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ABSTRACT 
 
This paper addresses the problem of mapping natural language 
to its semantics. It presupposes that the input is in random 
(compressed) form and proceeds to detail a methodology for 
extracting the semantics from that normal form. The idea is to 
enumerate contextual cues and learn to associate those cues with 
meaning. The process is inherently fuzzy and for this reason is 
also inherently adaptive in nature. 

It is shown that the influence of context on meaning grows 
exponentially with the length of a word sequence. This suggests 
that rule-based randomization plays a key role in rendering a 
field-effect natural language semantic mapping tractable. An 
example of rule-based randomization for semantic normalization 
is as follows. Suppose that two commands to a robot are deemed 
to be equivalent; namely, “Grasp and pick up the glass” and 
“Hold the cup and raise it”. Their mutual normalization might 
then be, “Grab container. Lift container.” Clearly, the 
randomization process can be effected by rules. Also, the 
normalized syntax makes the result of any semantic mapping 
process – such as detailed herein – more efficient. 

A natural language front-end is described, which is designed 
to reduce the impedance mismatch between the human and the 
machine. Most significantly, the effective translation of natural 
language semantics is shown to critically depend on an 
accelerated capability for learning. 
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1. INTRODUCTION  
 

The theory of randomization was first published by Chaitin and 
Kolmogorov in 1975 [1]. Their work may be seen as a 
consequence of Gödel’s Incompleteness Theorem [2] in that it 
shows that were it not for essential incompleteness, then a 
universal knowledge base could, in principle, be constructed – 
one that need employ no search other than referential search. Lin 
and Vitter [3] proved that learning must be domain-specific to 
be tractable. The fundamental need for domain-specific 
knowledge is in keeping with the Unsolvability of the 
Randomization Problem [4]. 
 

2. NATURAL LANGUAGE FRONT END 
 

The capability to understand natural language (e.g., English) is 
critically dependent upon a capability to learn [5]. Indeed, 
insofar as language skills go, intelligence may be said to be a 
measure, not of language skills per se, but rather of the 
capability for their accelerated acquisition. 

The task is to map an arbitrary statement in a natural language 
onto a finite set of semantics. One member of this set may be 
simply, “I don’t know or understand to what you are referring.” 
That is, 
 
{ | ( ) , | | | |}M M S T where S T→ >>      (1) 
 
In relation (1), M denotes a mapping function where S and T 
denote spaces of sentential semantics. The relevant question is, 
“What is M?”. To answer this question, one must break it into 
two constituent parts: 
 

1. The linguistic problem and 
2. The contextual problem 

 
The linguistic problem (1) pertains to the randomization and 
normalization of the supplied sentential form, S, as a prelude to 
mapping its semantics in step (2). 

There are two categories of randomization: 
 

1. Syntactic randomization and 
2. Semantic randomization 

 
Consider the two English queries: 
 

1. Which person(s) might hijack the plane? 
2. Did someone hijack the plane? 

 
Here, the phrase “hijack the plane” provides an opportunity for 
syntactic randomization. The two queries are subsequently 
internally represented as: 
 

1. Which person(s) might 001? 
2. Did someone 001? 
3. 001 →  hijack the plane 

 
Note that syntactic randomization is properly recursively 
defined starting with the longest common phrases. 

Semantic randomization is more difficult to achieve than is 
syntactic randomization. However, when properly done it allows 
for a far higher degree of randomization to be achieved. 
Sometimes it is clear from the usage that one word or phrase 
may be directly substituted for another (e.g., “Hi” for “Hello”). 
More often, a fuzzy relaxation may or may not be in order to 
achieve the desired randomization (e.g., Under what conditions 
can “Which person(s) might” substitute for “Did someone”). 
Other times, the substitution is specifically enjoined (e.g., Never 
substitute TRUE for FALSE). 

The process of semantic randomization is further made 
difficult by the contextual problem. That is, sometimes it is 
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proper to make the substitution and other times it is not. The 
differentiating factor here is the context in which the substitution 
might occur. 

The key to solving the contextual problem in the context of 
semantic randomization is to make use of transitive relations. 
That is, if A B B C A Cℜ ∧ ℜ → ℜ . Thus, for example, if, 
“Which person(s) might 001?” is deemed to be semantically 
equivalent to, “Dangerous person 001” and, “Did someone 001” 
is likewise deemed to be semantically equivalent to this, then 
both queries may be equivalently replaced by, “Dangerous 
person 001”. Indeed, it can be argued whether or not the 
semantics are equivalent. Suppose that it is subsequently found 
that they are not. In this case, the system can either replace the 
existing map, or acquire a new map having distinct context. In 
either case, learning is provided for. 

To summarize, first the sentential forms are syntactically 
randomized. Then, they are semantically randomized and 
normalized through the use of acquired context-sensitive 
mapping rules. A knowledge acquisition capability implies truth 
maintenance as well as an ever-increasing capability for 
randomization. Note that in actuality, syntactic and semantic 
randomization are co-variant in the sense that the application of 
one enables the application of the other. Also, the 
transformational rule base is self-referential, which makes for a 
more complex mechanics than detailed herein. 

The contextual problem assumes a fully randomized sentential 
form. This form represents a string of symbols as in 002 003 
001. Syntactic and semantic redundancy have been compressed 
out of the string. This serves to minimize its length, which 
greatly facilitates tractability in the contextual problem 
operations. Moreover, the further use of normalization 
operations implies that sentential semantics can be extracted 
using nothing more than contextual sequencing; albeit, this is 
not a trivial problem. We will see that there is an elegant 
solution however. Consider the following two sentential forms. 
Note that they are not randomized or normalized so as not to 
detract from their readability; although, it is clear that a proper 
system will preprocess them as previously described. Let, 
 

α : The dog bit the man. 
β : The man bit the dog. 

 
Consider the following sentence. The task is to map its 
semantics to α  or β  - whichever has a closer semantics. 
 

ε : The man ate the hotdog. 
 
To begin, we create a symbol hash table for unique identifiers. 
The ids can be case-insensitive for purposes of this illustration: 
 

the 1 
dog 2 
bit 3 
man 4 
ate 5 
hotdog 6 

 
Associative memories construct indices based on feature 

vectors. For example, instead of retrieving an object by its 
feature number, an associative memory would retrieve the same 
object from its complete description, or even from an 
incomplete description. 

One of the interesting features of natural language is that it 
allows sentences to be constructed that can be ordered from 
general to specific. For example: 

"Someone is going someplace next week." is 
more general than either "Harry is going 
someplace next week." or "Someone is going to 
New York next week"; 

and these are all more general than, "Harry is going to the 
Village on Tuesday." 

One question that arises is, “Should one use n words taken as 

ordered pairs, or perhaps ( ) , 1,
n

r n
r

=  - i.e., the set of 

singletons, ordered pairs, ordered triplets, ... , the sentence 
itself?” There are several things to be considered before stating 
an answer to this question. First, can the ordered pairs, say 
( , ), ( , )i j j k  capture the semantics of the ordered triplet, 

( , , )i j k  and so on? Clearly, the transitive property vies for 
the use of ordered pairs as a substitute for higher orderings. 
Next, one must consider the computational complexity of the 
associated set operations, which is a function of the number of 
objects in the set. Compare the complexity of 
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Fig. 1. Quadratic Complexity 

 
It would appear in Fig. 2 that the human capability to 

comprehend context in a previously randomized sentence begins 
to fall off sharply somewhere between ten and twenty words. It 
is also noted that they system must be recursively decomposable 
to be capable of processing single words in a like manner to the 
processing of longer sentences. This suggests the use of the 
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above (2 )nO  model in preference to the 
2( )O n  one. To 

continue with our example, the sequential structure of the 
sentences is broken into sets of ordered pairs to characterize 
their underlying semantics. (The inclusion of ordered triplets 
and higher orderings would be similar.) 
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Fig. 2. Exponential Complexity 

 
 

α  : { (1,2) (1,3) (1,1) (1,4) 
            (2,3) (2,1) (2,4) 

     (3,1) (3,4) }  
 
β  : { (1,4) (1,3) (1,1) (1,2) 

            (4,3) (4,1) (4,2) 
     (3,1) (3,2) } 

 
ε :  { (1,4) (1,5) (1,1) (1,6) 

            (4,5) (4,1) (4,6) 
     (5,1) (5,6) } 

 
Set intersection yields the possibility of a match. Here, 
possibility, 

 

| |
| ,  such that, | |   | |

| |

i j

i j

j

ϕ ϕ
ρ ρ ϕ ϕ

ϕ

∩
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For example: 

 

| | 9
= 1.0

| | 9

α α

α

∩
= ;      (3) 

 
a) Sentential semantics are reflexive. 

 
| | | |=max{| |,| |} max{| |,| |}

|{(1,2) (1,3) (1,1) (1,4) (3,1)}| 5= 0.569 9

α β β α
α β β α
∩ ∩ =

=

    (4) 

 
b) Sentential semantics are symmetric. 

 

| | |{(1,1) (1,4)}| 2
= = 0.22

max{| |,| |} 9 9
α ε

α ε

∩
=  

 
| | |{(1,4) (1,1) (4,1)}| 3= = 0.33

max{| |,| |} 9 9
β ε

β ε
∩
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|{ } { }|
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9
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|{(1,1) (1,4)}| | | 2
= 0.22

9 | | 9

α ε

ε

∩
= =     (5) 

 
c) Sentential semantics are transitive. 

 
• Sentence ε  is more similar to sentence β  than it is to 

sentence α . 
 
• Sentence α  is more similar to sentence β  than it is to 

sentence ε . 
 
• That is: 
 

a) The man ate the hotdog. ~ The man bit the dog. 
 
b) The dog bit the man. ~ The man bit the dog. 

 
Clearly, (a) is correct; whereas, (b) is incorrect. It follows that if 
the language is sufficiently rich to be capable of self-referential 
statements, then no effective procedure can properly translate all 
of its semantics without error [4]. In other words, the proper 
translation of sentential semantics here provably requires the use 
of a learning algorithm. If in the case of (a), the oracle provides 
valid feedback to the effect that the two sentential semantics are 
indeed equivalent, then form two equivalent expanded sets to 
capture this equivalence: 
 

' '
{(1,4)(1,3)(1,1)(1,2)(4,3)(4,1)(4,2)(3,1)(3,2)(1,5)(1,6)
(4,5)(4,6)(5,1)(5,6)}

β ε β ε= = ∪ =
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Table 1. Quadratic vs. Exponential Complexity 
 

 
 

n  
2

n⎛ ⎞
⎜ ⎟
⎝ ⎠

 
1

n

r

n

r=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  

1 0 1 
2 1 3 
3 3 7 
4 6 15 
5 10 31 
6 15 63 
7 21 127 
8 28 255 
9 36 511 
10 45 1,023 
11 55 2,047 
12 66 4,095 
13 78 8,191 
14 91 16,383 
15 105 32,767 
16 120 65,535 
17 136 131,071 
18 153 262,143 
19 171 524,287 
20 190 1,048,575 

 
Version spaces imply search spaces. In view of this, an 

example follows, which demonstrates the creation of 
randomized identity transformations. Such identity transforms 
can be applied in transformational search. Again, it is clear that 
β ε≡ . It follows that β ε ε β− ≡ − . It can be shown 
that this differencing does not change the semantics. Here, 
 

2 {(1,3)(1,2)(4,3)(4,2)(3,1)(3,2)}β β ε= − =  
 

2 {(1,5)(1,6)(4,5)(4,6)(5,1)(5,6)}ε ε β= − =  
 

where, 
2 2

β ε∩ = ∅ . Next, observe that 

2 2
| | | |β ε β ε∪ ≤ ∪ . It follows that identity 
transformations are randomizations. 

Of course, sets cannot just aggregate. A pruning mechanism is 
also needed. Set differencing provides that needed mechanism. 
In the case of (b), the existing sets, α  and β  are updated: 
 

2| ' | min{| ' |,| |} | ' | | {(2,3)(2,1)(2,4)(3,4)} |α α β α β α β= − − = − =
 

3 2 2| | min{| ' |,| |} | | |{(4,3)(4,2)(3,2)} |β β α β α β α= − − = − =
 
α  represented, “The dog bit the man.” 

'α  represents, “dog bit the man.” 
β  represented, “The man bit the dog.” 

3
β  represents, “man bit dog” 

 
Notice how the union and differencing operations converge to 
capture the concepts. We term this the iterative randomization of 

sentential semantics. This example works, but we expect to 
show that the concept can be scaled up to include many more 
and longer sentences and of course far more iterations than 
would be practical here. 

An area for further research is the design of fuzzy sets, which 
would allow the sentential forms to be relaxed and have similar, 
rather than necessarily equivalent semantics. Clearly, the use of 
fuzzy logic means that set cardinalities would be real numbers, 
rather than integers. For example, if a number is used in a 
sentence, then fuzzy logic would have that number reduced to a 
qualifier (e.g., “The temperature was below 32 degrees 
Fahrenheit,” would become, “The temperature was below 
freezing.” Notice the use of context here.) 

The mapping of many sentential forms to one implies the need 
to create new normalized forms that are mapped onto. Again, we 
refer to the normalized forms as basis forms. The need to create 
new basis forms follows from the Unsolvability of the 
Randomization Problem. 

The proposed algorithm will employ conversational echo. For 
example, consider the following two distinct scenarios. 

 
a) USER: What is the location of Americas most wanted 

person? 
SYSTEM: Are you referring to a movie star? 
USER: Most certainly not, 
            I am talking about known criminals. 
SYSTEM: Are you referring to terrorists? 
USER: That is correct. 
... 

 
 

b) USER: What is the location of Americas most wanted 
person? 
SYSTEM: Are you referring to a movie star? 
USER: Most certainly not, 
            I am talking about known criminals. 
SYSTEM: Are you referring to deceased actors? 
USER: Wrong again. 
            Computer, accept command set basis form. 
... 

 
In scenario (a), the system has succeeded in correctly mapping 
one of many possible sentential forms to a basis form. In 
scenario (b), the system did not succeed. True, it may or may not 
succeed given sufficient interaction, but that is irrelevant. The 
irrelevancy follows from the classic Unsolvability of the Halting 
Problem. In scenario (b), the user creates a new normal form to 
be the image of the semantic mapping function. Each normal 
form so created serves to form a mutually orthogonal or random 
set of basis forms. The definition of orthogonality here is 
complex, while the concept should not be. 

It should be noted that the system’s echoed response can 
differ in structure or even in the base natural language used. 
This is because each echo is simply paired with the associated 
basis form. For example: 

 
BASIS FORM: What time is it? 
ECHO1: Would you like to know the time? 

ECHO1 ' : Est-ce que vous avez l’heure? 
ECHO1 '' : Wieviel Uhr ist es? 
... 

Each basis form is paired with a computational semantics. 
These semantics must be effective procedures. A good approach 
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is to slot the basis forms with SQL attributes and pair them with 
SQL queries. The SQL will retrieve the desired information 
from a relational database. The SQL should be an “orthogonal” 
or minimal instruction subset of SQL. In our experience, this 
will greatly ease writing the structured natural language to SQL 
translations. 

Temporal databases must save information in relative, rather 
than absolute form to insure proper use of the set operations. For 
example, if a user asks for the time and the proper reply is that it 
is noon, then the implied reference is to a timing device and not 
to a stored absolute numerical value (i.e., noon). 

Unlike a relational database, which stores records and uses 
rigid indexed-based searching, associative memories store 
associations representing the relationships of items in a 
particular context. Simple associative memories extract only co-
occurrence relationships (i.e., remember the fact that two items 
were mentioned in the same context). Complex associative 
memories extract more advanced semantic relationships (e.g., 
remember the fact that two people live in San Diego). 

A relational database could be used to search for fact-based 
answers such as, “How many people were bit by dogs last 
month?” An associative memory, in contrast with a relational 
database, can be used to answer questions such as, “What kind 
of people were bit by dogs last month?” and “What might cause 
a dog to bite someone?” The proposed approach has certain 
advantages for conversational learning. Consider: 
 

CASE 1: 
a) α  is mapped against a database of normal forms. 
b) The best match may echo a question, the purpose of 

which is to elicit further contextual information. 
c) Let, β  denote the user’s reply to this query. 

d) Then, α β∪  replaces α  as the next iterate to be 
mapped against the database of normal forms. 

 
CASE 2: 
a) Again, α  is mapped against a database of normal 

forms. 
b) The best match echoes a question (answer), but the 

“power user” deems that this question (answer) is 
incorrect for any reason, where ε  denotes the set 
corresponding to this basis normal form. 

c) Then, ε α−  replaces ε  in the database of normal 
forms. (Note that ε α∪  replaces ε  in the database 
of normal forms if the map is adjudicated to be 
correct. Notice that taken together, difference and 
union operations create a version space that attempts 
to converge upon the correct concept.) 

d) New normal forms are appended to the database when 
appropriate. These normal forms may generate 
answers or questions. Answers are supplied initially. 
Incorrect answers are replaced with questions meant to 
acquire differential context. The use of questions 
serves to greatly increase the size of the mapped space 
(conversational learning). 

If each recognized sentence is hashed to integer semantics, 
then a sequence of sentences (i.e., a paragraph) can be 
understood in the same manner that a sequence of words can be 
understood. Of course, larger constructs tend to be more 
random, which tends to delimit the utility of the fractal-based 
approach. 

Randomization theory implies that the user need answer only 
the most novel of questions. All others may be iteratively 
answered by an interactive network of communicating domain-
specific subsystems. Note that there is a plethora of evidence 
showing as Minsky puts it that the brain is a society of minds 
(i.e., functional areas). Note too that as the system learns that 
which is novel will evolve to higher and higher levels. 
Intelligence may be defined by the rate of this change. 

Finally, success here will extend to impact computational 
vision. The connection between computational vision and 
natural language processing is dependent upon the development 
of appropriate context-sensitive concept representation 
languages for image processing. 

 
3. CONCLUSION 

 
Natural language understanding is fundamental to computing 
with words. It is necessary that we move beyond simple 
keyword techniques and into the realm of context-sensitive 
translation. This methodology will serve to reduce the 
impedance mismatch between the user and the machine. 
Moreover, it is now clear that any effective procedure for 
mapping natural language must, by definition, be adaptive. 
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