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Abstract— A rule-based classifier learns rules from a
set of training data instances with assigned class labels
and then uses those rules to assign a class label for a
new incoming data instance. To accommodate data imper-
fections, a probabilistic relational model would represent
the attributes by probabilistic functions. One extension
to this model uses belief functions instead. Such an ap-
proach can represent a wider range of data imperfections.
However, the task of extracting frequent patterns and
rules from such a “belief theoretic” relational database
has to overcome a potentially enormous computational
burden. In this work, we present a data structure that is
an alternate representation of a belief theoretic relational
database. We then develop efficient algorithms to query for
belief of itemsets, extract frequent itemsets and generate
corresponding association rules from this representation.
This set of rules is then used as the basis on which an
unknown data instance, whose attributes are represented
via belief functions, is classified. These algorithms are
tested on a data set collected from a testbed that mimics an
airport threat detection and classification scenario where
both data attributes and threat class labels may possess
imperfections.

Index Terms—Data imperfections, data ambiguities,
data mining, association rules, classification, Dempster-
Shafer belief theory

I. INTRODUCTION

Unless they are appropriately modeled and accommo-
dated, one is compelled to make various *“assumptions”
and “interpolations” to avoid the difficulties associated
with data imperfections in a database. In most practi-
cal applications however such a strategy can severely
impair the integrity of the decision-making process and
yield inferences that are not trustworthy. For exam-
ple, in a battlefield object identification scenario, one
typically has to fuse evidence presented by various
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heterogeneous sources to make an informed decision.
The reliability of sensors, their ‘footprints,” differences
in domain expert opinions, etc., are all sources of data
imperfections that have to be properly accounted for.
For instance, data imperfections generated from subjec-
tivity of evidence can be critical; ignoring or making
assumptions/interpolations regarding such evidence may
lead to costly mistakes. Lack of better techniques for
accommodating data imperfections is in fact a signifi-
cant hindrance to the application of various computer
engineering methodologies in other domains [1].

The probabilistic relational database model allows
probabilistic information to be associated with attributes.
In our work, we use a Dempster-Shafer (DS) belief
theoretic model where each attribute is modeled via
its own belief function. Such a DS belief theoretic
relational database (DS-DB) provides a very convenient
framework for modeling several common types of data
imperfections: missing data, incomplete data and am-
biguities generated from lack of evidence to discern
among a set of hypotheses. More importantly, a DS-
DB can better withstand modeling errors. Probabilistic
approaches require one to make initial assumptions re-
garding the model (e.g., independence of events, equi-
probabilities, etc.). When these are close to reality, they
perform extremely well; otherwise, conclusions made
can be quite misleading. On the other hand, DS models
are significantly more robust to such modeling errors
(see [2] and references therein). We believe that such
a methodology is exactly what is needed in the present
context where one may not be able to justify the typical
assumptions required for a probabilistic approach.

However, discovering interesting patterns and rules
from a DS-DB is an enormous challenge because of the
potentially crippling computational burden. Inspired by
the itemset tree concept in [3], the work in [4] proposes
a data structure referred to as the belief itemset tree
(BIT) to address this difficulty. It however accommodates
only data ambiguities — a much narrower class of data
imperfections (see [5] and Table Il for the nomencla-
ture). In this work, we extend the BIT so that it can



accommodate general belief theoretic data imperfections;
this generalization gives rise to an efficient association
rule mining (ARM) algorithm enabling one to discover
interesting rules hidden in the DS-DB.

This paper is organized as follows: Section Il provides
a brief review of essential DS notions; Section Ill de-
scribes how we model database imperfections within the
DS framework and the types of data imperfections that
we capture; Section IV describes the BIT; Section V de-
scribes how ARM is performed from the BIT; Section VI
describes the task of classification; Section VII presents
experimental results; finally, Section VIII provides the
concluding remarks.

Il. DS THEORY: A PRIMER
A. Basic Notions

Let © = {6 ... 0™} be a finite set of mutually
exclusive and exhaustive hypotheses about some problem
domain. It signifies the corresponding ‘scope of exper-
tise’ and is referred to as its frame of discernment (FoD)
[6]. A proposition #() — referred to as a singleton —
represents the lowest level of discernible information in
this FoD. Elements in 29, the power set of ©, form
all hypotheses of interest. A hypothesis that is not a
singleton is referred to as a composite hypothesis, e.g.,
(6D, ). From now on, the term “hypotheses” is used
to denote both singletons and composite hypotheses.

We use |©| to denote the cardinality of ©. The set
A\ B denotes all singletons in A C © that are not
included in B C ©, viz.,, A\ B = {#®") € © : 0 ¢
A, 69 ¢ B}; A denotes © \ A.

In DS theory, the ‘support’ for any hypothesis A is
provided via a basic probability assignment (BPA):

Definition 1 (BPA): The mapping m : 2© + [0,1]
is a BPA for the FoD © iff: (i) m(0d) = 0; and
(i) Y pcom =1. O

The BPA of a hypothesis is free to move into its
individual singletons. This is how DS theory allows one
to model the notion of ignorance. The set of hypotheses
F that possesses nonzero BPAs forms the focal elements
of ©; the triple {©,F,m} is referred to as the corre-
sponding body of evidence (BoE).

Definition 2 (Belief, Plausibility): Given a BoE
{6,F,m} and A C O, (i) Bl : 2° ~ [0,1] where
BI(A) = > gcam(B) is the belief of A; and
(i) Pl : 29 > [0,1] where PI(4) = 1 — BI(A) is the
plausibility of A. ]

So, while m(A) measures the support assigned to
hypothesis A only, the belief assigned to A takes into
account the supports for all proper subsets of A as well;

BI(A) represents the total support that can move into
A without any ambiguity. PI(A) represents the extent
to which one finds A plausible. When each focal set
contains only one element, i.e., m(A) = 0, V|A| # 1,
the BPA, belief and plausibility all reduce to probability.

B. Evidence Combination

The evidence provided by two ‘independent’ BOEs
could be ‘pooled’ to form a single BoE via Dempster’s
rule of combination (DRC):

Definition 3 (DRC): Suppose the two  BoEs
{©,F;,m;}, i = 1,2, span the same FoD ©.
Then, if K = >4 p.onp=gmi(C)me(D) # 1, the
DRC generates the BPA m(.) : 2© + [0,1] where

. ZC’,D:COD:A m1(C) ma(D)
N 1-K
This combination operation is denoted as m = m ® ms.

m(A)

,VACO.

I1l. REPRESENTATION OF IMPERFECT DATA
A. Database

We denote the database by DB = {R;}, i = 1,nDB,
where R; indicates a data record and n.D B its cardinality
(i.e., ‘size’). Each R; is taken to be of the following form:

Ri = [AVZ, CLZ], with AVZ = [Al,ia ... ,AnA,i]- (1)

Here, AV; and C L; denote the :-th attribute vector and its
corresponding class label. Each attribute vector is taken
to consist of nA attributes; A4,,, j = 1,nA, denotes the
j-th such attribute. From now on, unless the discussion
warrants otherwise, we will ignore the subscript that
identifies one data record from another, i.e., R denotes
R;, AV denotes AV;, and so on.

B. Relevant FoDs

1) Attributes: The FoD of A;, 7 = 1,nA, is taken to
be finite and equal to © 4;, viz,,

FoD[4;] = @4, = {6,...,67°%)}, (@
where n© 4; denotes the number of possible values A;
may assume. The FoD © 4y of each attribute vector AV
is then the cross-product of these attribute FoDs, viz.,

nA
FOD[AV] = 04y = [[ ©4;; (3)
7j=1

its cardinality is |© 4y | = []}2, 2943.
We use two BPASs to capture attribute imperfections.
Definition 4 (Intra-BPA, Inter-BPA): For data record
AV =[A1, ..., Anal,



(i) an intra-attribute BPA (intra-BPA) is a BPA
ma, : 2% > [0,1] defined on the FoD Oy, and
{©4,,Fa,;,ma,} is the intra-attribute BoE (intra-BoE)
it generates; and

(if) an inter-attribute BPA (inter-BPA) is a BPA
May : 294V [0,1] defined on the FoD © 4y and
{©av,Fav,Myy} is the inter-attribute BoE (inter-
BoE) it generates. ]

From now on, we adopt the convention of an underline
to denote the assumed value of a variable. For example,
< AV = AV > where AV = [4,,...,4,,,] indicates
that the attribute vector has assumed the value AV . Here,
A; C Oy, j =1,nA. Note that, A; = () denotes that
the attribute A; is “not applicable” for the attribute vector
[7]. We assume that an attribute vector whose attributes
are all “not applicable” — this corresponds to the “null
set” of © 4y — is non-existent. To simplify our notation
even further, we will denote < AV = AV > by simply
< AV > whenever no confusion can arise.

Example. Table | shows 04 attribute records and the
intra-BPA of each attribute. Each attribute record is of
the type AV = [A,, A2, A3] where ©4, = {1,2,3}, i =
1, 3. Inter-BPA for each attribute record is in Table II. [

TABLE |
INTRA-BPA OF EACH ATTRIBUTE IN 04 ATTRIBUTE RECORDS
<A > <A,> <A;>
Record A, ma, () Ay, ma,(.) A3 mas(.)
1 1 1.0 2 10 1 10
2 2 0.6 3 1.0 2 1.0
(2.3) 0.4
3 1.2 07 (1,2) 06 1 10
(1,2,3) 0.3 3 0.4
4 1 1.0 2 07 1 1.0
3 0.3
TABLE II

INTER-BPA FOR EACH ATTRIBUTE RECORD IN TABLE |

Record <A xA,xA;> Mav(.)
1 1 X 2 x 1 1.00
2 2 X 3 x 2 0.60
2,3) X 3 X 2 0.40
3 1,2) x (1,2) x 1 0.42
1,2) X 3 x 1 0.28
123 x (12 x 1 0.18
1,2,3) x x 1 0.12
4 1 X 2 x 1 0.70
1 X 3 x 1 0.30

2) Class Labels: The FoD of C'L is taken to be finite
and equal to ©¢y, viz.,

FOD[CL]=O¢={0CLY, ... 6CcLMOcr)}  (4)

where n©¢y, denotes the number of different class
labels that are to be discerned. As for the attributes, we
allow each CL to be described via its own intra-BPA

{®¢cr,Fcr,mcr}-

C. Types of Imperfections

An intra-BPA allows several types of common data
imperfections that may occur in a database to be
conveniently modeled. For example, suppose © 4, =
{66 9B}, Then, the types of data imperfections
that the intra-BPA m 4, (.) enables one to model are
shown in Table Il [5].

TABLE lIl
TYPES OF IMPERFECTIONS
Type of Data Intra-BPA
Hard (perfect) ma, () =1.0
Probabilistic

i (

(focal elements ma, (
are singletons) ma, () =02
Possibilistic ma,(0M) =0.7
(consonant belief ma, (9(13, 6®) =0.2
function) ma;(04;) =0.1
Ambiguous ma; (67,0%) = 1.0

(value is ambiguous)
Missing/unknown
(complete ambiguity)
Belief theoretic

(most general)

ma, (®Aj) =1.0

EBQ@AJ. mAj (B) =1.0

The work in [4] can only accommodate ambiguous
data. One major contribution of this current work is to
extend this to general intra-BPAs.

D. From Intra-BPA to Inter-BPA

The intra-BPA captures the uncertainty among the
values each attribute may take; an Inter-BPA is extremely
useful when one is interested in capturing the interrela-
tionship among different attributes. Given the intra-BPA
for each attribute, we may generate an inter-BPA via

Definition 5 (Cylinderical Extension): [8] Cylindri-
cal extension of < A; > to Oy is cyI@AV(Aj) =
[®A17"',®Aj—1’Aj’®Aj+1"",®AnA:| C Oav.- ]

Consider the intra-BoE {©4;,F4;,ma,} of the j-th
attribute. Then, the following is obvious:

Lemma 1: Mﬁf‘), : 294v 3 [0, 1] where

Mzg]‘)/(cyl@/;v (Aj)) = MA; (A])a VAJ € -7:14]-7
is a valid inter-BPA. We refer to it as the inter-BPA
generated from the intra-BPA m 4, . 0

Definition 6 (Data Record BPA, Database BPA):
Consider the database DB.



(i) For a given attribute record AV, suppose Mf({‘),(.)
denotes the inter-BPA generated from the intra-BPA
ma,(-) via Lemma 1. Then, the BPA [8]

- Huiio

is referred to as the data record BPA of the given data
record; the corresponding BoE is the data record BoE.

(i) Let freqg(AV = AV) be the sum of the BPAs
allocated to exactly the attribute vector AV in all the
data record BPAs. Then, the BPA

freq(AV = AV)
nDB ’

for all AV that may appear as a focal element of at
least one data record BPA is referred to as the database
BPA of the database D B; the corresponding BoE is the

Myy (B , VB C O4v,

Mpp(AV = AV) =

database BOE. OJ
Example. Table Il actually gives the data record BPA
of each data record in Table I. O

IV. BELIEF ITEMSET TREE (BIT)

In this section, the belief itemset tree (BIT) first
introduced in [4] is extended to accommodate general
belief theoretic data imperfections.

Definition 7 (Projection, Extension): For < AV >,

(i) its k-projection AV+F is the k-attribute vector <
AV > where AVY = [A,,...,A], for k = T,nA
and AVYY = §; and

(i) its k-extension AV is the nA-attribute vector
<AVT* > where AV = [AVY* O4,.,,...,04,,].0]

Note that AV generates the ‘completely ambiguous’
attribute vector, viz., A; = ©4,, Vj = 1,nA.

Definition 8 (Ancestor, Parent, Child): Given
< AV >, let < AV, >=< AV'™ > and
<AV,>=< AV™> . Then we say the following:

(i) <AV ;> is an ancestor of <AV, > if k < /.

(i) <AV, > is a parent of <AV, >, or equivalently,
< AV, > is a child of < AV, >, if <AV, > is an
ancestor of <AV, > and k = ¢ — 1; we denote this as
<AV ><< AV, > or <AV, >D< AV, >. O

So, an attribute vector can have multiple child attribute
vectors; it can have only one parent though.

A. Belief Itemset Tree (BIT)

Definition 9 (BIT): The belief itemset tree (BIT) of
the database DB consists of a set of nodes arranged
in a tree structure of nA + 1 hierarchical levels. The set
of nodes in level k, referred to as the level-£ nodes, is
denoted by N*), k = 0,n4; level-nA nodes are also

called the leaf nodes of the BIT. Level-k nodes N ()
correspond to the k-projections generated by only those
attribute vectors in DB.
(i) For k = 1,nA, an individual level-k node ng )
N®) is identified via the particular value of its k- th
attribute and its parent node as

w =0 (4D, by € TED),

where ngf) is the k-projection nﬁ’:) <AV > &
< AV S=< [AVHD 4] > and ol g oY,
Here, Z(n, (k 11)) is an index set; it spans over all the
distinct k- prOJectlons that can be generated from only
those attribute records in DB that map via the parent
node n§ Y In the BIT, ‘branches’ indicate only these

parent- Chl|d relationships; ‘node’ corresponding to né’:)
indicates its k-th attribute value A, and a parameter
freq (ngf)) > 0 which denotes the sum of masses of

attribute vectors that map to ngf)

i) Level-0 consists of one and only one node N0 =
ngg , o = {1}, which corresponds to the completely
ambiguous attribute vector, and we use the convention
ng)) = ”e ) (0,0) and freq(n, (0 )) =nDB. O

An algorithm that enables one to construct the BIT
and, in general, update the current BIT with an incoming
arbitrary attribute vector with its own data record BPA,
appears in Table IV.

TABLE IV
ALGORITHM FOR UPDATING THE LEVEL-k OF THE BIT WITH THE
ATTRIBUTE VECTOR < AV >

1 Insert(AttributeVector AV, Mav (AV),Level k){
2 generate the k-projection AVY* = [A,,..., A.];
3 if Ja branch’ nf*~D (4,_;,.)i < nf (Ak,nfzi::))
for some ¢ € Z(n (’“_1)) then
4 freanl) = freq(n) + Mav (AV);
5 ese{
6 Z(n{*~ D) = Z(n{*”"D)U{L} where L is a new index;
7 create the level-k node n{®™ (4, n{*~ 1) >
nfi ") (A1) with freq (n{) = Mav (AV);
8 if & < nA then InsertNewTree(n{")}
9 Insert(AV,k+1)};
10

11  InsertNewTree(Node N){
12  create a new branch leading from N;
13 insert an empty node at its termination };

Example. The BIT of the data records and their data
record BPAs in Table Il is in Fig. 1. O



f=2 =06 =07 {=0.4 =0.3

Al | 1 I 2 I 12 I [2,3] |[1,2,3]

28  =0.42

Fig. 1.

BIT corresponding to the database in Table II.

B. BIT and Database BoE

The following result establishes the relationship be-
tween the BIT and the database BoE. Its proof is quite
similar to the one in [4].

Theorem 1: Consider the database DB. Then,

(i) all attribute vectors with an identical k-projection

AV map to one and only one level-k node ng:);

(i) freq (ngj)) denotes the sum of BPAs of all at-
tribute vectors with an identical k-projection AV+*; and

(iii) the database BPA is Mpp(AV = AV) =
freq(AV = AV)/nDB = freq (ngﬁ))/nDB. O

This forms the basis which enables the BIT to be used
as a very convenient tool for computing the beliefs of
itemsets based on the database BPA. See Table V.

TABLE V
ALGORITHM FOR COMPUTING THE BELIEF OF THE ARBITRARY
PROPOSITION < G >

1  ComputeBéelief (Belief B,Proposition G, Level k) {

2 generate the k-projection G** = [G,,...,G,];

3 for each ¢ € I(ng::ll)){

4 go to node nf" = n{® (Ak,nx::));

5  ifG, DA, then{

6 if G; =8O, Vj=Fk+1,nA then

7 B = B+ freq (ng:));

8 else{

9 go to child node ny ) = nf**Y (AHl,nx));
10 B = B+ComputeBelief (B,G, k+1); } }}
11 return B};

Example. Fig. 2 shows how the algorithm in Table V
uses the BIT in Fig. 1 to respond to the query Q1 =
BI([(1,2),3,04,). Note that this requires 02 nodes to
be visited. Fig. 3 shows how the same BIT is used to
respond to the query Q2 = BI ([© 4,, (1,2),1). Note that
this requires 07 nodes to be visited. O

f=2 =06 =07 {=0.4 =0.3

Al | 1 I 2 | 1.2 | [2,3] |[1,2,3]

Fig. 2. Propagation of the query Q1 in the BIT in Fig. 1

f=2 =06 =07 {=0.4 =0.3

1 | 1 | 2 | 1.2 | 23] |[1,2,3] |

>

I
|
Vi

Fig. 3. Propagation of the query @1 in the BIT in Fig. 1

V. ASSOCIATION RULE MINING (ARM)

An association rule is an expression of the form
Ryt — Reon, Where the antecedent R,,; and
consequence R.,, are sets of attributes. The task of
association rule mining (ARM) is to generate all as-
sociation rules with support and confidence measures
above given thresholds [9]. If attribute and class label
imperfections are to be accommodated, we must have
Rant € ©4y and Rey, C O¢yr. Available methods [9]
however require that each R,,; and R.,, be a singleton,
eg, <AV =3> A <AV, =4 >= < (CL=1>.
They are therefore incapable of discovering rules that
accommodate imperfections, e.g., <AV1=(2,3) > A <
AVo=4>=<CL=(1,2)>.

ARM in such situations creates several significant
challenges. For example, although neither of the attribute
records [2,4, © 4,] nor [3,4, © 4,] may pass the minimum
support threshold on its own, when considered together
as [(2,3),4,0.4,], they may prove successful thus po-
tentially generating a useful rule. To perform ARM in
the presence of such data imperfections, we need the
following notions [4].



A. Frequent Itemsets

Definition 10 (Itemset, Support, Frequent Itemset):
Consider < AV >.

(i) It is referred to as a k-itemset if exactly nA — k
of its feature attributes are equal to their corresponding
FoDs; I, denotes the set of k-itemsets (by convention,
I, is the completely ambiguous attribute vector).

(i) Blpg(AV = AV) is referred to as the support of
<AV > and is denoted by Sp[AV = AV].

(i) < AV >€ I} is said to be frequent if Sp[AV =
AV] > minSp, where minSp denotes a user-defined
minimum support threshold; the set of frequent k-
itemsets is denoted by FIj. ]

Table VI provides an efficient apriori-like algorithm
that is capable of generating frequent itemsets in the
presence of general belief theoretic imperfections. The

TABLE VI
ALGORITHM FOR GENERATING FREQUENT ITEMSETS. FI,;;
DENOTES THE SET OF ALL FREQUENT ITEMSETS

1  GenerateFrequentl temSets() {
2 Fl, =0; FI, = 0;
3 I = GenerateOneltemsets(DB);
4  for each itemset I € I
5 if BIDB(I)ZminSpthen FI1:FI1UI;
6  Ambiguousl; = GenerateAmbiguousltemsets(Iy \ F'I);
7 for each itemset I € Ambiguously
8 if Blps(I) > minSp then FI, = FI; UI;
9 RemoveRedundantltemsets(F'I4);
10 n=1;
11 while FI, #0{
12 Fl,; = Fl,; UFI,;
13 I,+1 = GenerateCandidatel temsets(F'I,,);
14 FI,41 =0
15 for each itemset I € I,,+1
16 if B|DB(I) > minSp then FIn+1 ZFITH_l U I,
17 n=n+1}

18 return Fl, };

salient steps in the algorithm are as follows:

Line #3: The entire database DB is scanned to find
all its 1-itemsets. The frequent itemsets that would be
eventually generated from these would only consist of
those attribute vectors that are present in DB. Such
a strategy may prevent us from discovering other po-
tentially important rules. For example, suppose the first
attribute of each vector is modeled as a singleton. Then,
with line #3 alone, it would be impossible to create
potentially interesting relationships with an antecedent
having an imperfect first attribute!

Line #6: To discover such relationships, we form
imperfect attributes by combining the attributes of non-
frequent 1-itemsets obtained in line #3.

Line #8: If these newly formed 1-itemsets turn out
to be frequent, they are included in FI;. For example,
if A_Vl = []‘7®A2""7®AnA] g Al and A_V2 =
[2,04,,...,04,,] & FI;, we would form the 1-itemset
AV, UAV, = [(1,2),04,,...,04,,] (line #6). It is
now quite possible that AV, U AV, € FI;.

Line #9: This strategy however may create ‘redundant’
frequent 1-itemsets. For example, suppose DB contains
the records AV, and AV, U AV,. Then, AV, €
FI, = AV,UAV, € FIi.Since A, ; C (4;1,4, ),
for discovering rules that have 4, , in its antecedent, it is
sufficient to retain only AV ,UAV,,i.e., AV, € FI; can
be considered redundant. In other words, any frequent
1-itemset that is a strict subset of another frequent 1-
itemset has to be pruned.

Line #13: The next step is to form 2-itemsets
from the frequent 1-itemsets thus obtained. Not all 1-
itemset pairs produce 2-itemsets. For example, AV, N
AV, & I, while AV, N AV; € I, where AV, =
[04,,3,04,,...,04,,] €.

Line #16: The frequent 2-itemsets are those that pass
minSp value.

Line #17: This same procedure is followed to generate
frequent k-itemsets in general.

This algorithm calls for the computation of
Blpg(AV = AV) often (line #16) and this is
where the BIT comes in extremely handy.

B. Rule Generation

We now need to utilize an appropriate belief theoretic
measure to indicate the support we place on each rule in
which both attribute value and class label may possess
imperfections. DS conditional notions are ideal candi-
dates for this [10] and we define the threshold for the
confidence in a rule via

m’Lan = BIDB(Rcon|Rant)a
Rant - 6AVa]%con - 6C’L- (5)

Although various DS conditional notions are available in
the literature, for our work, we prefer the Fagin-Halpern
(FH) conditionals [11] because they can be considered
the more natural extensions of the Bayesian conditional
[12], [13]. We select only those rules that meet this
minC'f threshold; denote this rule set via R 4rs-

VI. CLASSIFICATION

The classifier must be able to classify incoming data
instances that would possess attribute intra-BPAsS.



A. Rule BPA and Rule Discount Factor

Partition R 4gras such that the antecedent of each
partition is identical. Suppose the antecedent of partition
R® is R®) where k = T, K.

Definition 11 (Rule BPA, Rule Discount Factor): For
the partition R%), define the following:

@) m¥) . 29er y [0.1] st ome,, (CL;) =
me,, (CL;|AV}), is the rule BPA; and

(i) d® = [1+Eu®] 7 [1+log[|AV, ),
where Ent®) = Yo m$) (C) - log[m) (O)],
is the rule discount factor. O

One may use the iterative technique in [13] to compute
the conditional BPA required for the rule BPA. It com-
putes the conditional BPA for each singleton first; then,
it computes the conditional BPA for all doubletons, etc.
This iteration can be terminated when the calculated BPA
reaches a preset threshold close to unity; the remainder
is assigned to the complete set © .. The quantity Ent(*)
accounts for the ‘uncertainty’ in the rule about the class
label while the term 1/(1 + log[|AV|]) accounts for
the ambiguity in the rule antecedent. Hence, d¥) can be
considered a measure of the total uncertainty in the rule.
In essence, each rule in R 4gas can be identified via the
triple {AV, mgch,d(k)}.

When classifying an incoming attribute vector <
AV > with its own intra-BPAs, the classifier first needs
to generate the corresponding data record BPA as de-
tailed in Definition 6. Then it needs to find a set of rules
Rav C Rarnm that ‘match” < AV >. Different criteria
may be used for this. We used

Ray = {{aVim),.d"} AV c Av.f:  (9)

if Rav = @, we used the classification
algorithm in  [14] with the distance measure
0.5[|AV\ AV,| + |AV,\ AV]|]. The rule BPAs of

the rules in R4y are then combined using the DRC
with the rule discount factor taken into account [6].
The class beliefs thus generated are weighted averaged
using the BPAs of corresponding focal elements of the
generated data record BPA.

B. Decision Criterion

The class beliefs themselves can be considered the
decision, or one can make a decision on the class
label as follows: If there exists a singleton class label
whose belief is greater than the plausibility of any
other singleton class label, use the maximum belief
with non-overlapping interval strategy [15] to make a
hard decision on the class label; if such a class label

does not exist, a soft decision is made in favor of the
composite class label constituted of the singleton label
that has the maximum belief and those singleton labels
that have a higher plausibility value. If this strategy leads
to decisions that are too ambiguous, one can restrict the
maximum cardinality of the decision to a pre-determined
number and use the maximum belief criterion.

VII.

The proposed strategy was applied in a security threat
assessment scenario. For this purpose, an experimental
platform located at the Distributed Decision Environ-
ments (DDE) Laboratory in University of Miami is used
to mimic an airport terminal. The platform is partitioned
into a grid of 3 x 3 = 9 areas. Passengers are assumed
to pose different threat levels, T'hreatLevel, depending
on the properties of what they carry. We use 4 different
types of emitters to mimic these properties: ultrasonic,
sound, light and magnetic. The presence of various
combinations of these properties, or PaxType, is sensed
using sensors placed at specific locations within the
terminal. The locations of passengers are tracked by a
camera placed above the platform.

Sensor footprints introduce imperfections into the
collected data. Data were gathered for two different
scenarios: (S1) normal situation where there is no ap-
parent threat; and (S2) abnormal situation where there
can be a potential threat. A data record consists of
9 attributes, each representing the 9 grid areas. Each
attribute is described via an intra-BPA defined on the
FoD Opagrype = {P1,P2,P3,P4}. The threat level
for each training set instance is taken to be either T1 or
T2, i.e., they are perfectly classified.

Table VII shows the confusion matrix obtained for the
experiment when C4.5 and the proposed algorithm are
applied. The data set had to be slightly modified so that

EXPERIMENTAL RESULTS

TABLE VII
CONFUSION MATRICES FOR C4.5 AND PROPOSED ALGORITHM

ThreatLevel C4.5 Proposed Algorithm
T1 T2 T1 T2 (T1,T2)
T1 141 16 136 6 15
T2 11 118 3 120 6

it could be applied to C4.5 [16]. The ‘perfect’ attribute
values that C4.5 requires were obtained by applying the
pignistic probability [2] on the intra-BPA. Note how our
proposed strategy allows “soft” decisions to be made.
Table VIII compares the time taken to construct the
BIT and to run 1000 belief queries on it with the time
taken to compute the same belief queries by scanning



TABLE VIII
COMPUTATIONAL TIME (IN SEC)

Ambiguities BIT Database

Construction  Querying  Scanning
0% 0.31 0.14 1.97
5% 0.33 0.17 1.95
10% 0.38 0.19 1.92
15% 0.39 0.19 1.95
20% 0.36 0.20 1.95
25% 0.34 0.20 1.88
30% 0.39 0.22 1.88
35% 0.36 0.22 1.89
40% 0.39 0.25 1.92

the database. Comparison was made on the synthetic
threat assessment database used in [4]. Computational
times were measured for datasets having different levels
of ambiguities. Note that time consumed in constructing
the BIT is a one-time cost for a given database. Typically
a rule mining algorithm involves computing beliefs of
several hundreds of thousands of itemsets and it is
evident from the results that the BIT speeds up the
process by a significant margin as opposed to computing
these beliefs by scanning the database

VIIl. CONCLUSION

As a way of modeling and accounting for data imper-
fections, DS belief theoretic notions have attracted con-
siderable attention. In this paper, the BIT data structure is
being proposed as a way to mitigate the otherwise heavy
computational burden that is typically associated with
such methods. The BIT is in essence an alternate rep-
resentation of a database that may contain attribute and
class label imperfections that are modeled as intra-BPAs.
It allows one to efficiently respond to “belief” queries on
the attribute vectors. The proposed ARM algorithm uses
the BIT to extract both perfect and imperfect rules; they
form the basis on which classification of an incoming
data instance is performed.

Preliminary results show that this algorithm provides
high classification accuracy; when sufficient evidence is
lacking, it classifies the input into a “soft” class. In a real
threat assessment application, various other issues also
need to be taken into account, e.g., under-estimating the
threat level can be more harmful than over-estimating,
there may be situations where human intervention and/or
immediate action have to be taken etc. To see how
the proposed strategy can be used/modified in such
situations, further studies have to be performed.
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