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Abstract 
 
Associative classification has aroused significant 

attention recently and achieved promising results. In the 
rule ranking process, the confidence measure is usually 
used to sort the class association rules (CARs). However, 
it may be not good enough for a classification task due to 
a low discrimination power to instances in the other 
classes. In this paper, we propose a novel conflict-based 
confidence measure with an interleaving ranking strategy 
for re-ranking CARs in an associative classification 
framework, which better captures the conflict between a 
rule and a training data instance. In the experiments, the 
traditional confidence measure and our proposed 
conflict-based confidence measure with the interleaving 
ranking strategy are applied as the primary sorting 
criterion for CARs. The experimental results show that 
the proposed associative classification framework 
achieves promising classification accuracy with the use of 
the conflict-based confidence measure, particularly for an 
imbalanced data set. 

 
1. Introduction 

In recent years, extensive research has been carried out 
to integrate classification and association rule discovery 
[1, 2], which are two of the most important research areas 
in data mining [4, 8, 9, 11]. Such an integrated approach 
is called Associative Classification (AC) that can produce 
more efficient and accurate classifiers than some of the 
traditional classification techniques. Moreover, the 
generated classifiers in the form of class association rules 
(CARs), whose consequent part is a class label, are more 
comprehensive than some statistical classifiers such as 
Naïve BaYes. Some classifiers based on AC have been 
proposed such as CAEP [3], CMAR [5], CBA [6], and 
ADT [12]. These algorithms rank the generated CARs 
using a confidence measure.  

According to the majority of AC algorithms, the rule 
ranking process plays an important role in the 
classification process since the accuracy is affected 
directly to the order of CARs. However, the confidence 
measure has some limitations [10]. Thus, in the past few 
years, various measures have been proposed such as 
Interest (I, also known as lift), Conviction (V), Correlation 

(φ), Cosine (IS), and etc. [10]. However, all of these 
measures still have some drawbacks and are mainly 
designed for association rule discovery task, not for 
classification tasks. Furthermore, for a classification task, 
the confidence measure may be not good enough due to a 
low discrimination power to the instances in the other 
classes. The reason is that a confidence measure is 
defined using a frequency count of the exact matched 
instances on a training data set. On a space of distribution, 
it is possible that a high confidence rule can be close to 
many instances in different classes. Thus, this rule has a 
possibility to misclassify instances in different classes on 
a testing data set. 

In this paper, we propose a novel conflict-based 
confidence measure for ranking CARs in an associative 
classification framework, which better captures the 
conflict between a rule and a training instance. It 
quantifies the amount of conflict that a rule possesses 
with respect to all instances belonging to different classes 
in the data set. Moreover, we also propose an interleaving 
ranking strategy that can improve performance of CARs 
on both balance and imbalance data sets. 

This paper is organized as follows. In Section 2, the 
associative classification approach is discussed. The 
overview of our proposed framework is described in 
Section 3. Then, we show the details of our proposed 
conflict-based confidence measure in Section 4. In 
Section 5, we present experimental results. Finally, we 
conclude our study in Section 6. 

 
2. Associative Classification 

Associative classification (AC) is a data mining 
technique that integrates classification with association 
rule mining (ARM) to find the rules from classification 
benchmarks. A generated rule for classification, called 
“class association rule” (CAR), is an implication of the 
form of X  c, where itemset X is non-empty subset of all 
possible items in the database, X ⊆ I, I={i1, i2,…, in} 
where n is the number of itemsets, and c is a class 
identifier,  c∈{c1, c2,…, cm} where m is the number of 
classes. Let a rule itemset be a pair <X, c>, containing the 
itemset X and a class label c. The rules are discovered in a 
training data set of transactions Dt. The strength of a rule 
R can be measured in terms of its support (sup(R)) and 



confidence (conf(R)). The support of R is the percentage 
of the instances in Dt satisfying the rule antecedent and 
having class label c as shown in Equation 1. The 
confidence of R is the percentage of instances in Dt 
satisfying the rule antecedent that also have the class label 
c as shown in Equation 2. 
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Referring to the support and confidence constraints, 
the rule X  c is a class association rule if the following 
two conditions are satisfied: sup(X  c) ≥ minsup 
(minimum support threshold) and conf(X  c) ≥ minconf 
(minimum confidence threshold). To find all CARs, many 
algorithms are commonly decomposed into three major 
processes: rule generation, rule selection, and 
classification. First, the rule generation process extracts 
all CARs that satisfy both minimum support and 
minimum confidence thresholds from the training data 
set. Second, the rule selection process applies the pruning 
techniques to select a small subset of high-quality CARs 
and builds an accurate model of the training data set. 
Finally, the classification process is used to classify an 
unseen data instance. 

 
3. The Proposed Interleaving Conflict-Based 

Associative Classification Framework 
Figure 1 shows the system architecture of our proposed 

framework. The main contribution of our proposed 
framework is that the proposed conflict-based confidence 
measure is used to rank the generated rules instead of the 
traditional confidence measure. We will describe the 
concept and calculation of our proposed measure in 
Section 4. As can be seen from Figure 1, our proposed 
framework consists of four modules, namely Rule 
Generator, Rule Re-ranking, Model Evaluation, and 
Classification. 

The rule generator module generates the class 
association rules (CARs) from the training data. Based on 
the original Apriori algorithm [1], the generated CARs 
depend on the minimum support and minimum 
confidence thresholds. One of our main objectives is to 
demonstrate that the CARs ranked by the conflict-based 
confidence measure improve the classification accuracy 
over those ranked by the traditional confidence measure. 
We, therefore, aim to generate all possible rules by setting 
a low minimum support (5% in this study). In order to 
compare the ranking method, the minimum confidence 
threshold is set to 0% 

In the rule re-ranking module, the whole set of 
generated CARs are sorted based on our proposed 
conflict-based confidence measure instead of the 
traditional confidence measure. In addition, the 
interleaving strategy is adopted, which gives a better 

result in both balanced and imbalanced data sets. This is 
motivated by the observations that the number of rules for 
the majority class (e.g., negative class) is usually much 
larger than the number of rules for the other class (e.g., 
positive class) for an imbalanced data set, and the rules 
for the negative class are most likely on the top of the 
sorted rule set. Consequently, classification accuracy of 
the positive class drops due to misclassifications. Our 
empirical studies showed that the interleaving ordered 
rule set achieves the better performance than the 
traditional ordered rule set. The interleaving strategy is as 
follows. First, we categorize the generated CARs by each 
class. Second, for each class, we sort the generated CARs 
based on our proposed conflict-based confidence 
measure. Finally, we interleave the CARs for each class 
that have the same rank to create the final rule set. 

 

 
 
 
 

 
As will be explained in Section 4.1, the conflict-based 

confidence measure directly depends on the α-value 
(called the closeness threshold). The model evaluation 
module aims to adaptively find the most suitable α-value 
based on the characteristics of each data set. In order to 
find the best α-value, an initial α-value, the maximum α-
value, and an increment parameter are pre-defined. We 
start with the initial α-value for model evaluation based 
on the accuracy (i.e., F1 measure) of the generated CARs. 
For each iteration, we increase the α-value using the 
increment parameter until reaching the maximum α-value. 

1) Rule Generator 

Class Association 
Rules (CARs) 

2) Rule Re-ranking 

Training Data 

3) Model Evaluation 

Testing Data 

CARs + Accuracy 

4) Classification 

Class Prediction 

 α-values 
= 1 to 10 

Pick the best α-value

Figure 1. System architecture of the proposed 
interleaving conflict-based associative classification 

framework 



Finally, we choose the generated CARs with the α-value 
which gives the best accuracy. 

The last module is classification that is used to classify 
a testing data instance. There are many constraints to 
classify a testing data instance based on the generated 
CARs, such as the first matched rule and the majority 
class of the k-top matched rules. In this paper, the 
classification module is based on the first matched rule 
constraint since it is simple and fast. Moreover, it is 
suitable for comparing the accuracy between CARs 
ranked by the tradition confidence measure and our 
conflict-based confidence measure. 
 
4. Our Proposed Conflict-Based Confidence 

Measure 
The proposed conflict-based confidence measure (cfb-

conf) is based on a novel way of defining the conflict 
between a rule and a training data instance. It quantifies 
the amount of conflict that a rule possesses with respect to 
all instances belonging to different classes in the data set. 

 
4.1. A conflict measure for a rule 

A conflict measure between a given rule and a training 
data instance is defined under the following three 
assumptions.  

Assumption 1: The conflict between a given rule and 
the instances belonging to different classes should be 
high. In the contrast, there is no conflict between the 
given rule and any instance belonging to the same class.  

Assumption 2: If the classes of a given rule and an 
instance are different, and all the feature-value pairs in the 
antecedent of the rule are identical to those features in that 
instance, the conflict is the highest.  

Assumption 3: If the classes of a given rule and the 
instance are different, and all the feature-value pairs in the 
antecedent of the rule are different from those features in 
that instance, there is no conflict (the lowest).   

Table 1 shows an example of three data instances in 
class C(2), showing only the values of those features (i.e., 
f1, f3, f4, f6) appeared in the antecedent of rule (i.e., {(f1=Y), 
(f3=Y), (f4=N), (f6=N)}  C(1)). Here, )1(

1r  denotes the first 
rule of class C(1) and (f4=N) means that the value of f4 in 
the rule is N. The conflict between )1(

1r and all data 

instances in C(2) should be high. Data instance )2(
1T  gives 

the highest conflict to )1(
1r  because it misclassifies this 

data instance. While there is no conflict to data instance 
)2(

3T , )1(
1r can classify this data instance correctly. Though 

data instance )2(
2T  will not be misclassified by )1(

1r , this 
data instance is considered to be close to the rule because 
the values of features  f1,  f4, and  f6  are the same. 

From the aforementioned assumptions, we propose a 
function to calculate the conflict between the given rule 

and the training data instance with the following 
characteristics: 

(a) The conflict should be a decreasing function of the 
distance between the rule and the training data 
instance in an unmatched class. 

(b) The conflict should be an increasing function of the 
amount of conflict between the class labels. 

 
Table 1. The example data instances in class C(2) 

 f1 f3 f4 f6 Class 
)2(

1T  Y Y N N C(2) 
)2(

2T  Y N N N C(2) 
)2(

3T  N N Y Y C(2) 

 
We apply the Manhattan distance as shown in 

Equation 3 to analyze the distance between the jth
 feature 

of the given rule )(k
lr  of class k and the training data 

instance )( 'k
iT  in class k’ (k’ ≠ k). Let )(k

lF  and iF  be the 

set of features appeared in the antecedent of rule )(k
lr  and 

the corresponding features in training data instance )( 'k
iT , 

respectively. We can calculate the normalized distance 
),( )(

i
k

l FFDis   by dividing the total number of features in 
the antecedent of the rule (as shown in Equation 4).  
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The proposed conflict measure between the given rule 
)(k

lr and the training data instance )( 'k
iT  is calculated by 

referring to Characteristics (a) and (b) and their distance 
is calculated using Equation 5. Since we consider only the 
conflict of the rule to all data instances of the unmatched 
classes, the conflict is 0 if their classes are identical.  
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Moreover, we only consider the conflict of the rule and 
close data instances of unmatched classes, due to 
alleviating the effect of noisy data in the training data. We 
define the α-value as a closeness threshold to prune all 
non-close data instances. The constraint is that the 
conflict of the data instance whose distance to the given 

rule is larger than 
α
1  is not considered. Thus, the conflict 

variation is primarily dependent on the α-value. The 



larger α-value is assigned, the more number of instances 
are pruned. From the example in Table 1, when the α-
value is 3, the conflict between rule )1(

1r  and data instance 
)2(

1T  is 1 since its distance to the rule is 0. For data 

instance )2(
2T , its distance to the rule is 0.25 and its 

conflict to )1(
1r  is 0.0625. The conflict to data instance 

)2(
3T  is 0 because its distance to )1(

1r  is 1, which is greater 
than 0.33 (1/3). 

Since the most suitable α-value varies from the 
characteristics of a data set, the model evaluation module 
in our proposed framework in Section 3 aims to find this 
value adaptively. There are three pre-defined values in 
this module which are the initial and maximum α-values, 
and the increment parameter. For the maximum α-value, 
we always set it to the number of features in the data set. 
The reason is best demonstrated by the following 
example. If the number of features is 4 and the assigned 
maximum α-value is 4, we will consider only the data 
instances whose distance to the rule is less than 0.25 (1/4). 
In the case of the data instance whose values of three 
features are matched and the value of one feature is not 
matched to the rule, we won’t calculate the conflict of this 
data instance since their distance is 0.25. It means that we 
consider only the exact matched data instance whose 
distance is 0. In our experiments, we set the maximum α-
value to 10 since there are 10 features in the experimental 
data set. For the other pre-defined values, we set the 
initial α-value to 1 and the increment parameter is also set 
to 1. 

 
4.2. The proposed conflict-based confidence 
measure  

Now we consider a conflict-based confidence measure 
of a rule defined in a way that it would take the close data 
instances into account. If a rule is not good, there will be a 
significant number of “close data instances which belong 
to different classes” and there will probably be a larger 
number of conflicting data instances. Consequently, the 
assigned confidence will be reduced significantly. Based 
on this fact, we propose a function that calculates a 
conflict-based confidence of each rule )(k

lr  as shown in 
Equation 6, where NTC is the total number of classes. We 
average the conflict measures for each data instance in the 
unmatched classes by dividing the number of all data 
instances in the different classes. Then, the average 
conflict measure is used as a penalty score minus from the 
maximum confidence value which is 1. From the example 
in Table 1, if there are only three data instances of the 
unmatched classes in the database, the conflict-based 

confidence of the rule )1(
1r  is (

3
0625.0011 ++

− ) = 0.6458. 
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5. Experimental Results 

In this section, we aim to evaluate the proposed 
conflict-based confidence measure with respect to the 
classification accuracy. Three performance evaluation 
metrics used are precision, recall, and F1 values as shown 
in Equations 7, 8, and 9. Let TP, FP, and FN be the 
numbers of true positive, false positive, and false 
negative, respectively. The F1 measure is considered as a 
more suitable performance metrics than precision and 
recall values individually, since it is the harmonic mean of 
precision and recall values.  
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Experiments were run on a 3.00 GHz Pentium 4 CPU 

with 1GB of RAM running under Windows Command 
Processor. The data set used is the bank.arff data set 
available at [7]. This data set has only nominal data and 
belongs to two classes (YES and NO). Moreover, we used 
this data set to generate balanced and imbalanced data 
sets as shown in Table 2. We used the whole bank.arff as 
a balanced data set and randomly removed some of data 
instances belonging to Class “Yes” to generate an 
imbalanced data set. For each data set, we also randomly 
separated data into two sets used for training and testing. 
 

Table 2. The details of experimental data sets 

Data Set Class Total Training Testing 

Balanced 
YES 274 183 91 
NO 326 217 109 

TOTAL 600 400 200 

Imbalanced 
YES 40 27 13 
NO 326 217 109 

TOTAL 366 244 122 

 
5.1. The effect of various α-values 

Since the conflict variation is primarily dependent on 
the α-value, this experiment aims to decide the most 
suitable α-value for each data set adaptively based on the 
characteristics of the data set. In our experiments, for each 
data set, ten α-values ranging from 1 to 10 with an 
increment by 1 are used. Figure 2 shows that the average 
F1 values on various α-values of the first-fold 
experiments on both balanced and imbalanced training 
data sets. Both graphs increase to the highest peak, 
decrease, and then converge to steady classification 



accuracy. As can be seen from this figure, we can 
conclude that the difference in accuracy can be large with 
respect to the different α-values. In Figure 2, the best α-
values of the first-fold classification models on the 
balanced and imbalanced training data sets are 4 and 3, 
respectively.  

 
Figure 2. Average F1 values on various α-values of 

the first-fold experiments on both balanced and 
imbalanced training data sets 

5.2. Performance comparison on a balanced 
testing data set 

In this experiment, we intend to compare the 
classification accuracy on precision, recall, and F1 among 
the CARs ranked by the traditional confidence measure  
(conf) and the proposed conflict-based confidence 
measure based on the interleaving ordering strategy 
(interleaving cfb-conf). To make the experimental results 
more convincing, 10-fold cross validation is used. For 
each run, referring to the previous experiment, we have to 
find the most suitable α-value for the generated CARs in 
the model evaluation module. 

Table 3 shows the 10-fold cross validation comparison 
performance between the aforementioned methods on a 
balanced data set for Classes “Yes” and “No”, and their 
average values as well as the standard deviation values (in 
parentheses). As expected, the performance of the 
interleaving conflict-based associative classification 
framework can achieve better results of all performance 
evaluation measures on all classes with lower standard 
deviation values, comparing to the performance of the 
traditional confidence measure. Figure 3 demonstrates the 
bar chart that illustrates the average performance 
evaluation. According to this figure, we can conclude that 
the overall performance of CARs ranked by our proposed 
conflict-based confidence measure is better than that of 
the rules ranked by the traditional confidence measure. 

 
5.3. Performance comparison on an imbalanced 
testing data set 

We also conducted an experiment on an imbalanced 
training data set. Table 4 shows the comparison 
performance between the aforementioned methods on an 

imbalanced testing data set for Classes “Yes” and “No”, 
and their average values as well as the standard deviation 
values (in parentheses). Figure 4 shows the overall 
performance comparison between the aforementioned two 
rule ranking strategies. As can be seen from this figure, 
the performance of the precision, recall, and F1 values of 
the CARs ranked by the traditional confidence measure 
are very bad, since all rules totally misclassify the 
instances of Class “Yes” (the non-majority class). Since it 
cannot classify the instances of Class “Yes” for all 10 
runs, the evaluation measures (Precision, Recall and F1) 
for each run are equal. Thus, the standard deviations (SD) 
of these measures are 0. In contrast, the experimental 
results of those ranked by our proposed interleaving 
conflict-based confidence measure show better 
performance.  
 

Table 3. Performance comparison of 10-fold cross 
validation between conf & interleaving cfb-conf 

methods on a balanced testing data set 

Class              Measures 
Eval. 

Conf (±SD) Interleaving 
Cfb-Conf (±SD) 

 Precision(YES) 83.28 (±3.96) 82.24 (±2.86) 
Yes Recall (YES) 75.71 (±4.29) 82.64 (±3.14) 

 F1(YES) 79.18 (±2.21) 82.36 (±1.58) 
 Precision (NO) 81.21 (±2.44) 85.50 (±1.97) 

No Recall (NO) 87.06 (±4.16) 84.95 (±3.33) 
 F1(NO) 83.96 (±1.92) 85.17 (±1.57) 
 Precision (Avg) 82.25 (±2.09) 83.87 (±1.47) 

AVG Recall (Avg) 81.39 (±1.92) 83.30 (±1.46) 
 F1 (Avg) 81.81 (±1.97) 83.83 (±1.46) 

 

 
Figure 3. Average precision, recall, and F1 values of 
10-fold cross validation between conf & interleaving 

cfb-conf on a balanced testing data set 

6. Conclusion 
In this paper, we propose an interleaving conflict-

based associative classification (AC) framework. 
However, the traditional confidence measure which is 
used by most of the AC algorithms in the ranking process 
has a low discrimination power. To address this issue, a 
new confidence measure called “conflict-based 
confidence measure” is proposed which applies a distance 



function to find a conflict between a rule and all training 
data instances belonging to different classes in the 
training data set. Moreover, our proposed framework 
incorporates an interleaving ordering strategy in ranking 
the rules. The experimental results show that the CARs 
ranked by our proposed conflict-based confidence 
measure achieve a better performance than those ranked 
by the traditional confidence measure in both balanced 
and imbalanced data sets. 

 
Table 4. Performance comparison of 10-fold cross 

validation between conf & interleaving cfb-conf 
methods on an imbalanced testing data set 

Class            Measures 
Eval. 

Conf (±SD) Interleaving 
Cfb-Conf (±SD) 

 Precision(YES) 0.00 (±0.00) 11.09(±0.47) 
Yes Recall (YES) 0.00 (±0.00) 89.23 (±10.38) 

 F1(YES) 0.00 (±0.00) 19.70 (±0.94) 
 Precision (NO) 89.34 (±0.00) 93.81 (±5.54) 

No Recall (NO) 100.00 (±0.00) 14.77 (±7.80) 
 F1(NO) 94.37 (±0.00) 24.70 (±10.90) 
 Precision (Avg) 44.67 (±0.00) 52.45 (±2.98) 

AVG Recall (Avg) 50.00 (±0.00) 52.00 (±2.25) 
 F1 (Avg) 47.19 (±0.00) 52.22 (±2.57) 

 

 
Figure 4. Average precision, recall, and F1 values of 
10-fold cross validation between conf & interleaving 

cfb-conf on an imbalanced testing data set 
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