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ABSTRACT

Recent progress in high-speed communication networks, large capacity storage devices, digitalized
media, and data compression technologies have resulted in a variety of multimedia applications using
the integration of text, images, audio, graphics, animation, and full-motion video. For traditional
text-based database management systems, data access and manipulation have advanced consider-
ably. However, for multimedia database systems, information retrieval is more difficult than that of
the conventional data since it is necessary to incorporate diverse media with diverse characteristics.
The need for information retrieval in multimedia database systems increases proportional to the con-
tinuous growth of diverse information sources and the proliferation of independent but related user
applications. Therefore, the ability to query the databases and to locate specific information directly
as needed is important for multimedia database systems. For this purpose, a mathematical sound
framework, called Markov model mediators (MMMs) which employ the principle of Markov models
and the concept of mediators, is introduced in this paper. The proposed MMM mechanism performs
information retrieval via a stochastic process which generates a list of possible state sequences with
respect to a given query and indicates which particular media objects to query.

1 Introduction

Recently, much attention has been focused on multimedia information technologies and applications.
Information of all sorts (video, audio, pictures, text, and data) in varied formats are highly volatile.
Multimedia information has been used in several applications including manufacturing, medicine,
education, business, entertainment, etc. For example, the merchandise of a manufacturer can be ad-
vertised by providing audio descriptions, video demonstrations, and prices in textual format. With the
increasing use of multimedia database systems and the fact that information retrieval in multimedia
database systems is more difficult than the conventional database systems, there is the need for a
multimedia database management system (MDBMS) which has the capabilities to provide a suitable
environment for storing, retrieving, and managing the data in multimedia systems.

Recent papers related to multimedia database systems can be categorized in the following appli-
cation domains: speech recognition, word recognition, signal processing, handwriting recognition, and
document/passage retrieval [1] [6] [7] [8] [9]. However, the focus of the above researches is on the low-
level feature recognition of multimedia data; while our approach addresses the need for a mechanism
at the database management point of view. Toward this end, we have proposed a unified model that

1



allows us to query different media types and manage the rich semantic multimedia data by using a
mathematical structure, called a Markov model mediator (MMM). Since the primitive constructed or
manipulated entities in most multimedia systems are called media objects which could be a video clip,
an image, a text file, or a complex entity of these simpler entities [2], a media object is represented as
a node in an MMM and is associated with an ATN. An ATN is a model for multimedia presentations,
multimedia database searching, and multimedia browsing [3] [4] [5].

Since the MMMs possess the stochastic property of Markov models, the processes of locating the
required media objects for a query are based on complex statistical and probabilistic analyses which
are best understood by examing the network-like structure in which those statistics are stored. Hence,
the proposed MMM mechanism plays as an MDBMS by two stochastic processes. The first stochastic
process discovers the summarized knowledge to construct a federation of data warehouses [10]. A
second stochastic process generates a list of possible state sequences with respect to a given query
and indicates which particular media objects to query over the constructed data warehouses. When
the required media objects are predicted, the corresponding ATNs are traversed for information re-
trieval. Moreover, since there might be multiple data warehouses constructed in the first stochastic
process, if one integrated MMM could not provide all the information for a query, then the second
stochastic process is applied to other integrated MMMs until all the information for the query is found.

The rest of the paper is organized as follows. The components of an MMM (local or integrated)
are introduced in Section 2. The proposed approach for information retrieval using integrated MMMs
is presented in Section 3. In Section 4, a query example to illustrate how our information retrieval
approach based on the proposed MMM mechanism works is given. The conclusions are drawn in
Section 5.

2 The Markov Model Mediators (MMMs)

There are two types of MMMs - local MMMs and integrated MMMs. Each multimedia database is
modeled as a local MMM and each data warehouse is modeled as an integrated MMM. An MMM
(local or integrated) is represented by a 6-tuple A = (S, F, A, B,II, ¥) where § is a set of media objects
called states; F is a set of attributes/features; A is the state transition probability distribution; B is
the observation symbol probability distribution; II is the initial state probability distribution; and ¥
is a set of augmented transition networks (ATNs).

An MMM consists of a sequence of states which represent the media objects (in &) in the multi-
media databases. The states are connected by directed arcs (transitions) which contain probabilistic
and other data used to determine which state should be selected next. All transitions S; — S; such
that Pr(S; | S;) > 0 are said to be allowed, the rest are prohibited. Pr(S; | S;) is greater than 0
when the media objects S; and S; have been accessed together by a set of historical queries or have
structural equivalence relationship. Also, since different media objects may have different types of
attributes or features, each media object has its own set of attributes/features (in F). A, B, and Il
are the probability distributions for an MMM and play as the major roles in the stochastic processes.
The elements in § and F determine the dimensions of A and B. The formulations of A, B, and II for
an MMM and the construction of the data warehouses are shown in [10]. Since those local MMMs
which are accessed frequently are placed in the same data warehouse, the integrated MMMs are used
in the second stochastic process to find the possible list of state sequence for a query.

The augmented transition network (ATN) is a semantic model to model multimedia presentations,
multimedia database searching, and multimedia browsing. The arcs in an ATN represent the time
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flow from one state node to another. An arc represents an allowable transition from the node at
its tail to the node at its head, and the labeled arc represents the transition function. An input
string is accepted by an ATN if there is a path of transitions which corresponds to the sequence of
symbols in the string and which leads from a specified initial state to one of a set of specified final
states. In addition, subnetworks are developed to allow the users to choose the scenarios relative
to the spatio-temporal relations of the video or image contents or to specify the criteria based on a
keyword or a combination of keywords in the queries. Information in text databases can be accessed
by keywords via the text subnetworks. The inputs for ATNs are modeled by multimedia input strings.
Also, each subnetwork has its own multimedia input string. Database searching in ATNs is performed
via substring matching between the multimedia input string(s) of the ATN (and its subnetworks) and
the multimedia input string of a given query. For example, if a text subnetwork contains the keyword
“Purdue University Library”, then the Purdue University library database is linked via a query with
this keyword. Therefore, each media object has an associated ATN and when the required media
objects are predicted, the corresponding ATNs are traversed for information retrieval. For the details
of ATNs, please see [3] [4] [5].

3 Information Retrieval Using the MMM Mechanism

Under multimedia database systems, the need for efficient information retrieval is strong because
searching databases one by one is very time-consuming and expensive. The cost for query processing
usually is very high and the complexity of a query depends heavily on the order in which the network
is searched for a successful path. To speed up query processing, an efficient way to identify a successful
path or to locate information for a query is very crucial. The MMM mechanism and the stochastic
processes are proposed for this purpose. The integrated MMMs are the units for database searching
and information retrieval. A lattice (or trellis) structure which yields a list of possible state sequences
for a specific query with a given integrated MMM is first created. Then, we use dynamic programming
on the lattice for the possible paths.

Consider one fixed state sequence S={S51, So, ..., Sy} for a given observation set O = {01, 09,..., 071}
C F, where S; denotes a state (media object), o; represents an attribute/feature, N is the number of
states, and 7" is the number of attributes/features required in a query. Define W, (¢, j) to be the edge
cost of the edge S; — S at time ¢ and D¢(j) to be the cumulative node cost of the node S; at time t,
where 1 < ¢, 7 < N, 1<t <T - 1.

mia = {50 e "
Di(j) = m?XWI(ivj):Wl(jvj) (2)
Wii(i,j) = Di(i)as,s,bs,(0m1). (3)
Deyi(7) = max(De(d) + Wepr (i, 7))- (4)

Here, A, B, and Il denote the state transition probability distribution, the observation symbol proba-
bility distribution, and the initial state probability distribution for an integrated MMM, respectively.

A ={as, s;}, where as, 5, =Pr(S; at t+1 | S; at t).
B = {bs,;(ox)}, where bs, (0g)=Pr(oy at t | S; at t).
II = {rs,}, where 7g,=Pr(S; at t=1).

At time t=1, W1 (¢, 7) is assigned the value of the joint probability of the state S; with probability
ms, and the attribute/feature o; with probability bs,(01) when i = j; Wi(i,7) = 0if ¢ # j. Since
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Dy(j) is the cumulative node cost of the node S; at time ¢, D;(j) is assigned to the value of Wy (j, j)
when ¢t = 1 given that all Wy (7, j)=01if ¢ # j. Then, a transition goes from state .S; to state S; with
probability as, s; and the attribute/feature o, is generated with probability bs] (02) as time goes from
t=1 to t=2.

The lattice is generated in the following way. N nodes are created at the beginning (i.e. t=0)
and for each time slot ¢ > 0 with each node representing a state of the lattice. A node S; at time
t — 1 connects to all the N nodes at time ¢ with the edge cost Wy(¢, j) and the cumulative node cost
Dy(j), where 1 < 4,5 < N and 1 < ¢ < T. The process continues until all the attributes/features
in the observation set are generated at time ¢ = T. The list of possible state sequences are ranked
based on the values of Wy(i,j) and to suggest the paths to retrieve information for the query. Only
those paths which have positive edge costs from ¢t = 0 to ¢ = T are considered and they are ranked
in the following manner. First, the Dy (j) values where 1 < j < N are sorted. Then, the top ranked
path is the one which constitutes maximal Dy(j) value, the second ranked path is the one with the
second ranked D (j) value, and so on. In other words, the top ranked path is a state sequence that
provides the information for the query with maximal cumulative node cost. If the top ranked path
cannot provide the information required for the query, then the second ranked path is considered.
This is repeated until the information needed by the query can be obtained. From our experience,
most of the probabilities are zeros at each time slot. Hence, the path ranking procedure becomes easy
since there will not be many paths with all positive edge costs along the path in the lattice. The
information retrieval method is in effect based on the lattice structure constructed for a specific query
since there are only N states at each time slot ¢ > 0 in the lattice. No matter how many attributes an
observation set has, all the possible state sequences will be merged into these N nodes. Moreover, the
information retrieval methods shows physical interpretation in trellis and is computationally cheaper.

4 An Example

We use the following query example to explain how our MMM mechanism is used to find a list of
possible state sequences for retrieving information. Figure 1(a) is the integrated MMM used for this
query. There are six states (media objects) in the integrated MMM and each state has an associated
ATN with it. For simplicity, only the ATN for S} is shown (see Figure 1(b)). Since S; contains video
frames and texts, two subnetworks are created for them (see Figure 1(c) and 1(d)).

Query: Find the video clips of manufacturer A’s advertisement beginning with a
salesman named M who is alone and ending with M holding an InletNeedle product with
diameter equals 0.25.

To retrieve information for this query, several steps need to be executed. First, the query is
translated into a multimedia input string. Second, since the attributes/features specified in this query
are the employee name (M), the manufacturer (or company) name (A) and the diameter (0.25) for the
InletNeedle, the observation set is specified as O = {emp_name, mname, diameter}. Third, construct
the lattice and compute the Wy (¢, j) and D;(j) values for the lattice, where 1 <¢ <3 and 1 <1¢,j <6.
Figure 2 shows the lattice for the query. In Figure 2, the positive edge costs are shown in bold lines
and others have zero edge costs. Next, the paths with positive edge costs are ranked. It can be clearly
seen that only one possible path exists in Figure 2 and so the top ranked path can be determined as
S1 — Sg — Ss. Once the required media objects are identified, information retrieval becomes handy.
Simply traverse the ATNs of those media objects. If the media object contains image, video frames,
or texts, then the corresponding subnetworks are traversed, too. In this example, since it asks for the
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advertisement video clips of the manufacturer (or company) A with respect to an employee M, some
video and text elements are involved in the searching. Hence, V; and T; in the ATN of S should be
used. The multimedia input string for the query is translated to be (M)(M&P) and the multimedia
input string of the subnetwork for V; is (M)(M&B)(M&P). Substring matching is conducted between
these two multimedia input strings. Information in text databases are accessed by keywords via the
text subnetworks. For example, the keyword “emp_name” in T} is used to search for the information
for the employee named M. The details of the multimedia input strings and the substring matching

procedures are discussed in [5].
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Figure 1: An example of an integrated
MMM — each state in turn is represented
by an ATN. (a) is the example integrated
MMM. (b) is the ATN for state S;. (c)
and (d) are the subnetworks for V4 and T,
respectively.
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Figure 2: The lattice structure created for the
query. The bold lines list all the positive edge
costs Wi(4, j). All the other edge costs are zeros.

The rapid growth of multimedia applications has increased the need for the development of MDBMSs
as a tool for efficiently storing, retrieving, and managing the information in multimedia database sys-
tems. A new approach to retrieving information from multimedia database systems based on MMM
mechanism to facilitate MDBMSs is proposed in this paper. The analysis as well as the example
presented in Sections 3 and 4 show our information retrieval method is feasible since information re-
trieval can be performed in terms of probabilistic retrieval. Moreover, under our proposed information
retrieval method, the media objects for a specific query can be identified efficiently. Therefore, the
time for query processing can be reduced in the multimedia database systems.
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