
Rule mining and classification in the presence of
feature level and class label ambiguities

K.K.R.G.K. Hewawasam, K. Premaratne, M.-L. Shyu and S.P. Subasingha

Department of Electrical and Computer Engineering
University of Miami, Coral Gables, Florida

ABSTRACT

Numerous applications of topical interest call for knowledge discovery and classification from information that
may be inaccurate and/or incomplete. For example, in an airport threat classification scenario, data from
heterogeneous sensors are used to extract features for classifying potential threats. This requires a training set
that utilizes non-traditional information sources (e.g., domain experts) to assign a threat level to each training
set instance. Sensor reliability, accuracy, noise, etc., all contribute to feature level ambiguities; conflicting
opinions of experts generate class label ambiguities that may however indicate important clues. To accommodate
these, a belief theoretic approach is proposed. It utilizes a data structure that facilitates belief/plausibility
queries regarding “ambiguous” itemsets. An efficient apriori-like algorithm is then developed to extract frequent
such itemsets and to generate corresponding association rules. These are then used to classify an incoming
“ambiguous” data instance into a class label (which may be “hard” or “soft”).

To test its performance, the proposed algorithm is compared with C4.5 for several databases from the UCI
repository and a threat assessment application scenario.

Keywords: imperfect data, missing data, data ambiguities, data mining, association rules, classification,
Dempster-Shafer belief theory

1. INTRODUCTION

In a classification scenario, lack of relevant statistical information usually compels one to utilize knowledge gleaned
from a training set of correctly classified feature vectors to decide on a class label for an incoming feature vector.
The presence of imperfections in both the training set and the feature vector that is yet to be classified however
makes this task extremely challenging. These imperfections may have been generated by reliability of information
sources, heterogeneity of their ‘scopes of expertise,’ lack of access to the global knowledge, differing opinions of
domain experts whose expertise is being sought for classifying the training set, and a myriad of other causes.

Making “assumptions” and “interpolations” to avoid such imperfections can impair the decision-making
process and render the inferences made less trustworthy. Critical evidence may be destroyed if one chooses
to simply ignore certain types of imperfections. Indeed, development of better techniques of handling data
imperfections for making improved inferences and decisions can be considered a chronic problem hampering
data-driven studies that attempt to discern among competing hypotheses.1 It has been identified as one of the
most challenging problems confronting the application of methodologies developed within the realm of computer
science to other domains.2

In this work, we use belief theoretic notions to represent data with ambiguous attributes and class labels. Via
a novel data structure—we refer to this as a belief itemset tree—we then propose a methodology that enables
the extraction of a set of “frequent” itemsets which is then used to extract association rules3 consisting of
possibly ambiguous feature attributes and class labels. These association rules can be interpreted as a “compact”
representation of a given database of instances. The effectiveness of such a representation for classification
purposes has previously been demonstrated4; class label ambiguities have also been incorporated into this same
approach.5 Our purpose is to accommodate both feature level and class label ambiguities.

Further author information: (Send correspondence to K.P.) K.K.R.G.K.H. E-mail k.hewawasam@umiami.edu, Tel 1
305 284 6503; K.P.: E-mail kamal@miami.edu, Tel 1 305 284 4051; M.-L.S.: E-mail shyu@miami.edu, Tel 1 305 284 5566;
S.P.S.: E-mail s.subasingha@umiami.edu, Tel 1 305 284 6503

SPIE USE, V. 2 5803-13 (p.1 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

2. DS THEORY: A PRIMER

Let Θ = {θ(1), θ(2), . . . , θ(n)} be a finite set of mutually exclusive and exhaustive hypotheses about some problem
domain. It signifies the corresponding ‘scope of expertise’ and is referred to as its frame of discernment (FoD).6

A proposition θ(i) represents the lowest level of discernible information in this FoD; it is referred to as a singleton.
Elements in 2Θ, the power set of Θ, form all hypotheses of interest in DS theory. A hypothesis that is not a
singleton is referred to as a composite hypothesis, e.g., (θ(1), θ(2)). From now on, the term “hypotheses” is used
to denote both singletons and composite hypotheses. We use |Θ| to denote the cardinality of Θ. The set A \ B
denotes all singletons in A ⊆ Θ that are not included in B ⊆ Θ; A denotes Θ \ A.

In DS theory, the ‘support’ for any hypothesis A is provided via a basic probability assignment (BPA):

Definition 2.1 (Basic Probability Assignment (BPA)). The mapping mΘ : 2Θ �→ [0, 1] is a basic
probability assignment (BPA) for the FoD Θ iff: (i) mΘ(∅) = 0; and (ii)

∑
A⊆Θ mΘ(A) = 1.

The BPA of a hypothesis is free to move into its individual singletons. This is how DS theory allows one to
model the notion of ignorance. The set of hypotheses FΘ that possesses nonzero BPAs forms the focal elements
of Θ; the triple {Θ,FΘ,mΘ} is referred to as the corresponding body of evidence (BoE).

Definition 2.2 (Belief and Plausibility). Given a BoE {Θ,FΘ,mΘ}, define the following notions
regarding A ⊆ Θ: (i) Belief is BlΘ : 2Θ �→ [0, 1] where BlΘ(A) =

∑
B:B⊆A mΘ(B); and (ii) Plausibility is

PlΘ : 2Θ �→ [0, 1] where PlΘ(A) =
∑

B:A∩B �=∅ mΘ(B) = 1 − BlΘ(A).

So, while mΘ(A) measures the support assigned to hypothesis A only, the belief assigned to A takes into
account the supports for all proper subsets of A as well. In other words, BlΘ(A) represents the total support
that can move into A without any ambiguity; and PlΘ(A) represents the extent to which one finds A plausible.
When each focal set contains only one element, the BPA, belief and plausibility all reduce to probability, i.e.,
mΘ(A) = BlΘ(A) = PlΘ(A) = PrΘ(A).

The evidence provided by two ‘independent’ BoEs could be ‘pooled’ to form a single BoE via6

Definition 2.3 (Demspter’s Rule of Combination (DRC)). Suppose the two BoEs {Θ,FΘ,1,mΘ,1}
and {Θ,FΘ,2,mΘ,2} span the FoD Θ. Then, if Kconf ≡

∑
C,D:C∩D=∅ mΘ,1(C)mΘ,2(D) �= 1, the Dempster’s rule

of combination (DRC) generates the BPA mΘ(�) : 2Θ �→ [0, 1] where mΘ(A) =
∑

C,D:C∩D=A mΘ,1(C)mΘ,2(D)÷
(1 − Kconf), ∀A ⊆ Θ.

3. REPRESENTATION OF IMPERFECT DATA

In this section, we discuss how DS belief theoretic notions are being utilized to represent database imperfections—
in particular, feature level and class label ambiguities—for rule mining and classification purposes.

Database. We denote the database by DB = {Ri}, i = 1, nDB, where Ri indicates a data record and
nDB indicates the cardinality of DB, i.e., its ‘size.’ Each Ri is taken to be of the form Ri = [FVi, CLi], where
FVi = [F1,i, F2,i, . . . , FnF,i]. Here, FVi and CLi denote the i-th feature vector and its corresponding class label.
Each feature vector is taken to consist of nF features; Fj,i, j = 1, nF , denotes the j-th such feature embedded
within Ri. From now on, unless the situation calls for distinguishing among different data records, we will simply
ignore the subscript that identifies one data record from another, e.g., Ri will be denoted by R.

Relevant FoDs. We now identify the relevant FoDs.

Features. The FoD of Fj , j = 1, nF , is taken to be finite and equal to Θ[Fj] = {θF (1)
j , . . . , θF

(nΘ[Fj])
j },

where nΘ[Fj] is the number of possible values Fj may assume. Then, the FoD of each feature vector FV is the
cross-product of all Θ[Fj], j = 1, nF , i.e., Θ[FV] = ×nF

j=1Θ[Fj]. We allow each Fj to be described via its own
BoE

{Θ[Fj],FΘ[Fj],mΘ[Fj]}, where mΘ[Fj](�) : 2Θ[Fj] �→ [0, 1] and |FΘ[Fj]| = 1. (1)

Class Label. The FoD of each CL is taken to be finite and equal to Θ[CL] = {θCL(1), . . . , θCL(nΘ[CL])},
where nΘ[CL] is the number of different class labels. Each class label is described via its own BoE

{Θ[CL],FΘ[CL],mΘ[CL]}, where mΘ[CL](�) : 2Θ[CL] �→ [0, 1] and |FΘ[CL]| = 1. (2)

SPIE USE, V. 2 5803-13 (p.2 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

The types of feature and class label imperfections we accommodate are those that can be modeled via such
BoEs having only one focal element. Although this imposes substantial restrictions, the algorithms we propose
capture several types of data imperfections that are of critical importance. For example, consider the FoD
Θ[Fj] = {θ[Fj](1), θ[Fj](2), θ[Fj](3)}. Then, the BPA mΘ[Fj](θ[Fj](2)) = 1.0 models a ‘precise’ value; the BPA
mΘ[Fj]((θ[Fj](2), θ[Fj](3))) = 1.0 models an ‘ambiguous’ value; and the BPA mΘ[Fj](Θ[Fj]) = 1.0 models a
‘missing’ or ‘unknown’ value. From now on, for convenience, we will broadly refer to these types of imperfections
as data ambiguities.

We will use an underline to denote the assumed value of a variable, e.g., < FV = FV > where FV =
[F 1, F 2, . . . , FnF], F j ⊆ Θ[Fj], j = 1, nF . Note that, F j = ∅ denotes that the attribute Fj is “not applicable”
for the feature vector.7 We assume that a feature vector whose attributes are all “not applicable” (corresponding
to the “null set” of Θ[FV]) is non-existent.

Definition 3.1 (Database BPA). Let freq (FV = FV) be the number of times that < FV = FV > appears
in DB. Then the database BPA refers to mΘ[DB] : 2Θ[FV] �→ [0, 1], where mΘ[DB](FV = FV) = freq (FV =
FV) ÷ nDB. The corresponding BoE generated

{
Θ[DB],FΘ[DB],mΘ[DB]

}
is called the database BoE.

This is indeed a valid BPA in the sense of Definition 2.1. One may compute the corresponding database belief
and database plausibility functions via BlΘ[DB](FV = FV) =

∑
G:G⊆FV mΘ[DB](G) and PlΘ[DB](FV = FV) =

∑
G:G∩FV �=∅ mΘ[DB](G).

4. BELIEF ITEMSET TREE (BIT)

This section introduces our most important result—a data structure that we refer to as the belief itemset tree
(BIT). It can be thought of as a generalization for handling ambiguities of the itemset tree proposed by Kubat,
et al.8 While the itemset tree provides a convenient tool for targeted querying of associations, the BIT enables
one to respond to targeted querying of the belief of an arbitrary feature vector. We first need

Definition 4.1 (Projection and Extension). Consider the feature vector < FV = FV >. Then, for
k = 0, nF , define the following: (i) The k-projection of FV , denoted by FV ↓k, is the k-attribute feature vector
< FV ↓k = FV ↓k > where FV ↓k = [F 1, . . . , F k]; by convention, FV ↓0 = ∅. (ii) The k-extension of FV , denoted
by FV ↑k, is the nF -attribute feature vector < FV ↑k = FV ↑k > where FV ↑k = [FV ↓k,Θ[Fk+1], . . . ,Θ[FnF]];
FV ↑0 is called the completely ambiguous feature vector for which F j = Θ[Fj], ∀j = 1, nF .

Definition 4.2 (Ancestors, Parent and Child). Given the feature vector < FV = FV >, generate the
nF -attribute feature vectors < FV1 = FV 1 > and < FV2 = FV 2 > where

FV 1 = FV ↑k = [F 1, . . . , F k,Θ[Fk+1], . . . ,Θ[FnF]]; FV 2 = FV ↑� = [F 1, . . . , F �,Θ[F�+1], . . . ,Θ[FnF]].

Then we say the following: (i) < FV1 = FV 1 > is an ancestor of < FV2 = FV 2 > if k < �. (ii) < FV1 = FV 1 >
is a parent of < FV2 = FV 2 >, or equivalently, < FV2 = FV 2 > is a child of < FV1 = FV 1 >, if < FV1 =
FV 1 > is an ancestor of < FV2 = FV 2 > and k = � − 1; we denote this as < FV1 = FV 1 >�< FV2 = FV 2 >
or < FV2 = FV 2 >�< FV1 = FV 1 >.

Clearly, a given feature vector can have multiple children; it can have only one parent though.

Belief Itemset Tree (BIT). We are now in a position to introduce

Definition 4.3 (Belief Itemset Tree (BIT)). The belief itemset tree (BIT) of the database DB consists
of a set of nodes arranged in a tree structure of nF + 1 hierarchical levels. The set of nodes in level k, referred
to as the level-k nodes, is denoted by N (k), k = 0, nF ; level-nF nodes are also called the leaf nodes of the BIT.
Level-k nodes N (k) correspond to the k-projections generated by only those feature vectors in DB.

(i) For k = 1, nF , an individual level-k node n
(k)
�k

∈ N (k) is identified via the particular value of its k-

th attribute and its parent node as n
(k)
�k

= n
(k)
�k

(
F k, n

(k−1)
�k−1

)
, �k ∈ I(n(k−1)

�k−1
), where n

(k)
�k

is the k-projection

n
(k)
�k

: < FV = FV > �→ < FV ↓k = FV ↓k = [FV ↓(k−1), F k] > and n
(k−1)
�k−1

� n
(k)
�k

. Here, I(n(k−1)
�k−1

) is an index
set; it spans over all the distinct k-projections that can be generated from only those feature records in DB that

SPIE USE, V. 2 5803-13 (p.3 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

map via the parent node n
(k−1)
�k−1

. In the BIT, ‘branches’ indicate only these parent-child relationships; ‘node’

corresponding to n
(k)
�k

indicates its k-th attribute value F k and a parameter freq (n(k)
�k

) > 0 which denotes the

frequency of occurrence of feature vectors that map to n
(k)
�k

.

(ii) Level-0 consists of one and only one node N (0) = n
(0)
�0

, �0 = {1}, which corresponds to the completely

ambiguous feature vector, and we use the convention n
(0)
�0

= n
(0)
�0

(∅, ∅) and freq (n(0)
�0

) = nDB.

An algorithm that enables one to construct the BIT of a given database DB and, in general, update the
current BIT with an incoming arbitrary feature vector, appears in Table 1.

Table 1. Algorithm for updating the level-k of the BIT with the incoming arbitrary feature vector < FV = FV >

1 Insert (FeatureVector FV ,Level k) {
2 generate the k-projection FV ↓k = [F 1, . . . , F k−1, F k];
3 if ∃ a ‘branch’ n

(k−1)
�k−1

(
F k−1, �

)
� n

(k)
�k

(
F k, n

(k−1)
�k−1

)
for some �k ∈ I(n(k−1)

�k−1
) then

4 freq (n(k)
�k

) = freq (n(k)
�k

) + 1;
5 else {
6 I(n(k−1)

�k−1
) = I(n(k−1)

�k−1
) ∪ {L} where L is a new index ;

7 create the level-k node n
(k)
L (F k, n

(k−1)
�k−1

) � n
(k−1)
�k−1

(
F k−1, �

)
with freq (n(k)

L) = 1;

8 if k < nF then InsertNewTree (n
(k)
L) }

9 Insert (FV ,k + 1) };
10
11 InsertNewTree (Node N) {
12 create a new branch leading from N ;
13 insert an empty node at its termination };

Example. Consider the set of feature vectors given in Table 2 where Θ[F] ≡ Θ[Fi] = {1, 2, 3}, ∀i = 1, 5.
The corresponding BIT implied by Definition 4.3 is shown in Fig. 1.

Table 2. A set of feature vectors containing attribute ambiguities; the FoD of each attribute is identical with Θ[F] ≡
Θ[Fi] = {1, 2, 3}, ∀i = 1, 5.

Record Ri < F1 = F 1 > < F2 = F 2 > < F3 = F 3 > < F4 = F 4 > < F5 = F 5 >

1 1 1 2 3 1
2 1 1 3 2 1
3 1 2 2 1 2
4 1 1 (2,3) 1 3
5 2 2 1 2 3
6 2 1 2 3 (1,2,3)
7 (1,2) 1 (1,2) 1 2
8 2 (1,2) 1 3 2
9 (1,2,3) (1,2) 1 3 2
10 (1,2,3) (1,2,3) 1 2 1

BIT and Database BoE. The relationship between the BIT and the database BoE is given by

Theorem 4.4. Consider the feature record < FV = FV > in a database DB of cardinality nDB. Then, (i) all
feature records that have an identical k-projection FV ↓k map to one and only one level-k node n

(k)
�k

; (ii) freq (n(k)
�k

)
denotes the frequency of occurrence of the feature vectors in DB that have an identical k-projection FV ↓k; and

(iii) the database BPA in Definition 3.1 of DB is given by mΘ[FV](FV = FV) = freq (FV =FV)
nDB =

freq (n
(nF)
�nF)

nDB .

SPIE USE, V. 2 5803-13 (p.4 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

1 2 [1,2]

1 2 [1,2]1 2

2 3 [2,3]

23

2

1 1

2

3

1

2

1

3

1

1

[1,2]

11 3 2 3 2 2
A5

A4

A3

A2

A1

f=1 f=1 f=1 f=1

f=1 f=1 f=1 f=1

f=1f=1f=1f=1

f=3 f=1

f=4

f=1 f=1 f=1

f=1 f=1 f=1

f=1 f=1 f=1

f=3

f=1

f=1

f=1

f=1

f=1

f=1 f=1 f=1

1

[1,2] 2

[1,2,3]

1

3

2

f=1

1

2

1

f=1

f=2

f=1 f=1

f=1 f=1

f=1 f=1

Figure 1. BIT corresponding to the database in Table 2.

Proof. Let FV = [F 1, . . . , F k−1, F k, . . . , FnF] =⇒ FV ↓k = [F 1, . . . , F k−1, F k] = [FV ↓(k−1), F k]. Now apply

Definition 4.3: FV ↓k maps to n
(k)
�k

= n
(k)
�k

(
F k, n

(k−1)
�k−1

)
, via n

(k−1)
�k−1

= n
(k−1)
�k−1

(
F k−1, n

(k−2)
�k−2

)
, and so on. Clearly,

all feature vectors with an identical k-projection must trace this path. Moreover, a feature vector with a different
k-projection must trace a different path. This proves (i). Claim (ii) is obvious from how freq (n(k)

�k
) is defined.

Claim (iii) follows from (i) and (ii) when one notes that the nF -projection of a feature vector is itself.

Thus the BIT can be used as a convenient tool for computing the database belief function. See Table 3.

Table 3. Algorithm for computing the database belief of the arbitrary proposition < G = G >

1 ComputeBelief (Proposition G, Level k) {
2 generate the k-projection G↓k = [G1, . . . , Gk];
3 B = 0;
4 for each �k ∈ I(n(k−1)

�k−1
) {

5 go to node n
(k)
�k

= n
(k)
�k

(
F k, n

(k−1)
�k−1

)
;

6 if Gk ⊇ F k then {
7 if Gj = Θ[Fj], ∀j = k + 1, nF then
8 B = B + freq (n(k)

�k
)/nDB;

9 else {
10 go to child node n

(k+1)
�k+1

= n
(k+1)
�k+1

(
F k+1, n

(k)
�k

)
;

11 B = B+ComputeBelief (G, k + 1) } } }
12 return B };

Example. Suppose we are interested in the beliefs of the following two queries from the database in Table 2:
Q1 = BlΘ[DB]([(1, 2), 1,Θ[F3],Θ[F4],Θ[F5]]) and Q2 = BlΘ[DB]([Θ[F1], 1, 2, 2,Θ[F4], 2]). Fig. 2 shows how these
are handled by the algorithm in Table 3.

5. ASSOCIATION RULE MINING (ARM)

An association rule is an expression of the form Rant =⇒ Rcon, where the antecedent Rant and consequence Rcon

are sets of attributes. The task of discovering association rules is to generate all association rules with certain
support and confidence measures above given thresholds.3 Over the years, several methods that use association
rule mining (ARM) for classification have been developed.3, 9 An association rule used for this purpose consists
of an antecedent that is a subset of the feature attribute vector and a consequence that consists of a class label.
These methods however require that each antecedent attribute and consequence class label be a singleton, e.g.,
< FV1 = 3 > ∧ < FV2 = 4 > =⇒ < CL = 1 >. They are therefore incapable of discovering rules such as
< FV1 = (2, 3) > ∧ < FV2 = 4 > =⇒ < CL = (1, 2) > where an attribute and the class label are ambiguous.

SPIE USE, V. 2 5803-13 (p.5 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

1 2 [1,2]

1 2 [1,2]1 2

2 3 [2,3]

23

2

1 1

2

3

1

2

1

3

1

1

[1,2]

11 3 2 3 2 2
A5

A4

A3

A2

A1

f=1 f=1 f=1 f=1

f=1 f=1 f=1 f=1

f=1f=1f=1f=1

f=3 f=1

f=4

f=1 f=1 f=1

f=1 f=1 f=1

f=1 f=1 f=1

f=3

f=1

f=1

f=1

f=1

f=1

f=1 f=1 f=1

Bel

1

Bel

1

[1,2,3]

1

[1,2] 2

1

3

2

f=1

1

2

1

f=1

f=1 f=1

f=1 f=1

f=1

f=2

1 2 [1,2]

1 2 [1,2]1 2

2 3 [2,3]

23

2

1 1

2

3

1

2

1

3

1

1

[1,2]

11 3 2 3 2 2
A5

A4

A3

A2

A1

f=1 f=1 f=1 f=1

f=1 f=1 f=1 f=1

f=1f=1f=1f=1

f=3 f=1

f=4

f=1 f=1 f=1

f=1 f=1 f=1

f=1 f=1 f=1

f=3

f=1

f=1

f=1

f=1

f=1

f=1 f=1 f=1

Bel

1

Bel

1

[1,2,3]

1

[1,2] 2

1

3

2

f=1

1

2

1

f=1

f=1 f=1

f=1 f=1

f=1

f=2

Figure 2. Propagation of the two queries Q1 and Q2 in the BIT corresponding to the database in Table 2. Note: 4 nodes
are visited to respond to Q1; 6 nodes are needed to respond to Q2.

How does one perform ARM in such situations? What are suitable support and confidence measures? For
example, neither of the feature records [2, 4,Θ[F3], . . . ,Θ[FnF]] and [3, 4,Θ[F3], . . . ,Θ[FnF]] may pass the min-
imum support threshold on its own. But, when considered together as [(2, 3), 4,Θ[F3], . . . ,Θ[FnF]], they may
prove successful thus potentially generating a useful rule. If one considers {(2, 3)} as a new feature attribute
that is distinct from either {2} or {3}, it would not account for the facts {2} ∈ {(2, 3)} and {3} ∈ {(2, 3)}. To
perform ARM in the presence of such data imperfections and discover rules that allow ambiguities, we propose
an approach based on DS belief theory.

Frequent Itemsets. We first need

Definition 5.1 (k-Itemset and Support). Consider < FV = FV = [F 1, . . . , FnF] > in a database DB.
(i) < FV = FV > is referred to as a k-itemset if exactly nF − k of its feature attributes are equal to their
corresponding FoDs; the set of k-itemsets is denoted by Ik (by convention, I0 contains the completely ambiguous
feature vector only). (ii) BlΘ[DB](FV = FV) is referred to as the support of < FV = FV > and is denoted
by Sp [FV = FV]. (iii) < FV = FV >∈ Ik is said to be frequent if Sp [FV = FV] ≥ minSp[DB], where
minSp[DB] denotes a user-defined minimum support threshold; the set of frequent k-itemsets is denoted by FIk.

Lemma 5.2. Consider < FV = FV >∈ Ik, < FV1 = FV 1 >∈ Im and < FV2 = FV 2 >∈ In in a database
DB. Then, (i) < FV = FV >=< FV1 = FV 1 > ∩ < FV2 = FV 2 > for some < G1 = G1 >∈ Ik1 and < G2 =
G2 >∈ Ik2 (not necessarily in DB) where k1 + k2 = k; and conversely, (ii) < FV1 ∩ FV2 = FV 1 ∩ FV 2 >∈ I�

where � ≤ k.

Proof. These claims are obvious when one notices Definition 5.1.

The support measure in Definition 5.1 should be contrasted with the probabilistic measure that is customary
in ARM.3 The justification for its use is that the belief of an itemset captures the ‘support’ available for all its
subset itemsets (including itself). Table 4 shows an efficient apriori-like algorithm3 that is capable of generating
frequent itemsets from an ambiguous database. The steps in the algorithm are as follows:

First, the entire database DB is scanned to find all its 1-itemsets (line #3). The frequent itemsets that
would be eventually generated from these would only consist of those feature vectors that are present in DB.
Such a strategy may prevent us from discovering other potentially important rules. For example, suppose all the
feature vectors in DB possess singletons modeling their first attributes. Then, with line #3 alone, it would be
impossible to create potentially interesting relationships with an antecedent having an ambiguous first attribute!

To discover such relationships, we form ambiguous attributes by combining the attributes of non-frequent 1-
itemsets obtained in line #3 (line #6). If these newly formed 1-itemsets turn out to be frequent, they are included
in FI1 (line #8). For example, if FV 1 = [1,Θ[F2], . . . ,Θ[FnF]] �∈ FI1 and FV 2 = [2,Θ[F2], . . . ,Θ[FnF]] �∈ FIk,
we would form the 1-itemset FV 1 ∪ FV 2 = [(1, 2),Θ[F2], . . . ,Θ[FnF]] (line 6). Now, since Bl(�) is a monotonic
function,6 it is quite possible that FV 1 ∪ FV 2 ∈ FI1. This strategy however may create ‘redundant’ frequent
1-itemsets. For example, suppose DB contains the records FV 1 and FV 1∪FV 2. Then, due to the monotonicity

SPIE USE, V. 2 5803-13 (p.6 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

Table 4. Algorithm for generating large itemsets. Note: FIall denotes the set of all frequent itemsets

1 GenerateLargeItemSets() {
2 FIall = ∅; FI1 = ∅;
3 I1 =GenerateOneItemsets(DB);
4 for each itemset I ∈ I1

5 if BlΘ[DB](I) ≥ minSp then FI1 = FI1 ∪ I;
6 AmbiguousI1 =GenerateAmbiguousItemsets(I1 \ FI1);
7 for each itemset I ∈ AmbiguousI1

8 if BlΘ[DB](I) ≥ minSp then FI1 = FI1 ∪ I;
9 RemoveRedundantItemsets(FI1);

10 n = 1;
11 while (FIn �= ∅) {
12 FIall = FIall ∪ FIn;
13 In+1 =GenerateCandidateItemsets(FIn);
14 FIn+1 = ∅;
15 for each itemset I ∈ In+1

16 if BlΘ[DB](I) ≥ minSp then FIn+1 = FIn+1 ∪ I;
17 n = n + 1 }
18 return FIall };

of Bl (�), FV 1 ∈ FI1 =⇒ FV 1 ∪ FV 2 ∈ FIk. Since F 1,1 ⊆ (F 1,1, F 1,2), for discovering rules that have F 1,1 in
its antecedent, it is sufficient to retain only FV 1 ∪ FV 2, i.e., FV 1 ∈ FI1 can be considered redundant. In other
words, any frequent 1-itemset that is a strict subset of another frequent 1-itemset can be pruned (line #9).

The next step is to form 2-itemsets from the frequent 1-itemsets thus obtained (line #13). Not all 1-
itemset pairs produce 2-itemsets (see Lemma 5.2. For example, FV 1 ∩ FV 2 �∈ I2 while FV 1 ∩ FV 3 ∈ I2

where FV 3 = [Θ[F1], 3,Θ[F3], . . . ,Θ[FnF]] ∈ I1. The frequent 2-itemsets are those that pass minSp value
(line #16). This same procedure is followed to generate frequent k-itemsets in general. This algorithm calls for
the computation of BlΘ[DB](FV = FV) often (line #16) and this is where the BIT comes in extremely handy.

Rule Generation. For classification purposes, each association rule antecedent Rant would have a set
of attributes while the consequence Rcon would have the corresponding class label. The frequent itemsets we
have generated however are allowed to possess attribute value ambiguities; the class label is also allowed to be
ambiguous. We now need to utilize an appropriate belief theoretic measure to indicate the support we place
on each rule. DS conditional notions are ideal candidates for such a measure.10 We prefer the Fagin-Halpern
(FH) conditional notions11 for this purpose because they can be considered the more natural extensions of the
Bayesian conditional.12, 13 Hence, we define the confidence in a rule via the lower and upper bounds

Cf ≡ BlΘ[DB](Rcon|Rant) = BlΘ[DB](Rant ∩ Rcon) ÷ [
BlΘ[DB](Rant ∩ Rcon) + PlΘ[DB](Rant \ Rcon)

]
;

Cf ≡ PlΘ[DB](Rcon|Rant) = PlΘ[DB](Rant ∩ Rcon) ÷ [
PlΘ[DB](Rant ∩ Rcon) + BlΘ[DB](Rant\Rcon)

]
. (3)

Now we select only those rules that meets this Cf threshold; denote this rule set via RARM .

6. CLASSIFICATION

We now use the rule set developed in Section 5 to arrive at a classifier. Classification is the task of assigning
a class label for a new incoming data instance. Since the training data set itself contains both attribute and
class label ambiguities, an incoming data instance can be classified into either a single class (“hard” decision) or
multiple classes (“soft” decision).

Rule BPA and Rule Discount Factor. Consider the following partition of the rule set RARM : RARM =⋃K
k=1 R(k) where the antecedent of all rules in R(k) is FV k and FV i �= FV j , i �= j. We now propose

SPIE USE, V. 2 5803-13 (p.7 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

Definition 6.1 (Rule BPA and Rule Discount Factor). For the partition R(k), define the following:
(i) Rule BPA: m

(k)
Θ[CL] : 2Θ[CL] �→ [0.1] s.t. mΘ[CL](CLi) = mΘ[DB](CLi|FV k); (ii) Rule Discount Factor:

d(k) =
[
1 + Ent(k)

]−1
[1 + log [|FV k|]]−1

, where Ent(k) =
∑

C⊆Θ[CL] m
(k)
Θ[CL](C) · log [m(k)

Θ[CL](C)].

Kulasekere, et al.13 provide an iterative technique for computing the conditional BPA required for the rule
BPA. It computes the conditional BPA for each singleton first; then, it computes the conditional BPA for all
doubletons, etc. This iteration can be terminated when the BPA calculated reaches a preset threshold close
to unity; the remaining mass is assigned to the complete set Θ[CL]. The quantity Ent(k) required for the rule
discount factor accounts for the ‘uncertainty’ in the rule about the class label while the term 1/(1 + log [|FV k|])
accounts for the ambiguity in the rule antecedent. Hence, d(k) can be considered a measure of the total uncertainty
in the rule. Now, each rule in RARM can be identified via the triple [FV k,m

(k)
Θ[CL], d

(k)].

When classifying an incoming feature vector FV , the classifier first needs to find a set of rules RFV ⊆ RARM

that ‘match’ FV . Different criteria may be used for this. We used RFV =
{

[FV i,m
(i)
Θ[CL], d

(i)] : FV ⊆ FV i

}
; if

there is no FV i s.t. FV ⊆ FV i, we use the classification algorithm in Zhang, et al.5 with the distance measure
0.5 [|FV \ FV i| + |FV i \ FV |] . The rule BPAs of the rules in RFV are then combined using the DRC with the
rule discount factor taken into account.6

Decision Criterion. Having computed this BPA generated from RFV , we make a decision as follows: If
there exists a singleton class label whose belief is greater than the plausibility of any other singleton class label,
use the maximum belief with non-overlapping interval strategy14 to make a hard decision on the class label; if
such a class label does not exist, a soft decision is made in favor of the composite class label constituted of the
singleton label that has the maximum belief and those singleton labels that have a higher plausibility value.
This strategy sometimes leads to decisions that are too ambiguous; in such cases, one can restrict the maximum
cardinality of the decision to be a pre-determined number and use the maximum belief criterion.

7. EXPERIMENTAL RESULTS

This section summarizes our experimental results.

UCI Repository of Machine Learning Databases. The proposed algorithm has been tested against
several databases from the UCI repository.15 To demonstrate its performance in the presence of imperfect data,
‘noise’ was introduced into the attribute values by changing the value of a randomly picked attribute of a data
instance to its neighboring values. Table 5 compares the proposed algorithm with C4.5.16 Note that we have

Table 5. Classification accuracy of C4.5 and the proposed algorithm for different attribute noise levels in 05 UCI databases.

Database Algorithm No noise 5% noise 10% noise 15% noise 20% noise
Monks C4.5 79.37 76.21 75.60 71.90 63.90

Proposed 80.52 76.52 75.44 73.83 71.29
Nursery C4.5 97.26 91.72 86.06 81.50 76.35

ARM 92.30 91.23 87.88 83.75 82.40
Diabetes C4.5 68.78 63.92 63.77 58.33 54.98

ARM 68.64 67.01 66.58 65.61 61.62
Car C4.5 92.23 82.80 77.65 68.92 63.60

ARM 91.05 83.32 81.10 73.98 72.10
Iris C4.5 95.65 95.10 80.00 74.57 72.00

ARM 98.28 96.08 90.68 82.11 77.00

used the scoring mechanism suggested by Zhang, et al.,5 for comparing the two algorithms in the presence of
soft decisions.

Application in a Threat Assessment Scenario. Consider an airport area that has been divided into two
security zones {Z0,Z1} where Z1 has a higher priority. Suppose Z0 and Z1 have been divided into 6 and 4 grid
locations respectively. Assume that there are 4 different types of passengers {P0,P1,P2,P3} where P0 poses no
danger while P1, P2 and P3 pose increasing levels of danger.

SPIE USE, V. 2 5803-13 (p.8 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

Suppose there are two experts {E1,E2} whose opinions are being sought to allocate threat levels to a set
of training instances. E1 allocates a threat level as T1 = X01 + X02 + X03 + X11 + X12 + X13 by taking into
account the number of different passenger types in each zone; E2, on the other hand, allocates a threat level
as T2 = X1 + X2 + X3 by taking into account the different passenger types in the entire airport. We use the
following heuristic rules to mimic the opinions of E1 and E2:

X0j =

{
2j−1N0j/6, if N0j < 3;
2j−1, otherwise;

X1j =

{
22+jN1j/4, if N1j < 2;
22+j , otherwise;

Xj =

{
2j+2Nj/10, if Nj < 3;
2j+2, otherwise.

(4)

Here, Xij denotes the ‘contribution’ of passenger type Pj, j = 1, 3, located in zone Zi, i = 0, 1, to E1’s opinion;
Nij denotes the number of passenger type Pj, j = 1, 3, located in zone Zi, i = 0, 1; Xj denotes the ‘contribution’
of passenger type Pj, j = 1, 3, to E2’s opinion; Nj denotes the number of passenger type Pj, j = 1, 3, in the
entire airport. Finally, T1 and T2 are each linearly mapped to 4 threat classes {T1,T2,T3,T4}.

We generated a corresponding data set where each data instance has 10 attributes and an allocated threat
class. The 10 attributes describe the passenger type at each of the 10 locations (6 in Z0 and 4 in Z1). Ambiguities
in attribute values can arise due to imperfections of information channels/sensors used for determining passenger
type. The ambiguities in the threat class are due to the difference in opinions of E1 and E2. Fig. 3 compares
the proposed algorithm with C4.5. For C4.5, the ambiguous values are treated as distinct values. The increase

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

Level of Ambiguity

ARM−based algorithm

Misclassification(%)
Classification Score (%)
No of Soft decision

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

Level of Ambiguity

C4.5

Misclassification(%)
Classification Score (%)
No of Soft decision

Figure 3. Comparison of the proposed algorithm with C4.5.

in the percentage of the soft decisions with increasing levels of ambiguities, while keeping the mis-classification
rate low, is an indication of the robustness of the proposed algorithm. The decrease in the classification score5

with increasing ambiguity is due to the increasing number of soft decisions.

8. CONCLUSION

Data imperfections can be considered one of the most challenging hurdles confronting the use of various algorithms
developed within the realm of computer science and engineering to other application domains.2 As a way of
modeling and accounting for such imperfections, DS belief theretic notions have attracted considerable attention.1

Nevertheless, how one may reduce the associated computational burden remains an extremely active area of
research. The work presented in this paper proposes a new data structure—the belief itemset tree (BIT)—that
can effectively represent a database that may contain feature and class label ambiguities and respond to belief
queries. The proposed ARM algorithm uses the BIT to efficiently extract both ambiguous and non-ambiguous
rules; they form the basis on which classification of an incoming feature vector is performed.

The attribute ambiguities considered in this algorithm could vary depending on the application. For example,
in the GenerateAmbiguousItemsets(�) routine in Table 4, depending on the type of attribute that we combine
to form ambiguous 1-itemsets, different approaches may be employed. When an attribute takes continuous
values, it has to be discretized so that it fits into the rule mining framework. Suppose such an attribute has been

SPIE USE, V. 2 5803-13 (p.9 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

discretized into the eight levels {1, 2, . . . , 8}. It is highly unlikely that we will have rules containing ambiguous
attribute values such as (1, 6), (2, 8), etc. On the other hand, ambiguities such as (1, 2), (3, 4), etc., where
adjoining levels appear together, are more likely. The same would be true with an attribute taking nominal
values with an inherent temporal component, e.g., ΘSeason = {Spring, Summer,Autumn,Winter}. Another
question that arises when generating ambiguous itemsets is the maximum number of distinct values of an attribute
that need to be combined. This again depends on the application and nature of the dataset available.

This work is restricted to the case of data imperfections that can be modeled via BoEs having only one focal
element, viz., data ambiguities. An interesting and critically important research problem would be to find ways
to remove this restriction so that other types of data imperfections (e.g., probabilistic and possibilistic types)
can also be accommodated within the basic framework developed here.

ACKNOWLEDGMENTS

The support of NSF Grants IIS-0325260 (ITR Medium) and EAR-0323213 is gratefully acknowledged.

REFERENCES
1. A. Motro and P. Smets, eds., Uncertainty Management in Information Systems: From Needs to Solutions,

Kluwer Academic Publishers, Boston, MA, 1997.
2. National Science Foundation, “IDM 2004 Workshop,” 2004.
3. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” in Proc.

International Conference on Very Large Data Bases (VLDB’94), pp. 487–499, (Santiago de Chile, Chile),
Sept. 1994.

4. B. Liu, W. Hsu, and Y. M. Ma, “Integrating classification and association rule mining,” in Proc. ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’98), pp. 80–86, (New
York, NY), Aug. 1998.

5. J. Zhang, S. P. Subasingha, K. Premaratne, M.-L. Shyu, M. Kubat, and K. K. R. G. K. Hewawasam, “A novel
belief theoretic association rule mining based classifier for handling class label ambiguities,” in Foundations
in Data Mining (FDM) Workshop, IEEE International Conference on Data Mining (ICDM’04), (Brighton,
UK), Nov. 2004.

6. G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ, 1976.
7. S. S. Anand, D. A. Bell, and J. G. Hughes, “EDM: A general framework for data mining based on evidence

theory,” Data and Knowledge Engineering 18, pp. 189–223, 1996.
8. M. Kubat, A. Hafez, V. V. Raghavan, J. R. Lekkala, and W. K. Chen, “Itemset trees for targeted association

querying,” IEEE Transactions on Knowledge and Data Engineering 15, pp. 1522–1534, Nov./Dec. 2003.
9. M. Deshpande and G. Karypis, “Using conjunction of attribute values for classification,” in Proc. Interna-

tional Conference on Information and Knowledge Management (CIKM’02), pp. 356–364, (McLean, VA),
Nov. 2002.

10. H. Xu and P. Smets, “Reasoning in evidential networks with conditional belief functions,” International
Journal of Approximate Reasoning 14, pp. 155–185, Feb./Apr. 1996.

11. R. Fagin and J. Y. Halpern, “A new approach to updating beliefs,” in Proc. Conference on Uncertainty
in Artificial Intelligence (UAI’91), P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, eds.,
pp. 347–374, Elsevier Science, New York, NY, 1991.

12. P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, UK, 1991.
13. E. C. Kulasekere, K. Premaratne, D. A. Dewasurendra, M.-L. Shyu, and P. H. Bauer, “Conditioning and

updating evidence,” International Journal of Approximate Reasoning 36, pp. 75–108, Apr. 2004.
14. I. Bloch, “Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical

images taking partial volume effect into account,” Pattern Recognition Letters 17, pp. 905–919, July 1996.
15. C. L. Blake and C. J. Merz, “UCI repository of machine learning databases,” 1998.
16. J. R. Quinlan, C4.5: Programs for Machine Learning, Representation and Reasoning Series, Morgan Kauf-

mann, San Francisco, CA, 1993.

SPIE USE, V. 2 5803-13 (p.10 of 10) / Color: No / Format: Letter/ AF: Letter / Date: 2004-12-06 14:20:12

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

