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Abstract

In this paper, a classification framework is developed
to address the issue that empirical determination of the
parameters and their values typically makes a classifi-
cation framework less adaptive and general to different
data sets and application domains. Experimental re-
sults show that our proposed framework achieves (1)
better performance over other comparative supervised
classification methods, (2) more robust to imbalanced
data sets, and (3) smaller performance variance to dif-
ferent data sets.

1 Introduction

Supervised classification has been widely applied to
many applications [2] [3] [5]. One issue in most of the
classification methods is that they require sophisticated
or iterative parameter tuning steps to achieve an op-
timal or near optimal performance. To address this
issue, in this paper, a supervised multi-class classifica-
tion framework with adaptive and automatic parame-
ter tuning is developed to reduce the number of param-
eters involved in model training, lessen the influence of
empirical knowledge in parameter value tuning, and
avoid brute-force iterations in determining parameter
values.

This paper is organized as follows. Section 2 shows
the proposed framework. The experimental results are
given in Section 3. Section 4 concludes this paper.

2 The Proposed Framework

Our proposed framework consists of two phases
and both phases include the Principal Component

Classifier Array and Label Coordinator modules.

Principal Component Classifier Array: This module
consists of an array of Principal Component Classifiers
(PCCs). Each PCC is used to recognize the “normal”
data instances belonging to one particular class. Let
O={oij} with N data instances and p features, where
i = 1, 2, . . . , N and j = 1, 2, . . . , p, be the training data
set. Also, let o be one of the columns in O, avg(o) and
std(o) be the average and standard deviation of o, X̄ =
1
N

N∑
i=1

Xi and S = 1
N−1

N∑
i=1

(Xi − X̄)′(Xi − X̄). After

applying normalization to the training data instances,
column by column, using X = o−avg(o)

std(o) , their Maha-

lanobis distances Mahal i =
√

(Xi − X̄)S−1(Xi − X̄)′

are calculated for each data instance Xi, i=1,2, . . ., N .
For each PCC, the removal of the outliers in the

“normal” data instances is based on the “MahTH”
threshold defined in Equation (1) which is obtained
by the empirical study. The “normal” data instance i
will be regarded as an outlier if Mahal i > MahTH,
and it will not contribute to build the training model.
Only the first PC length PCs will be selected as the
representative PCs and all data will be projected on
the retained representative principal component sub-
space using Y = X · PC. Here, X is the normal
data after the process of outlier removal and PC =
(pc1, pc2, . . . , pcPC length) is the set of retained repre-
sentative PCs.

MahTH = avg(Mahal) + 1.5× std(Mahal). (1)

Let Y norm and Y abnorm be the projection sets of “nor-
mal” and “abnormal” data instances of a PCC on the
representative subspace. Furthermore, let q ≤ p be the
number of representative components, Y norm

j be the



jth column of Y norm, and Y abnorm
j be the jth column

of Y abnorm. Then each data instance i uses Equations
(2) and (3) to calculate its distances to the normal and
abnormal data instances.

scorei =
q∑

j=1

(Yij −mean(Y norm
j ))2

std(Y norm
j )

(2)

DistAbnormi =
q∑

j=1

(Yij −mean(Y abnorm
j ))2

std(Y abnorm
j )

(3)

For each PCC, if scorei ≤ DistAbnormi, then the
data instance i is classified as “normal” and assigned
the PCC’s class label; otherwise, i is “abnormal”.

Label Coordinator: This module takes care of the data
instances that are “unknown” (i.e., no class label) or
“ambiguous” (i.e., two or more class labels) after the
first module. It assigns the data instance with the la-
bel of the classifier with the lowest score value which
implies a closer relationship between the testing data
instance and the associated class. If there is a tie in
the score values, the class label of the data instance
can be randomly selected from one of those classifiers
who have the same score values.

3. Experiments and Analyses

The evaluation was conducted on four data sets
from the UCI Machine Learning Repository [1]. Our
proposed framework is compared to sixteen classifica-
tion methods available in WEKA [4], including Lo-
gistic (LOG), Support Vector Machine (SVM), Near-
est Neighbor (NN), K-Nearest Neighbor (KNN, K
varies in different groups), AdaBoost-SVM (A-SVM),
AdaBoost-C4.5 (A-C4.5), C4.5 decision trees (C4.5),
Random Forest (RF), Decision Table (DT), One Rule
(OR), Naive Bayes (NB), Bayes Networks (BN), Multi-
layer Perceptron (MP), Radial Basis Function networks
(RBF), RIPPER (RIPP), and PART.

Table 1 demonstrates that our proposed framework
outperforms the other compared classification meth-
ods in all four data sets, even for the imbalanced
data sets (i.e., “Haberman” and “Heart”). In “Haber-
man”, the class ratio is 225:81 and in “Heart”, the
class ratio 212:55. Moreover, the experimental results
showed that none of the compared methods achieves
the best performance and their relative performance
varies among different data sets. On the other hand,
the performance of our proposed framework is the best
for all four data sets.

Table 1. Performance comparison
Acc.% Haberman Vehicle Iris Heart
SMC 77.12 82.44 97.34 84.27
LOG 74.84 78.26 97.34 80.52
SVM 73.53 80.29 95.96 81.65
NN 67.97 67.87 94.65 79.03

KNN 76.80 74.15 96.00 82.02
A-SVM 75.49 79.82 97.30 80.15
A-C4.5 74.18 74.91 94.69 82.77
C4.5 74.18 72.04 94.69 82.02
RF 70.59 76.10 96.65 84.27
DT 73.53 60.81 94.65 79.40
OR 71.57 51.98 94.00 79.40
NB 76.80 44.80 95.30 79.78
BN 73.53 59.02 94.61 79.40
MP 74.84 80.64 97.34 82.77
RBF 75.16 79.70 96.69 83.52
RIPP 72.88 68.95 96.00 83.15
PART 73.53 70.26 94.69 81.27

4 Conclusion

In this paper, a supervised multi-class classifica-
tion framework with adaptive and automatic parame-
ter tuning is proposed. It attempts to determine some
key parameters adaptively in a non-iterative way, and
at the same time to reduce the number of parameters
involved in the PCC. Comparative experiments with
sixteen existing supervised classification methods show
that our proposed framework achieves higher accuracy,
better robustness, and less performance variation.

References

[1] The uci machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] T. Quirino, Z. Xie, M.-L. Shyu, S.-C. Chen, and
L. Chang. Collateral representative subspace projection
modeling for supervised classification. In Proceedings of
the 18th IEEE International Conference on Tools with
Artificial Intelligence, pages 98–105, Washington D.C.,
USA, Nov. 13–15, 2006.

[3] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and
L. Chang. A novel anomaly detection scheme based
on principal component classifier. In Proceedings of the
IEEE Foundations and New Directions of Data Mining
Workshop, pages 172–179, Melbourne, Florida, USA,
Nov. 19–22, 2003.

[4] WEKA. http://www.cs.waikato.ac.nz/ml/weka/.
[5] X. Yin, J. Han, J. Yang, and P. S. Yu. Efficient classifi-

cation across multiple database relations: A crossmine
approach. IEEE Transactions on Knowledge and Data
Engineering, 18(6):770–783, Jun. 2006.


