Clustering-based Binary-class Classification for Imbalanced Data Sets

Chao Chen and Mei-Ling Shyu
Department of Electrical and Computer Engineering
University of Miami
Coral Gables, FL 33124, USA
Email: c.chenl5@umiami.edu, shyu@miami.edu

Abstract

In this paper, we propose a new clustering-based binary-
class classification framework that integrates the cluster-
ing technique into a binary-class classification approach to
handle the imbalanced data sets. A binary-class classifier is
designed to classify a set of data instances into two classes;
while the clustering technique partitions the data instances
into groups according to their similarity to each other. After
applying a clustering algorithm, the data instances within
the same group usually have a higher similarity, and the dif-
ferences among the data instances between different groups
should be larger. In our proposed framework, all nega-
tive data instances are first clustered into a set of negative
groups. Next, the negative data instances in each negative
group are combined with all positive data instances to con-
struct a balanced binary-class data set. Finally, subspace
models trained on these balanced binary-class data sets are
integrated with the subspace model trained on the origi-
nal imbalanced data set to form the proposed classification
model. Experimental results demonstrate that our proposed
classification framework performs better than the compara-
tive classification approaches as well as the subspace mod-
eling method trained on the original data set alone.

Keywords: Binary classification, Subspace Modeling, Im-
balanced data sets, Clustering.

1 Introduction

Recently, with the prosperity of social networks and the
advances of the Internet techniques, a huge amount of mul-
timedia sources, such as videos and images, has posed a
great challenge on searching, indexing, and retrieving the
data that the users are interested in from the multimedia
sources. For example, soccer fans are very interested in fan-
tastic goals made by the soccer players. Therefore, effective
goal detection in a large collection of soccer videos is vital
to meet the request of soccer fans [4][5][12]. Another ex-

ample would be the semantic indexing within large video
collections. TRECVID [13] semantic indexing task attracts
attention from research institutions all over the world. The
objective of semantic indexing task is to detect and rank
video shots that contain a target concept from a given video
collection. Since different concepts are mixed together in
the video shots, a popular preprocessing step is to generate
a number of binary-class data sets where the target concept
is regarded as the positive class and the rest of the concepts
are regarded as the negative class.

However, one of the problems in the aforementioned de-
tection task is that the size of positive (concept) class within
a binary-class data set is typically much smaller than that of
the negative (non-concept) class, so that the positive class
becomes the minority class and the negative class is the ma-
jority class. This is so-called data imbalance issue [9]. As
most of the popular learning algorithms develop their learn-
ing models based on the assumption that the classes are bal-
anced, the performance of their learning models is usually
not satisfactory when the data set is imbalanced [8].

In this paper, a novel binary-class classification frame-
work is proposed to address such data imbalance issue.
First, the original (training) data set is divided into two
subsets, one for positive class and one for negative class,
based on the class labels. Then, K-means clustering algo-
rithm is applied to cluster the data instances in the nega-
tive class subset into K negative groups. Each of the K
negative groups is combined with the positive class sub-
set so that new K data groups are formed. For each data
group, one subspace model is trained and optimized. Fur-
thermore, these K subspace models are then integrated with
the subspace model trained on the original data set to build
an integrated model that is expected to render better perfor-
mance than the subspace model trained on the original data
set alone.

The paper is organized as follows. Section 2 introduces
the related work. The details of the proposed framework is
illustrated in Section 3. The setup and results of the compar-
ative experiment are shown in Section 4. Finally, Section 5

concludes this paper and explores some future directions.

2 Related Work

Broadly, there are two major categories of techniques de-
veloped to address the data imbalanced issue. One is data
sampling and the other one is boosting [11]. Data sampling
can be further divided into oversampling and undersam-
pling [2]. The idea of oversampling is to add more new data
instances to the minority class to balance a data set. These
new data instances can either be generated by replicating the
data instances of the minority class or by applying synthetic
methods like Synthetic Minority Over-sampling Technique
(SMOTE) [3]. Undersampling differs from oversampling in
that it removes data instances of the majority class to bal-
ance a data set. There are also approaches that combine both
undersampling and oversampling together [10]. The prob-
lem with data sampling is that: on one hand, the removal of
the data instances of the majority class causes information
loss, although the time of model learning is reduced. On the
other hand, duplicating or creating data instances of the mi-
nority class requires more time for model learning, but the
improvement on performance may be negligible [6].

The other category of techniques to handle data imbal-
ance issue is Boosting. Unlike data sampling which di-
rectly copes with data imbalance issue on the data level,
Boosting methods are designed to reduce the influence of
data imbalance on the model level by improving the perfor-
mance of weak and poor models. The most famous boosting
method is AdaBoost [7]. In the training phase, Adaboost
reweighs the training data instances and training models it-
eratively by minimizing the error of prediction produced by
an ensemble of models. In the classification phase, a vote
of these weighted ensemble models determines the label of
each testing data instance. The boosting methods are proved
to be effective, but their major drawback is that they usually
require a time-consuming iteration process to find the opti-
mal weights.

3 Proposed Framework

Our proposed framework is based on a few subspace
models built on several data sets. Here, the framework of
subspace modeling is first introduced.

Suppose that the training data set 7r contains R data in-
stances and C attributes. Thus, it can be regarded as a 2-D
matrix with R rows and C columns. Each row stands for a
data instance which is denoted as Tr(x,:)!, where x € [1,R].
Each column stands for one attribute, which is denoted as
Tr(:,y),wherey € [1,C]. An element of the 2-D matrix
Tr(x,y) means the value of attribute y for data instance x.

Iwe use A(i,:) to denote the i-th row of matrix A, as will be seen later.

The testing data set is denoted as T's, which has the same
attributes as the training data set. 7's[i] means the i-th data
instance in the testing data set. The training and testing
phases of the subspace modeling are shown in Code 1 and
Code 2, respectively. Section 3.1 illustrates the definitions
of the operators and functions used in the Codes.

3.1 Definitions

Dot operators are defined in Definition 1 to facilitate later
expressions. These operators are commonly seen in Matlab.

Definition 1 (Dot operator). Dot division (./) between two
vectors a = {ay, ..., ag} and b = {by,...,by} is defined
asa./b={a\/by, ..., agz/bs}. Dot multiplication (.*) be-
tween two vectors a = {ay,...,aq} and b ={by,... by} is
defined as a.xb={a; x by, ..., ag X by}.

Definition 2. The mean vector of a m x n matrix A = a(i, j)
is defined as W(A), wW(A)=[w1(A),...,U,(A)]. Each element
W;j(A) is calculated by:

3

1
— a(i,j),j:1,2,...7n (1)
mi=

pi(A) =

Definition 3. The standard deviation vector of a m X n ma-
trix A = a(i, j) is defined as s(A), s(A)=[s1(A),...,sn(A)].
Each element s j(A) is calculated by:

] m
sj(A) = p— Y (a(i,j)—ui(A)2,j=1.2,....n (2
i<

Definition 4 (function Z). For a m x n matrix A = a(i, j)
and a p X n matrix B,

(B(1,:) —u(A))./s(A)

Z(B,A) =

(B(p,:) — 1(A))./s(A)
Here, Z(A,A) is the z-score normalization result of A.

Definition 5 (SVD). The standard SVD (Singular Value
Decomposition) is shown in Equation (3).

A=UxvT. (3)

The SVD function of a m X n matrix A defined here
will further produce two important items, A(A) and
PC(A). A(A) is the positive diagonal elements of
>y sorted in a descending manner. In other words,
A=A (A, Ag(A) A (A) > Aa(4) > - > Zg(A) >
0}. The other item PC(A) is the eigenvectors from V that
correspond to the sorted A(A).

CODE 1: SUBSPACE MODELING: LEARNING PHASE

1 Input:
(1) A set of training data instances Tr
(2) Training labels

2 Output: p/P), BP) y(TrP), u(TrN), s(TrP),
s(TrN), A(TrP), A(TrN), PC(TrP), PC(TrN)

3 Divide Training data set Tr into positive class TrP
and negative class TrN according to training labels.

4 Calculate u(TrP), u(TrN), s(TrP) and s(TrN)

Calculate Z(TrP, TrP) and Z(TrN, TrN)

6 Perform SVD function on Z(TrP, TrP) to derive the
corresponding positive eigenvalues A (7rP) and
PC(TrP), and the eigenvectors of Z(TrP, TrP)T*
Z(TrP, TrP). Likewise, derive A(TrN) and PC(TrN)

7 Perform PCP(Tr, TrP) and PCP(Tr, TrP) to get the
projected training data on the PC subspaces of
positive class and negative class, respectively.

8 forpl<1toB

W

9 Calculate Score(Tr, TrP, pl) and Score(Tr, TrN, pl).

10 for B < init value to end _value with step s

11 Get FinalScore(Tr, TrP, TrN, B, pl) by subtracting

B x Score(Tr, TrN, pl) from Score(Tr, TrP, pl).
12 The data instances with positive FinalScore

are predicted as negative. Otherwise, predicted

as positive.

13 Compute F1-score

14 end

15 end

16 Output pl(©) and B(°P") corresponding to the best
F1-score.

), s(TrP) and s(TrN).

17 Output u(TrP), u(TrN
A(TrN), PC(TrP) and PC(TrN).

18 Output A(TrP), A(

Definition 6 (function PCP). Suppose there is
a m x n matrix B = b(i,j), and eigenvectors
PC(A)={PC|(A),...,PCg(A)}, where PCi(A) is a nx 1
vector, i=1,..., 0, as defined in Definition 5. The Principal
Component Projection (PCP) of B on PC(A) is defined as:

PCP(B,A) = {B+PC{(A),...,BxPCg(A)} (4

Definition 7. Based on Definitions 5 and 6, we can further
define the score function Score(B,A, pl)=[Score|(B,A, pl),

.., Scorex(B,A,pl), ..., Scorey(B,A,pl)|T, where
Scorex(B,A, pl) is defined as:

Pl PCPy, ,(B,A) x PCP, . (B,A)
() \P> (o) \

Scorey(B,A, pl) = E ,
(BAPD= L, 2o(A)

®)

where pl can be any integer between 1 and 0.

Definition 8. FinalScore(T,A,B,a,pl) for a vector T is

defined as follows, where o is a scalar.

FinalScore(T,A,B,a, pl) = Score(T,A, pl) — axScore(T,B, pl).
(6)

CODE 2: SUBSPACE MODELING: CLASSIFICATION PHASE

1 Input:
(1) Testing data instance T's[i], i=1 to @ (the total
number of testing data instances)
(2) Output from the learning phase: pl(©P"), P,
w(TrP), u(TrN), s(TrP), s(TrN), A(TrP), A(TrN),
PC(TrP), PC(TrN)

2 Output: FinalScore(Tsli], TrP, TrN, B°P) | pl(or))
and predicted label of T'si]

V)

Calculate Z(T's[i], TrP) and Z(T's[i], TrN)

4 Perform PCP(Ts[i], TrP) and PCP(T's[i], TrN)
to get the projected testing data on the PC subspaces
of positive class and negative class, respectively.

5 Calculate Score(T's[i], TrP, pl\®")) and
Score(Tsli], TrN, pl©°P)).

6 Get FinalScore(Ts[i], TrP, TrN, B°P"), pi°P")) by
subtracting B(°P") x Score(T's[i], TrN, pl‘°P")) from
Score(Tsli], TrP, pl°P")).

7 if FinalScore(Tsli], TrP, TrN, Blor | pitery <0

Predict T'si] as positive.
8 else
Predict 7T's[i] as negative.
9 end
10 Output FinalScore(Tsli], TrP, TrN, BoPt) pi(ort))
and T's[i]’s predicted label.

From Equation (4), it can be seen that PCP(B,A) is a m X
6 matrix. If we use PCP(, ;)(B,A) to denote the element of
PCP(B,A) at x-th row and y-th column, PCP, (B, A) is
the projection of x-th row vector of B on y-th eigenvector of
PC(A).

3.2 Clustering-based subspace modeling

Figure 1 shows the overall framework of CLUstering-
based SUbspace MOdeling (CLU-SUMO). In this frame-
work, the negative training data set TrN is clustered into
K groups, namely TrN(D, . TrNK). Each of the K
groups is combined with 77P to from Group 1, ..., Group
K, as shown in Figure 1. Each Group K is modeled by a
SUbspace MOdel (SUMO). In the classification phase, the
scores of a testing data instance from SUMOs of all groups
and the original data set are then integrated together using
different weights. The label of that testing data instance is
then predicted by checking if the integrated score is greater
than zero or not. The learning and classification of CLU-
SUMO is shown in Code 3.

Leamingi Classification

ositive Original
? _ ./ _ dataset | Isfi] K
Training H TP T Subspace _.,i SubSPACe |y ringiScore(Ts[ij, TP, TN, , OV, prov) > ! H
dataset Tr H \ learning | Lclassification i IrP, TeN,, 5 pI°0)
> IrN " .
negativel _4,_ | |
' b b
K-means 1
clusterin_g 1/ Group 1 I T[] ,_.I_’ Wy=exp(-1 *|| Tsfij-C™|)) » WeightedFinaiScore
1 1 N l } L
v IrP :L 1 No
Subspace ¢ Subspace N ., dictas
| | 0 B, (op0) 7 (opt) predic
> Ve learning gl classification | FinalScore(Ts[i], TeP, TeN, B00,pl,3) [>0? negative
== I Yes ¢
| c® predictas
Group | positive
K ' T3[i] -—-|—> Wi=exp(-1| T5[i]-C™|))

rP -
I|I Subspace* Subspace

learning | classification

L

® FinalScore(Ts[i], TrP, TrN(, BPY, pi(0pt)) =3 el

gy

Figure 1. The clustering-based subspace modeling

CODE 3: CLU-SUMO: LEARNING & CLASSIFICATION

1 Learning Step:

2 Divide training data set T'r into positive set TrP and
negative set TrN.

3 Apply K-mean clustering method to cluster 7rN into K
clusters TrN(l), e, TrN®) . Derive C(l), e, C<K),
which are the centroids of TrN (1), ..., TrN (K),

4 Build Group j by combining 7rN/) with TrP, j =1,

.., K.

5 Apply subspace learning on original data set as well as
on Group 1 to Group K.

6 Classification Step:

7 For a testing data instance T's[i], apply subspace testing
using the parameters from subspace learning models
and get the FinalScore(Ts[i], TrP, TrN, B(oP"), pl(or))
and FinalScore(Ts[i), TrP, TrNU), B\, pi*?), j =1,

.., K.

8 Calculate the weight for Group j using
Wi=exp(—1x||Ts[i] —CY)|]), j=1,...,K.

9 Calculate WeightedFinalScore =
FinalScore(Ts[i], TrP, TrN, BP") piter)) . K +
):5-{:1 FinalScore(Ts[i],TrP, TrN(j),ﬁ](om,plEom)) -W;.

10 if WeightedFinalScore < 0 .
Predict 7's[i] as positive.

11 else
Predict T's[i] as negative.

12 end

4 Experiments

In order to evaluate the effectiveness of our proposed
framework, experiments are conducted using the public
available data sources. The proposed framework is also
compared with other existing approaches. The experiment

Table 1. Performance of classification on Con-
cept Building

Classifier Precision | Recall | Fl1
CLU-SUMO 0.28 0.56 | 0.37
SUMO 0.33 0.34 | 0.33
SVM 0.45 0.19 | 0.27
NB 0.20 0.54 | 0.30
NN 0.29 0.19 | 0.23
3-NN 0.24 0.38 | 0.29
Ada 0.33 0.17 | 0.22
DTree 0.29 0.28 | 0.28
MP 0.37 0.31 | 0.34

setup and results are shown in Section 4.1 and Section 4.2,
respectively.

4.1 Experiment Setup

The data sets used in the experiments are from the Me-
diaMill Challenge Problem [14], which uses 85 hours of
video data from the 2005 NIST TRECVID training and
testing sets [1]. There are 5 experiments in the challenge
problem and the training and testing data sets in Experi-
ment 1 are used in our experiments. The training data set
consists of 30993 data instances and 120 attributes; while
the testing data set has 12914 data instances. Five concepts
are selected with positive to negative ratio between 0.043
to 0.074. Therefore, these data sets are very imbalanced
and thus suitable to prove the effectiveness of our proposed
framework.

In the experiments, all classifiers take the same training
and testing data sets and the performance from all classi-
fiers is evaluated in terms of F1-score which is the harmonic

Table 2. Performance of classification on Con-
cept Car

Classifier Precision | Recall | F1
CLU-SUMO 0.25 0.32 | 0.28
SUMO 0.43 0.19 | 0.26
SVM 0.34 0.24 | 0.28
NB 0.08 0.56 | 0.14
NN 0.28 0.25 | 0.27
3-NN 0.18 036 | 0.24
Ada 0.41 0.18 | 0.25
DTree 0.23 0.24 | 0.24
MP 0.28 0.20 | 0.23

Table 3. Performance of classification on Con-
cept Meeting

Classifier Precision | Recall | Fl1
CLU-SUMO 0.28 0.29 | 0.29
SUMO 0.39 0.19 | 0.25
SVM 0.34 0.25 | 0.28
NB 0.07 0.84 | 0.12
NN 0.16 0.16 | 0.16
3-NN 0.13 0.33 | 0.19
Ada 0.25 0.17 | 0.20
DTree 0.22 0.16 | 0.19
MP 0.22 035 | 0.27

mean of precision and recall.

For SUMO and CLU-SUMO, the init_value, end_value,
and step s of for our framework are selected as —3, 3, and
0.02, respectively in the learning phase of subspace model-
ing. In order to balance the positive and negative classes in
the generated data groups, K is chosen to be 5 in our exper-
iments so that the positive to negative ratio is, on average, a
little more than 1/5. With regard to the classification algo-
rithms used for performance comparison, a list of popular
approaches such as Support Vector Machine (SVM), Naive
Bayes (NB), Nearest Neighbor (NN), K-Nearest Neighbor
(K-NN), Adaboost with C4.5 algorithm (Ada), C4.5 algo-
rithm (DTree), and Multilayer Perceptron (MP) available in
Weka [15] are used. These classifiers produce the probabil-
ity that a testing data instance belongs to the positive class,
which is defined as probability of positiveness (PoP) in this
paper. The classification rule based on the PoP is shown as
follows:

IF PoP > 0.5, THEN assign positive label
IF PoP < 0.5, THEN assign negative label

On account of the data imbalance issue, we utilize an

Table 4. Performance of classification on Con-
cept Female

Classifier Precision | Recall | F1
CLU-SUMO 0.15 0.22 | 0.18
SUMO 0.17 0.15 | 0.16
SVM 0.18 0.11 0.14
NB 0.03 0.68 | 0.06
NN 0.08 0.15 | 0.10
K-NN 0.06 032 | 0.11
Ada 0.18 0.08 | 0.11
DTree 0.08 0.14 | 0.11
MP 0.11 0.21 0.14

Table 5. Performance of classification on Con-
cept Military

Classifier Precision | Recall | Fl1
CLU-SUMO 0.26 0.35 | 0.30
SUMO 0.29 0.20 | 0.24
SVM 0.35 0.17 | 0.23
NB 0.11 0.70 | 0.20
NN 0.21 0.16 | 0.18
K-NN 0.17 0.30 | 0.22
Ada 0.28 0.08 | 0.13
DTree 0.18 0.25 | 0.21
MP 0.28 0.26 | 0.27

adaptive threshold 7 instead of 0.5 to achieve an equivalent
effect as the “reweighting” method. Therefore, the classifi-
cation rule is modified as follows.

IF PoP > 7, THEN assign positive label
IF PoP < 7, THEN assign negative label

We search 7 from 0.1 to 1 with a small step size 0.02
for all the aforementioned comparative algorithms to get
their best F1-score on the testing data. In this way, we be-
lieve it is more reasonable and fair to compare our proposed
framework with these comparative methods using an adap-
tive threshold.

4.2 Experimental Results and Analyses

The experimental results are shown from Table 1 to Ta-
ble 5. The results reveal that our proposed framework CLU-
SUMO is better than all comparative approaches with re-
gard to all concepts used in the experiments. Table 6 shows
that on average CLU-SUMO is at least 3% better than the
other comparative methods. On account of low F1-scores
in the experiments, the 3% improvement is quite valuable.

Table 6. Average F1 on all 5 Concepts

Classifier mean F1
CLU-SUMO 0.28
SUMO 0.25
SVM 0.24
NB 0.16
NN 0.19
K-NN 0.21
Ada 0.18
DTree 0.20
MP 0.25

Another contribution of CLU-SUMO is shown in Tables 1,
3, and 5. If the subspace model is trained on the original
data set alone, the performance in terms of F1-score may be
inferior to Multilayer Perceptron for some data sets. How-
ever, if clustering-based subspace modeling is applied, the
performance is the best among all the compared classifica-
tion algorithms. This improvement is obviously from the
weighted voting of these K + 1 subspace models. K sub-
space models are created on K new data groups, which are
more balanced than the original data set. These learning
models may capture better positive class patterns than the
model trained by only the original data set. However, this
statement is true only if K is appropriately selected. If K
is too small, then the improvement is not obvious. On the
other hand, if K is too large, then within some new data
groups, the minority class could now be the negative class
and the subspace models may be overfitting to the positive
class.

5 Conclusion and Future Work

This paper introduces a new clustering-based binary-
class subspace modeling classification framework. Our
proposed framework first utilizes the K-means clustering
method to cluster the negative training data set into K dif-
ferent negative groups. Then each negative group is com-
bined with the positive training data to construct K new data
groups which are more balanced, and each data group trains
a subspace model. Our proposed framework is demon-
strated to be effective according to comparative experiments
with other well-known classification algorithms. For the fu-
ture work, several directions will be investigated to increase
the robustness of the framework. First, experiments pertain
to the influence of the cluster size K on the performance
of the proposed framework should be conducted. Second,
boosting technology can be explored in the learning step of
CLU-SUMO to further improve the performance.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]

The mediamill challenge problem (2005).

E. Batista, G, R. C. Batista, and M. C. Monard. A study
of the behavior of several methods for balancing machine
learning training data. ACM SIGKDD Explorations Newslet-
ter, 6(1):20-29, June 2004.

N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. Smote:
Synthetic minority over-sampling technique. Journal of Ar-
tificial Intelligence Research, 16(1):321-357, January 2002.
S.-C. Chen, M.-L. Shyu, C. Zhang, and M. Chen. A mul-
timodal data mining framework for soccer goal detection
based on decision tree logic. International Journal of Com-
puter Applications in Technology, Special Issue on Data
Mining Applications, 27(4):312-323, October 2006.

S.-C. Chen, M.-L. Shyu, C. Zhang, L. Luo, and M. Chen.
Detection of soccer goal shots using joint multimedia fea-
tures and classification rules. In Proceedings of the Fourth
International Workshop on Multimedia Data Mining, pages
3644, August 2003.

C. Drummond and R. C. Holte. C4.5, class imbalance, and
cost sensitivity:why under-sampling beats over-sampling. In
Proceedings of the International Conference on Machine
Learning (ICML 2003) Workshop on Learning from Imbal-
anced Data Sets I1, pages 1-8, July 2003.

Y. Freund and R. Schapire. Experiments with a new boosting
algorithm. In Proceedings of the 13th International Confer-

ence on Machine Learning, pages 148—156, July 1996.

H. He and E. Garcia. Learning from imbalanced data.
IEEE Transactions on Knowledge and Data Engineering,
21(9):1263-1284, September 2009.

N. Japkowicz and S. Stephen. The class imbalance problem:
A systematic study. Intelligent Data Analysis, 6(5):429-450,
November 2002.

Y. Peng and J. Yao. Adaouboost: Adaptive over-sampling
and under-sampling to boost the concept learning in large
scale imbalanced data sets. In Proceedings of the interna-
tional conference on Multimedia information retrieval (MIR
’10), pages 111-118, March 2010.

C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napoli-
tano. Rusboost: A hybrid approach to alleviating class im-
balance. IEEE Transactions on Systems, Man and Cybernet-
ics, Part A: Systems and Humans, 40(1):185-197, January
2010.

M.-L. Shyu, Z. Xie, M. Chen, and S.-C. Chen. Video se-
mantic event/concept detection using a subspace-based mul-
timedia data mining framework. IEEE Transactions on Mul-
timedia, 10(2):252-259, February 2008.

A. F. Smeaton, P. Over, and W. Kraaij. Evaluation cam-
paigns and TRECVid. In ACM International Workshop on
Multimedia Information Retrieval (MIR06), pages 321-330,
October 2006.

C. Sneok, M. Worring, J. Gemert, J. Geusebroek, and
A. Smeulders. The challenge problem for automated de-
tection of 101 semantic concepts in multimedia. In ACM
Multimedia, pages 421-430, October 2006.

I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, second
edition, June 2005.

