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Abstract 
 

In this paper, an effective multi-concept classifier is 
proposed for video semantic concept detection. The 
core of the proposed classifier is a supervised 
classification approach called C-RSPM (Collateral 
Representative Subspace Projection Modeling) which 
is applied to a set of multimodal video features for 
knowledge discovery. It adaptively selects non-
consecutive principal dimensions to form an accurate 
modeling of a representative subspace based on the 
statistical information analysis and thus achieves both 
promising classification accuracy and operational 
merits. Its effectiveness is demonstrated by the 
comparative experiment, as opposed to several well-
known supervised classification approaches including 
SVM, Decision Trees, Neural Network, Multinomial 
Logistic Regression Model, and One Rule Classifier, 
on goal/corner event detection and sports/commercials 
concepts extraction from soccer videos and TRECVID 
news collections. 
 
1. Introduction 
 

The advanced development in electronic imaging, 
video devices, storage, networking, and computer 
power has made it possible and affordable for 
generating, sharing, and analyzing huge amounts of 
multimedia data across large-scale distributed data 
sources (e.g., video and audio databases). For video 
databases, semantic analysis such as concept detection 
is vital for effective video data management. Here, the 
concepts include both important activities that capture 
users’ attentions (soccer goals, traffic accidents, etc.) 

and high-level semantic features (sports, commercials, 
etc.) [12].  

One of the main challenges in this research area is 
how to refer high-level semantic concepts 
automatically (or at least semi-automatically) from the 
low-level video features, which is the so-called 
semantic gap. Many research efforts have been devoted 
toward the following three main processes.  
• Syntactic analysis. Many studies have been 

conducted to partition the video clips into 
appropriate analysis units (shot-level [4], story 
unit [14], etc.) and to explore more representative 
features for the targeted video concepts. It is often 
further classified into two broad categories, i.e., 
unimodal approaches [20] that study the respective 
role of visual, audio, and texture mode in the 
corresponding domain, and multimodal 
approaches [6][15] that combine the strength of 
various modalities to capture the video content in a 
more comprehensive manner [3]. Nevertheless, the 
studies are mainly at syntax-level which are 
relatively less domain dependent and capture low-
level features directly from video streams.  

• Decision-making process. This process aims at 
extracting the semantic index from the feature 
descriptors to improve the framework robustness. 
For instance, the Markov-model-based techniques 
have been extensively studied, including the 
hidden Markov model (HMM) [18] and controlled 
Markov chain (CMC) [6], to model the temporal 
relations among the frames or shots for a certain 
event. Recently, data mining techniques, such as 
SVM [9], Neural Network [7], and Decision Tree 
[4], have been increasingly adopted owing to their 



  

strong capability of uncovering useful and/or 
nontrivial information from large volumes of data. 
Though such techniques have been long proven as 
effective data classification mechanisms and have 
been successfully applied to many different 
applications, they still fail to bridge the semantic 
gap in video concept detection by applying only to 
low-level features. Instead, most current 
researches rely heavily on certain artifacts such as 
domain-knowledge and a priori models, leading to 
the so-called domain-related modeling process.      

• Domain-related modeling. Though some 
generalized video concept detection approaches 
have been conducted, their detection capability is 
largely limited [11]. Therefore, the domain-related 
modeling process is widely adopted in the 
literature to derive domain specific mid-level 
representations [5] or heuristic rules [4]. They can 
largely boost the framework accuracy by either 
improving the feature representations or pruning 
the data set with the facilitation of domain 
knowledge, which unfortunately greatly limits 
their extensibility in handling other application 
domains and/or video sources.  

In this paper, we target at relaxing the dependency 
on domain knowledge and automating the concept 
detection process with the adoption of multimodal 
content analysis and the C-RSPM (Collateral 
Representative Subspace Projection Modeling) 
supervised classification approach. In addition, we also 
address another critical yet less studied challenge, 
called data imbalance (or rare concept detection) issue. 
That is, generally the concepts of interests are often 
infrequent, and thus a large number of negative 
instances overshadow a small percentage of positive 
counterparts and dominate the detection model training 
process. This issue usually results in an undesirable 
degradation of the detection performance as 
demonstrated in our previous study [10].     

This paper is organized as follows. Section 2 
describes our proposed framework in details. The 
empirical study and results are presented and analyzed 
in Section 3. We conclude our study in Section 4. 
 
2. The proposed framework 
 

The proposed framework consists of three major 
components, namely video syntactic analysis, 
subspace-based data pruning, and C-RSPM data 
classification (as shown in Figure 1). As will be 
discussed later, both data pruning and C-RSPM 
components are subspace-based. Therefore, the 
advantages of adopting subspace-based data pruning 
followed by the C-RSPM classification approach are 

twofold. First, the removal of large portions of 
negative instances greatly alleviates the data imbalance 
issue and results in better class distribution. Second, a 
large portion of calculation results from the data 
pruning component can be re-used in the C-RSPM 
component. 
 
 

 
Figure 1. Overview of the Proposed 

Framework 
 
2.1. Video syntactic analysis 
 

In this component, a shot-boundary detection 
algorithm proposed in our previous work [1] is adopted 
to partition the video sequence into basic syntactic 
units (i.e., shots), which serve as the basis for feature 
extraction and semantic analysis. Multimodal features 
including five visual features and twelve audio features 
are then extracted for each shot. The visual features are 
pixel_change, histo_change, dominant_color_ratio, 
background_mean, and background_var. The first two 
features denote the average pixel/histogram changes 
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between the consecutive frames within a shot, and 
dominant_color_ratio represents the ratio of dominant 
color in the frames. background_mean and 
background_var are based on region-level analysis 
where the SPCPE segmentation algorithm [2] is used 
to identify background/foreground regions of video 
frames. They then capture the shot-level standard 
deviation and mean color values in the background 
regions. Audio features are exploited in both time-
domain and frequency-domain, which include ten shot-
level generic features (one volume, five energy, and 
four spectrum flux features) and two “around-
boundary” audio features, that is, due to the reason that 
an audio stream can be continuous even around the 
shot boundary, the volume statistics information (i.e., 
mean and max) is captured for the duration of 3 
seconds around the shot boundary to explore the audio 
track information.  

 More details about the visual-audio features are 
presented in our previous work [4]. The feature set is 
normalized to minimize the feature scale effects for 
multivariate data. One important fact is that the feature 
set is not domain specific and is used for the detection 
of all the concepts in our study.   

 
2.2. Subspace-based data pruning 
 

 It is often challenging for a typical detection 
process to be able to capture a small portion of targeted 
instances from the huge amount of video data (e.g., 
less than 1:100 in our goal event detection empirical 
study), especially with the existence of noisy and 
irrelevant information introduced during video 
production and feature extraction processes. To address 
this data imbalance (or rare concept detection) issue, 
many existing studies seek the help from domain 
knowledge through domain-related modeling; whereas 
in contrast, we adopt the subspace-based data pruning 
scheme proposed in our previous study [10] to 
eliminate a great portion of negative instances without 
the dependency of domain knowledge.  

Let }{ ijxX =  ( pi ,...,2,1=  and Nj ,...,2,1= ) be 
the feature matrix resulted from the first component 
(i.e., video syntactic analysis), containing N p-
dimensional column vectors ),...,,( 21 ′= pjjjj xxxX , 
where p and N indicate the number of features (e.g., 
seventeen in this study) and analytical units (i.e., shots 
in this study) in the original data set. For supervised 
data classification, X is divided into a training data set 

AX (i.e., class labels are given with 1N  labeled 
positive instances AeX  and 2N  labeled negative 
instances AnX ) and a testing data set BX  (with 
unknown class labels).  

2.2.1. Step 1: Automatic eigenspace projection and 
analysis. The main idea in this step is to utilize the 
correlation matrix of the trimmed training data set to 
acquire the statistics on the transformed principal 
component space. Let ∑ =

=
N

j jXNX
1

)/1( , the 

robust correlation matrix is defined as 
∑ =

′−−−=
N

j jj XXXXNS
1

))(())1/(1( .  

We randomly select T1 data instances from AeX  for 
K times and pick the best group as eX . The statistical 
properties of this group, as will be defined in Eq. (1), 
can be used to recognize 100% data instances in AeX  
(i.e., they are considered normal data instances to eX ) 
and at the same time to reject the maximal percentage 
of data instances (as abnormal data instances) in AnX . 
Note that we can always find the group(s) with 100% 
recognizing rate for data instances in AeX  when K and 
T1 are big enough (an extreme case would be to set T1 
= N1). Similarly, nX  can be defined as the selected T2 
(T2 < N2) negative data instances which reject 100% 
data instances in AeX  and at the same time recognize 
the maximal percentage of data instances in AnX . In 
our proposed framework, eX  and nX  are called 
typical positive data instances and typical negative data 
instances, respectively, which facilitate further data 
analysis and better exploration of the statistical 
information present in the data set.  

Now, the key challenge is how to locate eX  and 
nX , which in turns is converted into the issue of how 

to differentiate the normal and anomalous data 
instances in the view of a set of positive (or negative) 
data instances.  

Assume that ),( 11 Eλ , ),( 22 Eλ , …, ),( pp Eλ  
are the p eigenvalue-eigenvector pairs of the robust 
correlation matrix S for the selected T1 positive data 
instances from AeX or T2 negative data instances from 

nX . Ei is the ith typical eigenvector and 
0...21 ≥≥≥≥ pλλλ . Let }{ ijyY =  

( pi ,...,2,1=  
and 1,...,2,1 Tj =  for the positive data instances or 

2,...,2,1 Tj =  for the negative data instances) be the 
instance score matrix, and Ri ( pi ,...,2,1= ) be the row 
vector in Y. We define the class-deviation measure as 
shown in Eq. (1). 

./)( 2∑
∈

=
Mm

mmjj yc λ     (1) 

Here, Mm∈  is the selected positive (or negative) 
component space which satisfies the following 
condition: 

.)( α<mRSTD         (2) 



  

α  is the arithmetic mean of the standard deviation 
values of all Ri. The maximum value 

)max(max jcc =  is selected as a threshold to 
determine if an incoming data instance is statistically 
normal to the selected T1 positive (or T2 negative) data 
instances, i.e., the data instance k is abnormal if 

maxcck >  and normal otherwise.  

Once eX and nX  are identified, eX  is used to reject 
negative data instances in X, that is, to locate 
anomalous data instances in the view of eX  following 
the above stated approach, and the recognized normal 
data instances are then checked by nX  for further 
pruning. Consequently, a large portion of negative data 
instances are successfully removed, which greatly 
alleviates the aforementioned issue. In addition, all the 
remaining data instances are projected onto the typical 
negative eigenspace and the score values are extracted 
to replace the original feature set with the extra 
benefits of feature reduction.  

 
2.2.2. Step 2: Self-refining training data set. The 
quality of the training data set has a great influence on 
the final classification performance, especially in the 
case of semantic concept detection, where the number 
of positive data instances is so limited that several 
mislabeled training data instances may greatly degrade 
the training model. To overcome this problem, a 
training data set self-refining process is proposed based 
on the first dimension of the typical negative 
eigenspace (denoted as AeR1  and AnR1  for the data 
instances remained in AeX  and AnX , respectively) 
since it presents the most data information. Normally, 

AeR1  (the relative anomalous ones) would have a 
higher value than that of AnR1 . Therefore, the following 
two self-learning rules are proposed to refine the 
training data set.  
• Any data instance whose corresponding value in 

AnR1  is larger than the average value of AnR1  is 
removed; 

• Any data instance whose corresponding value in 
AeR1  is smaller than half of the average value of 
AeR1  is removed.     

 
2.3. C-RSPM classification  
 

Given the pruned data set, the C-RSPM 
classification algorithm is applied for final concept 
detection. In our previous study [8], we have 
developed C-RSPM as a multi-class supervised 
classification framework for intrusion detection 

application, whose main idea is that the training data 
instances belong to different classes can in fact be 
considered anomalous to one another. Intuitively, C-
RSPM can be extended in concept detection 
applications, since the concept units can be considered 
as anomalous to the non-concept ones and vice versa. 
C-RSPM consists of a Classification Module and an 
Ambiguity Solver Module. 

 
2.3.1. Classification module. The classification 
module contains an array of component classifiers, 
where the number of classifiers is determined by the 
number of classes required by a specific application 
(e.g., two classifiers in our study as there are two 
classes, event/concept vs. non-event/concept). An 
unknown data instance is input to each of the 
classifiers, and each classifier classifies this unknown 
data instance as normal (i.e., belonging to the concept 
of its training data instances) or anomalous (i.e., non-
concept). The basic idea in this module is to generate a 
predictive model that learns the similarities among 
training data instances of a particular class (concept), 
after which the attained similarity information can be 
used in recognizing the testing data instances that are 
normal to the corresponding concept. Meanwhile, all 
other data instances belonging to other classes 
(concepts) are recognized as statistically anomalous to 
the classifier via a computed class threshold measure 
which is derived from our proposed instance class-
deviation measure.    

Specifically, given Rm ( Mm∈ ) obtained in Eq. 
(2), a refined principal component space V is 
determined using parameter TH as defined in Eq. (3). 

2)]([ m

m

RSTD
TH

λ
= .  (3) 

Consequently, we get |M| number of TH values and 
the principal components with the top ranked TH 
values. Based on our empirical studies, the ones rank 
top 20% are selected to form the space V in this paper. 
It is noted that the selected principal components are 
possibly non-consecutive and may not be only major 
principal components, breaking the assumption widely 
used in previous PCA (Principal Component 
Analysis)-based algorithms that only the principal 
components with larger eigenvalues are important to 
the representation of the original data set. It is not 
always true since it ignores that principal components 
with larger eigenvalues only have a significant effect 
on the representation of the information embracing 
both the “similarity” and “dissimilarity” information, 
instead of only the “similarity” of the original data set. 
However, in C-RSPM, the most important aspect is the 
representation of the similarity of a training class.   



  

Similarly, Eq. (1) is applied as the class-deviation 
equation, with the only change that the subspace V is 
used instead of the space M. This results in an array 

}{ jcC = . From a geometrical point of view, this can 
be considered as an ellipsoid modeling function in the 
refined eigenspace and C is an array of values 
corresponding to the possible ellipsoidal borders that 
can be used to enclose the projected training data set of 
the class. Thus a threshold (denoted as thC ) is 
generated based on C, the desired pre-set false alarm 
rate β , and the Cumulative Distribution Function 
(CDF) as given in Eq. (4). 

β−=1)( thC CCDF .      (4) 

That is, thC  is defined by finding the CDF of the array 
C, and the Parzen window non-parametric fitting 
method [19] is adopted to select the threshold value 
based on β  which is an adjustable input parameter in 
C-RSPM. In order to coalesce both aspects of a high 
true detection rate and a low false alarm rate, a typical 
low value ( %1.0=β ) that has been employed in 
several research areas and applications [17] is chosen 
as the default value for each classifier component. 
Then for each component classifier, the decision rules 
to classify each of the testing data instances 

NjX B
j ′= ,...,2,1,  

(assuming N ′  testing data instances) 
can be established naturally based on thC , i.e., the data 
instance j is abnormal if th

B
j Cc >  and normal 

otherwise. 
 
2.3.2. Ambiguity solver module. Ideally, a data 
instance normal to a particular classifier should be 
rejected by the remaining classifiers. However, in real 
applications, it is possible that an instance either (i) 
may be classified as normal by multiple classifiers, or 
(ii) may not be recognized as normal by any classifier. 
Such an ambiguous situation is addressed by the 
ambiguity solver module in C-RSPM.  

The first issue arises from the fact that hardly any 
classifier can ensure 100% classification accuracy and 
the quality of data sources is rarely perfect. The second 
issue usually translates into an incoming testing data 
instance belonging to an unknown class which has not 
been modeled by C-RSPM or originates from the pre-
set false alarm rate. To solve the ambiguity issue, both 
the Cumulative Distribution Function (CDF) and 
Probability Density Function (PDF) are first applied, 
and the one with the stronger differentiation power for 
a certain ambiguous testing instance among the 
classifiers is used. The testing data instance is 
classified to be the class (concept) of the classifier with 

the smallest CDF value (if using CDF) or the largest 
PDF value (if using PDF), and it is considered to be 
abnormal to the rest of the classifiers. 

Formally, in the Classification Module for concept 
detection, we obtain e

th
e CC /

 
for the concept class 

and n
th

n CC /   for the non-concept class, respectively, 
following the procedures discussed earlier. For the jth 
data instance in BX  (i.e., B

jX ), we get e
jc  and n

jc  
accordingly. It is considered as ambiguous if (i)  

e
th

e
j Cc ≤  and n

th
n
j Cc ≤ , or (ii) e

th
e
j Cc >  and 

n
th

n
j Cc > . The Ambiguity Solving Module uses the 

following steps to classify whether the B
jX  

data 
instance belongs to the concept class. 

 
 
STEP 1:  

Calculate )( e
jc cCDF e , )( e

jc
cPDF e , )( n

jc
cCDF n , )( n

jc
cPDF n . 

 
STEP 2: 
if 

)(

)()(

)(

)()(
e
jc

n
jc

e
jc

e
jc

n
jc

e
jc

cPDF

cPDFcPDF

cCDF

cCDFcCDF

e

ne

e

ne −
≥

−  

      if )()( n
jc

e
jc

cCDFcCDF ne ≤ , B
jX  

is a concept; 
      else B

jX  is a non-concept; 
      endif 
else  
      if )()( n

jc
e
jc cPDFcPDF ne ≥ , B

jX  
is a concept; 

      else B
jX  is a non-concept; 

      endif 
endif 
 

 

 
Note that in the rare case that )()( n

jc
e
jc

cCDFcCDF ne ==  

or )()( n
jc

e
jc

cPDFcPDF ne == , the data instance is assigned 
to be a concept. This is because in concept detection, 
the recall metric is normally considered as more 
important than the precision metric. In other word, we 
would like to be able to classify as many data instances 
to the correct concepts as possible even at the cost of 
including a small number of false positives. 
 
3. Empirical study 
 

The proposed framework was rigorously tested 
upon a large experimental data set with 27 soccer 
videos and 6 TRECVID videos [13]. The total duration 
of the video clips is about 800 minutes, and these 



  

videos were obtained from a variety of sources with 
various production styles. Soccer videos are one of the 
most widely adopted testbeds for concept detection due 
to their popularity and loose structures. TRECVID 
videos are used and promoted by the National Institute 
of Standards and Technology to boost the researches in 
semantic media analysis by offering a common video 
corpus [13]. In the experiment, we target to detect goal 
and corner concepts from the soccer videos, where they 
account for only 41 and 95 shots, respectively, out of 
4,885 shots. As discussed earlier, it is quite challenging 
to detect such rare concepts. In addition, two concepts, 
sports and commercial, are selected as the target 
concepts from the TRECVID videos since they differ 
from each other in terms of production styles and 
occurrence frequencies (63 and 898 out of 2,304 shots, 
respectively). By applying a single framework on 
different video sources and concepts, we intend to 
testify the effectiveness and generalization of our 
proposed framework.    

 
3.1. Experimental setup 
 

In order to better evaluate our proposed framework, 
the five-fold cross-validation scheme is used. That is, 
the 2/3 of the video data are randomly selected for 
training and the rest are used for testing. Accordingly, 
for each empirical study, totally five decision models 
are constructed and tested with the corresponding 
testing data sets. The performance is then compared 

with a set of well-known classification methods, such 
as SVM, Decision Trees (C4.5), Neural Network (NN), 
Multinomial Logistic Regression Model (MLR), and 
One Rule Classifier (OR), which are enclosed in the 
WEKA package [16]. Three evaluation metrics, recall 
(R), precision (P), and F1 measure (F), are adopted. In 
the literature, the pair of recall and precision is 
generally used. However, as it is always possible to 
sacrifice one metric value in order to boost the other, 
the F1 measure, which is a combination of recall and 
precision and is defined as 2RP/(R+P), is deemed as a 
better performance metrics.  

 
3.2. Performance comparison 
 

As presented in Section 2, the video sources are 
processed via syntactic analysis. Then in the subspace 
data pruning component, after 50 times random 
selection and comparison (i.e., K=50), the selected 
typical goal, corner, sports, and commercial instances 
can recognize 100% corresponding concept instances 
and reject about 85%, 72%, 74%, and 36% non-
concept instances, respectively. On the other hand, the 
selected typical negative instances can reject 100% 
concept instances and recognize about 80%, 72%, 
83%, and 67% non-concept ones. As can be seen, a 
large portion of non-concept instances can be pruned 
and thus to alleviate the data imbalance issue. The 
cleaned data are then passed to the C-RSPM 
classification component.  

 

Table 1. Performance comparison 

  C-RSPM 
(%) 

SVM (%) C4.5 (%) NN (%) MLR (%) OR (%) 

R 85.0  35.1 70.3 67.6 48.6 48.6 
P 69.1    100.0 81.3 75.8 81.8 72.0 

goal 

F 75.7  52.0 75.4 71.4 61.0 58.1 
R 66.7    0.0 28.7 23.0   0.0 26.4 
P 32.4    0.0 78.1 60.6       0.0 67.6 

corner 

F 43.6    0.0 42.0 33.3   0.0 38.0 
R 81.7  39.7 61.9 55.6 49.2 58.7 
P 58.5 86.2 70.9 85.4    100.0 80.4 

sports 

F 68.2 54.3 66.1 67.3 66.0 67.9 
R 94.8 86.2 83.5 79.0 84.4 72.4 
P 75.2 75.9 77.3 76.1 76.3 66.7 

commercial 

F 83.9 80.7 80.3 77.5 80.1 69.4 
 

 
 

Table 1 shows the performance comparison. The 
best performance (P, R, and F) for each concept across 
all the classification methods are shown in bold fonts. 
From this table, we have the following observations. 
First, C-RSPM always achieves the best recall values 

in all the test cases. As we discussed before, recall is 
generally considered to be more important than 
precision in concept detection. Second, though some 
other classification approaches can yield better 
precision than C-RSPM, our F1 measure is always the 



  

best in all the cases, which captures the system overall 
performance in a more complete manner. In summary, 
C-RSPM outperforms all the other classification 
approaches used in the experiments for concept 
detection. The proposed framework is very promising 
in the sense that it works automatically for concept 
detection by using only seventeen low-level features 
and without or with limited dependency on domain 
knowledge. 

 
4. Conclusion 
 

In this paper, an effective multi-concept detection 
framework is presented, which consists of the syntactic 
video analysis, subspace-based data pruning, and C-
RSPM classification components. Our proposed 
framework has the following unique characteristics. 
First, it intelligently integrates the strengths of multi-
modal video analysis and data mining method and 
seeks to bridge the semantic gap without or with 
limited dependency on domain knowledge. Second, it 
effectively addresses the data imbalance issue by the 
subspace-based data pruning component. Third, it 
efficiently enables a large portion of calculation results 
from the data pruning component to be re-used in the 
C-RSPM component since both components are 
subspace-based. The comparative experiments on 
various concept detections from a large set of video 
clips demonstrate the effectiveness and generalization 
of our proposed framework.    
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