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Abstract

The development of effective classification techniques,
particularly unsupervised classification, is important for
real-world applications since information about the train-
ing data before classification is relatively unknown. In this
paper, a novel unsupervised classification algorithm is pro-
posed to meet the increasing demand in the domain of net-
work intrusion detection. Our proposed UNPCC (Unsu-
pervised Principal Component Classifier) algorithm is a
multi-class unsupervised classifier with absolutely no re-
quirements for any a priori class related data informa-
tion (e.g., the number of classes and the maximum num-
ber of instances belonging to each class), and an inher-
ently natural supervised classification scheme, both which
present high detection rates and several operational ad-
vantages (e.g., lower training time, lower classification
time, lower processing power requirement, and lower mem-
ory requirement). Experiments have been conducted with
the KDD Cup 99 data and network traffic data simulated
from our private network testbed, and the promising results
demonstrate that our UNPCC algorithm outperforms sev-
eral well-known supervised and unsupervised classification
algorithms.

1 Introduction

Nowadays, very few effective unsupervised classifica-
tion methods capable of adapting to various domains have
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been proposed and developed. Unsupervised classification
usually requires a combination of clustering and supervised
classification algorithms to be employed, when information
is relatively unknown about the training data before classifi-
cation. It is a process that possesses a contrasting challenge
to that of supervised classification, where the main goal is to
determine a measure from instances belonging to the same
class that is large enough to reject instances belonging to
other various classes, while at the same time low enough so
as to take into account the variability found among the in-
stances belonging to the same class. However, most of the
existing unsupervised classification algorithms, especially
those which do not require any known class related infor-
mation such as the number of classes and the maximum
number of instances in each class, suffer from the lack of
high classification accuracy [4][5] and broad effectiveness
in applications with data sets with different inter-class vari-
ability.

Recently, network intrusion detection has become more
and more important in order to safeguard the network sys-
tems and crucial information being stored and manipulated
through the Internet, and several intrusion detection algo-
rithms using advanced machine learning techniques have
been developed for this purpose [2][7][9]. Unsupervised
classification is particularly useful in detecting previously
unobserved attacks in network intrusion detection domain
since new attacks on computers and networks can occur any
time. Furthermore, unsupervised classification algorithms
are usually employed after a failure of a misuse detection
classifier [1] to identify an instance as belonging to a known



attack type, in order to uncover new types of intrusions.
At the same time, a robust unsupervised classification algo-
rithm could possibly eliminate the need for a human analyst
in the assignment of labels to unknown attack types by fully
automating the labeling process. Moreover, it is important
to realize the two main issues associated with pre-label pro-
cessing in intrusion detection as was concluded by [6], i.e.,
it can be extremely difficult or impossible to obtain labels,
and one can never be completely sure that a set of avail-
able labeled examples reflect all possible existing attacks in
a real-world application.

In this paper, in an attempt to meet the above increas-
ing demands, a novel unsupervised classification algorithm
called UNPCC (Unsupervised Principal Component Clas-
sifier) which is based on Principal Component Analysis
(PCA) [12] is proposed. Various training and testing data
sets composed of KDD Cup 99 [3] and the simulated real-
network traffic generated through the Relative Assump-
tion Model [16] were used to evaluate the performance of
UNPCC and its inherently natural supervised classification
stage, in comparison to the other well-known unsupervised
and supervised classification algorithms. The experimen-
tal results demonstrate that (i) the supervised classification
stage of the UNPCC algorithm performs better than C4.5
decision tree, Decision Table (DT), NN, and KNN, and (ii)
the unsupervised classification performance of the UNPCC
algorithm outperforms K-Means, Expectation Maximiza-
tion (EM), FarthestFirst, Cobweb, and Density Based Clus-
tering with K-Means.

This paper is organized as follows. The motivations and
concepts associated with the proposed unsupervised clas-
sification algorithm are presented in Section 2. Section 3
introduces the proposed UNPCC algorithm. Section 4 nar-
rates the experimental setup and illustrates the experimental
results. Finally, in Section 5, we conclude our paper.

2 Motivation

Principal Component Analysis (PCA), the core of the
PCC (Principal Component Classifier) anomaly detection
algorithm that we developed [10][11], is employed to re-
duce the dimension of a training data set, allowing for fur-
ther data analysis and easier exploration of the statistical
information present in the data set. Principal components
are particular linear combinations of the original variables
with two important properties:

1. The first principal component is the vector pointing
in the direction of the largest correlation of the origi-
nal features and the second principal component is the
vector pointing in the direction of the second largest
correlation of the original features, and so on.

2. The total variation represented by the the principal

components is equal to the total variation present in
all original variables.

The distribution of the original data features contributes
to the direction of the principal components, so it is nec-
essary in PCA to use all original features to generate prin-
cipal components which account for all the variability of
the original training data set. Once the principal compo-
nent set is found, only a few principal components and their
related eigen-values and scores [12] need to be stored and
employed to represent a large percentage of the variance in
the original training data. Moveover, suitable selection and
combination of principal components with certain specific
features is required to represent specific characteristics of
the training data set. PCC is a good example to demonstrate
the uses of the major components representing the overall
structure of the training data set and the minor components
capturing observations that do not conform to the training
data correlation structure. In PCC, two distance measures
C1 and C?2 based on the major and minor components re-
spectively are defined as classification threshold values and
produced promising classification accuracy with low false
alarm rates.

Inspired by the concept of similarity representation of
the training data set in PCC, which is assumed to be com-
posed of a fixed class with a known label, and also by the
promising performance of the combination of the distance
measures C'1 and C2 in PCC, it is highly possible that suit-
able selection and combination of certain principal compo-
nents could be used to represent the dissimilarity present
in a training data set which is composed of several classes
of data sets with unknown labels. For this purpose, a dis-
tance measure, denoted as C0, capable of partitioning var-
ious classes of data sets based fully on their dissimilarity
features in the transformed principal component space is
defined.

Our main idea is validated through a series of operations
in the transformed principal component space:

e Plotting and observation of principal component score
arrays of KDD Cup 1999 data [3] through MATLAB,
including various combination of four kinds of net-
work attack types: teardrop, back, neptune, and smurf;

e Selection of certain principal components with high
variability through graphical analysis;

o Definition of the dissimilarity measure CO of an in-
stance using Equation (1), where i indexes the se-
lected representative principal components, and \; and
y; correspond to the eigenvalue of the i principal
component and the score of the i" feature in the
principal component space respectively. The term
“score” means the projection of an instance onto the



eigenspace composed of all principal components ac-
quired from the training data set.
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e Plotting, in MATLAB, the distribution of the C'0 mea-

sure, given by the vector CO = {CO(k)}, where k =

1,2,...,N, and N is the number of unlabeled in-
stances in a training data set.
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Figure 1. Sorted C0 array of mixed two at-
tacks (neptune and smurf)
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Figure 2. Sorted C0 array of mixed three at-
tacks (teardrop, neptune, and back)
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Figure 3. Sorted C0 array of mixed four at-
tacks (neptune, teardrop, back, and smurf)

Figures 1, 2, and 3 correspond to the plots of the C'0
distributions of the training data sets with two, three, and
four different attack classes, respectively. An interesting
observation from these three figures is that each of the
classes composing the training data set matches a distinct
zone of fracture which is approximately horizontal in the
axis of the C'0 distance measure in the principal component
space. That is, these figures exhibit distinguishable differ-
ences among the C'0 values of different classes. In Figure
1, the steep slope separating the two nearly horizontal lines
depicts the large differences between the C'0 scores of the
instances belonging to the two different classes. The same
pattern can also be observed in Figure 2 and Figure 3, where
a steep slope separates nearly horizontal sections represent-
ing the scores of instances belonging to the same class type.
Therefore, it can be concluded from these results that, the-
oretically, the distinct C'0 segments, which can be catego-
rized by suitable C'0 measure threshold values, can be em-
ployed to cluster the related class instances into nearly hor-
izontal subsections of C'0 values. In addition, the distinct
CO0 threshold values acquired from the unsupervised classi-
fication process, which designate different class types, can
be employed in a supervised classification scheme. That
is, if the CO score value calculated for a certain testing in-
stance falls within one of the distinct C0 segments catego-
rized by a certain selected CO threshold value, then it can
be concluded that the testing instance in question belongs
to the corresponding clustered class. All these character-
istics make the proposed classification scheme a complete
unsupervised classification method consisting of a natural
combination of clustering and supervised classification al-
gorithms.



Motivated by these observations, a novel unsupervised
classification scheme is proposed, leaving two challenges
to be studied: (i) How to identify and select the representa-
tive principal components in an automated manner using the
statistical information present in the data set, thus replacing
the manual effort of the application of graphical analysis?
and (ii) How to automatically identify suitable C'0 threshold
values to represent different classes, a step which is vital to
both the clustering and supervised classification phases?

3 The Proposed UNPCC Algorithm

Based on the previously presented theoretical analysis
and graphical presentation of Figures 1, 2, and 3, the pro-
posed UNPCC algorithm is defined as an ordered combina-
tion of the following processes:

1. Normalize the data in the training data set with mul-
tiple classes to minimize the issue of scaling features
across multivariate data.

2. Apply PCA to the whole training data set to obtain
the principal components, their eigenvalues, and data
instance scores as was done in [10][11]. Define Y=
{vij}.i=1,2,...,pand j = 1,2,...,N, as the
training data score matrix. Y is a px/N-dimensional
normalized projection of the unlabeled training data
matrix onto the p-dimensional eigenspace, where the
term “score matrix” means the projection of each of
the NV unlabeled training instances onto the p principal
components attained from the training data set through
PCA [10][11].

3. Automatically select the principal components which
effectively capture the dissimilarities among of vari-
ous classes in the training data set through a threshold
function. This function is based on the standard de-
viation values of the features in the principal compo-
nent space to reflect the dissimilarity degree of a score
array. Assume that SCORE; = (y;1,¥i2,---,YiN)>
i=1,2,..., p, is the score row vector corresponding to
the i*" feature in the eigenspace. First, we refine the
number of score row vectors by selecting those which
satisfy Equation (2) and discarding all others, in order
to prevent the impact of score arrays possessing very
low standard deviation values, which possibly corre-
spond to very low eigenvalues and their corresponding
score row vectors generated by the PCA projection:

STD(SCORE,,) > ¢, where )

e ¢ is an adjustable coefficient whose value is set to
0.01 as the default value, based on our empirical
studies;

e STD(SCORE,,) is the standard deviation of the
score row vector satisfying the refinement equa-
tion and corresponding to the the (v)!" principal
component; and

e v € V is defined as the refined principal compo-
nent space containing all score row vectors satis-
fying Equation (2).

After that, the principal components whose respective
score row vectors satisfy the selection function defined
in Equation (3) are selected.

STD(SCORE;) > ax (Meanstp(SCORE,)) (3)

where:

e a is the weighting coefficient. Its value is set to
3 in all the experiments based on our empirical
studies;

e Meansrp(SCORE,) is the average value of
all the standard deviation values of the score ar-
rays in the refined principal component space V;

e ST D(SCORE;) is the standard deviation of the
selected score array satisfying the selection func-
tion and corresponding to the j” principal com-
ponent; and

e j € J, which can be defined as the selected
principal component space, is composed of
those principal components whose correspond-
ing score row vectors satisfy both the refine-
ment and principal component selection func-
tions given by Equation (2) and Equation (3), re-
spectively.

Accordingly, these selected principal components are
then used in calculating the C0O dissimilarity mea-
sure of all the N unlabeled training instances using
Equation (1), effectively yielding a distribution for C0
which is entirely based on the statistics of the original
training data set and from which suitable C0 threshold
values can be acquired to categorize the different data
classes. The distribution of the C0 score measures is
given by the sorted vector CO for all NV unlabeled train-
ing instances.

. From the CO vector, determine the C'0 values to be

used as the thresholds for both clustering and super-
vised classification purposes, through the proposed
Automated-Cluster-Threshold-Discovery procedure.

Let CO;, be the k' sorted CO value of the CO distri-
bution of unlabeled training instances, H; be the ex-
pected threshold value of the *" identified class, N
be the total number of the unlabeled training data in-
stances, and Initial be a transition variable used to



change the selection condition. Also, let m be the in-
dex of the current C0 value (CO € €O0) in the analysis
by the algorithm, 7" be the total number of the thresh-
olds generated for the T" classes identified, and CO,,,,
and CO,,, .. be the 0.5%"" and 99.5%"" percentiles
of the sorted distribution vector. Here, mq and m,,qz
are indexes corresponding to the nearest integers to
0.005 x N and 0.995 x N, respectively, and are used
to filter some extreme values from both ends of the CO
distribution vector. This filtering step is necessary due
to the fact that most of the data sets inevitably contain a
few unusual observations which may impact the ability
of finding meaningful thresholds in the proposed ap-
proach. The Automated-Cluster-Threshold-Discovery
procedure for automatically determining the threshold
values is given below.

Automated-Cluster-Threshold-Discovery
Initial = CO,,;
H, = Initial;
=2
for (m =1;m < Mppaz;m + +) {
if (€m—Initial ~ 7y ¢

Initial
Initial = €O,y 1y s
H; = Initial;
=1+ 1;
}
}
T=i-1;

The threshold values yielded in vector H by the proce-
dure above can be used for two independent tasks: (z) clus-
tering the training data into the 7" different classes identi-
fied, and (i) supervised classification of unlabeled testing
instances, without any additional classifier training require-
ments. Please note that this clustering/classification scheme
does not require any a priori knowledge of class related in-
formation such as the number of classes in the training data
set or the maximum number of instances in each class.

Let us focus on the supervised classification task that
naturally rises via the comparison of the C0 measure of
an incoming testing instance, which is given by Equation
(1), with the T different threshold values in vector H that
were obtained through the Automated-Cluster-Threshold-
Discovery procedure. As was previously elaborated and il-
lustrated in Figures 1, 2, and 3, the values in vector CO are
sorted in ascending order. As a result, vector H is inherently
sorted in ascending order of values because the Automated-
Cluster-Threshold-Discovery procedure traverses vector CO
in a linear fashion. With these concepts in mind, let us

define the column vector Y’=(y},y5,...,y),)" as the nor-
malized projection of a p-dimensional testing instance, nor-
malized using parameters such as the mean feature value
and the feature standard deviation value obtained previ-
ously from the training data set matrix [10][11], onto the p-
dimensional eigenspace. The class 7 of the testing instance
will be identified through a linear search through vector H,
starting at index ¢+ = 1 and increasing toward the maximum
value of + = T corresponding to the threshold of the last
cluster, until the last element H; is found which satisfies
Equation (4) below:

JjeJ

where y} is the j** row (or eigenspace feature) of ¥’, and

H; is the last ordered element in the threshold vector H
whose value is less than the testing instance’s computed
C0 measure. In other words, class ¢ corresponds to the last
threshold value H; which is less than the C'0 measure of the
testing instance.

4 Experiments

The experiments are conducted in two parts, correspond-
ing to the two phases of an unsupervised classification algo-
rithm. First, for the clustering phase (the core phase of UN-
PCC), the UNPCC algorithm is compared to different meth-
ods such as K-Means, Expectation Maximization (EM),
Farthest First (FF), Cobweb, and Density Based Cluster-
ing with K-Means. Second, for the supervised classifica-
tion phase, the UNPCC algorithm is evaluated against var-
ious supervised classification algorithms such as the C4.5
decision tree, Decision Table (DT), NN, and KNN (K=5).

4.1 Experimental Setup

KDD Cup 1999 [3] data set and three different types of
network attacks (namely, attackl, attack2, and attack3)
generated in our network test-bed [16] through the appli-
cation of the Relative Assumption Model algorithm [16]
with different parameter values, are employed to assess the
performance of the proposed unsupervised scheme. Four
groups of data sets with variable numbers of class types are
used in the experiments to evaluate both the performance of
the unsupervised clustering scheme and the performance of
the supervised classification scheme in comparison to some
existing methods in the Waikato Environment for Knowl-
edge Analysis (WEKA) package [13].

The four groups of the training and testing data sets are
as follows.

1. Group 1: Two types of network attacks from the KDD
data set, namely back (441 training and 111 testing in-



stances) and teardrop (194 training and 77 testing in-
stances) for the two-class case.

2. Group 2: Three types of network attacks from the
KDD data set, namely back (441 training and 111 test-
ing instances), smurf (400 training and 20000 testing
instances), and neptune (300 training and 10000 test-
ing instances) for the three-class case.

3. Group 3: Four types of network attacks, namely
neptune (300 training and 10000 testing instances),
teardrop (194 training and 77 testing instances), back
(441 training and 111 testing instances), and smurf
(400 training and 20000 testing instances) for the four-
class case.

4. Group 4: Three types of network attacks generated
through our network testbed for the three-class case:
1187 attackl abnormal network connections (300 for
training and the remaining ones for testing), 1093
attack2 abnormal network connections (300 for train-
ing and the remaining ones for testing), and 441
attack3 network connections (300 for training and the
remaining ones for testing).

4.2 Selected Algorithms in Comparison

In our experiments, various clustering algorithms
[81[14][15] in WEKA [13] are selected in the performance
comparison. Some of them are further discussed as follows.

e Expectation Maximization (EM): This algorithm finds
the maximum likelihood estimate of the parameters of
probabilistic models. In WEKA, the EM algorithm
utilizes a finite Gaussian mixture model to learn the
trends present in the training data sets. Some of the
algorithm’s drawbacks are its assumptions that all at-
tributes are independent and normally distributed and
its high processing power requirements, which makes
it poorly suited for real-time applications with large
data sets.

e K-Means: This is a simple iterative algorithm. It ran-
domly chooses the initial locations of k-clusters and
assigns instances to the clusters based on their proxim-
ity to the center of each cluster. Next, new k-cluster
means are calculated using the attribute values of the
instances belonging to each cluster. Finally, the pro-
cess is repeated until no more instances need to be
re-assigned to a different cluster. This algorithm has
many drawbacks such as its assumption that attributes
are independent and normally distributed, it requires
the number of clusters to be specified manually, and
its training time can be very high for a large number of
training instances.

e Cobweb: In Cobweb, the clustering phase is per-
formed on an instance by instance basis, updating the
clustering instance by instances. The end result is
a tree whose leaves represent the training instances,
nodes represent the clusters and sub-clusters, and root
node represents the whole data set. The major draw-
back of the algorithm is the impact that the order which
training instances are read as the input to the algorithm
may have on the formation of the tree.

e Farthest First (FF): Similarly to K-Means, this algo-
rithm requires the number of clusters to be specified.

e Density Based Clustering with KNN algorithm (KN-
NDB): This method produces a probability distribution
for each testing instance which estimates the member-
ship of the instance in each of the clusters estimated by
the K-Means algorithm.

4.3 Experimental Results

Table 1 compares of the overall clustering accuracy of
the UNPCC, K-Means, Expectation Maximization (EM),
Cobweb, Farthest First (FF), and KNN Density Based (KN-
NDB) algorithms when each of the training and testing data
groups is employed. Table 1 indicates that our proposed
UNPCC algorithm outperforms all the other unsupervised
classification methods, in addition to maintaining an ac-
curacy rate of over 90% in the experiments with all four
groups of training data sets. Another observation that can
be attained from the experimental results shown in Table 1
is the fact that the classification accuracy of some methods
vary significantly among the data groups employed. For ex-
ample, the accuracy of the K-Means algorithm ranges from
79.16% to one single occurrence of 100%, and the accu-
racy of the EM algorithm ranges from 56.06% to 78.01%.
These results indicate that the predicative models generated
do not always work well for various types of training data
sets used in the experiments. On the other hand, our pro-
posed UNPCC algorithm maintains a high accuracy of over
90% for all the data groups, indicating that the predictive
models work well for all these different types of data sets.

Furthermore, it has been observed that UNPCC has
lower training time, lower classification time, and less
memory and storage requirements to process and store the
components required by the classification stage than all the
other algorithms. Particularly, the instance-based methods
such as K-Means and FF require large memory and storage
when hundreds of training data set instances are involved.

In order to assess the performance of the supervised clas-
sification stage without the cascading error effects of the
previous unsupervised clustering stage, the class label set
used to assign labels to the instances in the different clus-
ters and generated by the UNPCC method (which has been



Table 1. Overall clustering accuracy (%) com-
parison among UNPCC, K-Means, EM, Cob-
web, FF and KNNDB (K=5) with each group
of data

Accuracy | Group1 | Group2 | Group 3 | Group 4
UNPCC 100% 100% 92.81% | 90.60%
K-Means 100% 92.44% | 92.47% | 79.16%
EM 56.06% | 78.01% | 67.10% | 73.87%
Cobweb | 24.88% | 45.48% | 34.90% | 22.09%
FF 99.68% | 99.80% | 81.57% | 89.85%
KNNDB | 96.53% | 90.38% | 64.55% | 83.45%

proven to possess the highest clustering accuracy in Table
1) is used in the experiments to compare with the other su-
pervised classification algorithms in order to set the same
initial conditions in the other algorithms as those in the UN-
PCC method.

Table 2 shows a comparison of the overall supervised
classification accuracy of the UNPCC, C4.5, Decision Ta-
ble (DT), NN, and KNN (K=5) algorithms for each group
of data. It can be clearly concluded from the presented
results that the UNPCC algorithm always outperforms the
other methods in the supervised classification stage, even
when all the algorithms use the same high accuracy cluster-
ing method. In addition, it has been observed that UNPCC
has a lower classification time than all the other algorithms
in the comparison.

Table 2. Overall supervised classification ac-
curacy (%) comparison among UNPCC, C4.5,
DT, NN and KNN (K=5) with each group data

Accuracy | Group1l | Group 2 | Group 3 | Group 4
UNPCC 100% 99.62% | 98.55% | 88.20%
C4.5 100% 99.55% | 86.26% | 87.95%
DT 100% 99.55% | 76.00% | 85.58%
NN 100% 99.55% | 86.26% | 83.30%
KNN 99.46% | 95.98% | 92.35% | 76.04%

Based on the performance comparison results, UNPCC
seems to offer an excellent lightweight and highly accu-
rate solution to the domain of unsupervised classification.
In comparison with all the unsupervised classification algo-
rithms in the experiments, our proposed UNPCC algorithm
has four advantages:

e An inherently natural combination of clustering and
supervised classification: UNPCC can perform either
clustering or/and supervised classification. In fact, the
supervised classification phase naturally rises after the

clustering step, which can save additional processing
efforts in terms of additional training efforts.

e Purely clustering or/and unsupervised classification al-
gorithm: The proposed method does not require any
a priori class related information such as the number
of the classes (clusters) and the maximum number of
the instances per class.

e Lightweight characteristics: UNPCC does not require
training instances to be stored for use in the classifi-
cation phase. Instead, only the principal components,
eigen values, and threshold values are stored for the
classification phase. This amount of data is usually
far less than hundreds of training data instances, which
makes it a lightweight algorithm and thus is feasible to
be employed in computers with less processing power
for most of the real-world applications.

e Fast computation: Experimental results have demon-
strated that UNPCC requires significantly less predic-
tive model training time and testing time than all the al-
gorithms in the performance comparison experiments,
under the same operational conditions. This is due to
the fact that the most costly computations required for
clustering and supervised classification are only based
on the single threshold value CO0, eigen-values, and
the score matrix, once the principal components are
generated. This advantage makes it particularly useful
and suitable to be used in real-time demanding appli-
cations.

5 Conclusion

In the network intrusion detection application domain,
there are great challenges and increasing demands co-
existing in the unsupervised classification techniques. In
this paper, we propose a novel unsupervised classification
algorithm called UNPCC with promising experimental re-
sults for network intrusion detection. The proposed algo-
rithm is based on the concepts of robust PCC and uses an
automated method to select representative principal com-
ponents from the data set to generate a single classifica-
tion measure C'0. It is a multi-class unsupervised classifica-
tion algorithm with an inherently natural supervised classi-
fication stage, which both present high classification accu-
racy as the experimental results clearly indicate, and various
operational benefits such as lower memory and processing
power requirements than the other supervised classification
algorithms used in the experiments. These are achieved
due to the fact that only very little information about the
principal components, eigen values, and threshold values
have to be stored for the proper execution of the classifica-
tion phase. Furthermore, UNPCC was observed to perform



significantly faster than algorithms such as K-Means and
Expectation Maximization (EM) which are based on itera-
tive processes potentially requiring prohibitive training time
and testing time. Various training and testing data sets are
employed to evaluate the performance of the UNPCC al-
gorithm and its inherently natural supervised classification
stage, in comparison to some existing well-known unsuper-
vised and supervised classification algorithms. As the ex-
perimental results have shown, the UNPCC algorithm out-
performs all the other supervised and unsupervised meth-
ods in the performance comparison experiments, maintain-
ing high classification accuracies throughout all the experi-
ments with the four groups of training and testing data sets.
From all the experimental results, it can also be clearly
shown that the operational benefits of the proposed novel
UNPCC algorithm make it a suitable algorithm for real-time
applications.
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