rec F1 pre rec F1 pre rec F1

1

IEM 0.55 0.29 0.38 0.69 0.23 0.35 0.65 0.25 0.36 0.66 0.30 0.41 0.42 0.34 0.38 0.70 0.18 0.29
IEMV 0.54 0.29 0.38 0.68 0.21 0.32 0.65 0.26 0.37 0.66 0.28 0.39 0.42 0.34 0.38 0.67 0.17 0.27
CAIM 0.49 0.26 0.34 0.62 0.23 0.34 0.59 0.23 0.33 0.63 0.26 0.37 0.26 0.43 0.32 0 0 0
CACC 0.24 0.14 0.18 0.67 0.23 0.34 0.64 0.25 0.36 0.71 0.28 0.40 0.42 0.28 0.34 0.34 0.13 0.19
CM 0.65 0.34 0.45 0.65 0.31 0.42 0.58 0.32 0.41 0.64 0.37 0.45 0.40 0.55 0.46 0.45 0.26 0.33

2

IEM 0.47 0.24 0.32 0.92 0.17 0.29 0.79 0.20 0.31 0.91 0.21 0.34 0.12 0.35 0.18 0.91 0.17 0.29
IEMV 0.73 0.26 0.38 0.97 0.18 0.30 0.90 0.16 0.27 0.94 0.20 0.33 0.13 0.34 0.19 0.91 0.15 0.26
CAIM 0.48 0.21 0.29 0.74 0.17 0.28 0.83 0.23 0.33 0.94 0.17 0.29 0.14 0.29 0.19 0.90 0.16 0.27
CACC 0.43 0.22 0.29 0.82 0.20 0.32 0.79 0.22 0.34 0.89 0.18 0.30 0.17 0.28 0.21 0.51 0.16 0.24
CM 0.52 0.31 0.39 0.83 0.26 0.40 0.67 0.29 0.40 0.90 0.29 0.44 0.19 0.42 0.26 0.85 0.23 0.36

3

IEM 0.74 0.56 0.64 0.79 0.51 0.62 0.72 0.51 0.60 0.85 0.56 0.68 0.50 0.64 0.56 0.78 0.55 0.65
IEMV 0.75 0.54 0.63 0.80 0.51 0.62 0.73 0.53 0.61 0.84 0.55 0.66 0.49 0.63 0.55 0.79 0.54 0.64
CAIM 0.69 0.39 0.50 0.71 0.33 0.45 0.61 0.38 0.47 0.77 0.36 0.49 0.24 0.60 0.34 0.89 0.22 0.35
CACC 0.80 0.48 0.60 0.87 0.41 0.56 0.69 0.50 0.58 0.85 0.46 0.60 0.42 0.58 0.49 0.83 0.43 0.57
CM 0.75 0.59 0.66 0.81 0.53 0.64 0.71 0.61 0.66 0.78 0.64 0.70 0.51 0.68 0.58 0.83 0.68 0.75

4

IEM 0.60 0.46 0.52 0.82 0.24 0.37 0.62 0.40 0.48 0.86 0.49 0.62 0.29 0.83 0.43 0.76 0.46 0.57
IEMV 0.61 0.45 0.52 0.77 0.22 0.34 0.58 0.41 0.48 0.92 0.41 0.57 0.28 0.81 0.42 0.82 0.42 0.56
CAIM 0.67 0.36 0.47 0.65 0.25 0.36 0.70 0.44 0.54 0.90 0.22 0.35 0.27 0.61 0.37 0.76 0.32 0.45
CACC 0.64 0.25 0.36 0.70 0.19 0.30 0.52 0.35 0.42 0.90 0.24 0.38 0.32 0.65 0.43 0.75 0.39 0.51
CM 0.71 0.51 0.59 0.76 0.29 0.42 0.65 0.53 0.58 0.86 0.53 0.66 0.31 0.86 0.46 0.61 0.63 0.62

5

IEM 0.51 0.31 0.39 0.73 0.26 0.38 0.64 0.29 0.40 0.87 0.28 0.42 0.19 0.51 0.28 0.70 0.33 0.45
IEMV 0.55 0.32 0.40 0.73 0.27 0.39 0.69 0.30 0.42 0.84 0.29 0.43 0.20 0.50 0.29 0.69 0.32 0.44
CAIM 0.50 0.24 0.32 0.65 0.16 0.26 0.71 0.20 0.31 0.85 0.20 0.32 0.10 0.36 0.16 0.79 0.13 0.22
CACC 0.60 0.31 0.41 0.68 0.24 0.35 0.59 0.34 0.43 0.84 0.27 0.41 0.19 0.49 0.27 0.64 0.30 0.41
CM 0.51 0.38 0.44 0.71 0.34 0.46 0.61 0.34 0.44 0.81 0.33 0.47 0.22 0.55 0.31 0.64 0.41 0.50


