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ABSTRACT OF THE DISSERTATION

EXPLORING HIDDEN COHERENT FEATURE GROUPS AND TEMPORAL

SEMANTICS FOR MULTIMEDIA BIG DATA ANALYSIS

by

Yimin Yang

Florida International University, 2015

Miami, Florida

Professor Shu-Ching Chen, Major Professor

Thanks to the advanced technologies and social networks that allow the data to be

widely shared among the Internet, there is an explosion of pervasive multimedia data,

generating high demands of multimedia services and applications in various areas for

people to easily access and manage multimedia data. Towards such demands, multimedia

big data analysis has become an emerging hot topic in both industry and academia, which

ranges from basic infrastructure, management, search, and mining to security, privacy,

and applications.

Within the scope of this dissertation, a multimedia big data analysis framework is

proposed for semantic information management and retrieval with a focus on rare event

detection in videos. The proposed framework is able to explore hidden semantic fea-

ture groups in multimedia data and incorporate temporal semantics, especially for video

event detection. First, a hierarchical semantic data representation is presented to alle-

viate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis

method is proposed to capture the correlation between features and separate the origi-

nal feature set into semantic groups, seamlessly integrating multimedia data in multiple

modalities. Next, an Importance Factor based Temporal Multiple Correspondence Anal-

ysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the

HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA)

vi



method to generate the Importance Factor (IF) for producing the initial detection results.

Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for

re-ranking and improving the final performance. At last, a sampling-based ensemble

learning mechanism is applied to further accommodate the imbalanced datasets. In ad-

dition to the multimedia semantic representation and class imbalance problems, lack of

organization is another critical issue for multimedia big data analysis. In this framework,

an affinity propagation-based summarization method is also proposed to transform the

unorganized data into a better structure with clean and well-organized information. The

whole framework has been thoroughly evaluated across multiple domains, such as soccer

goal event detection and disaster information management.
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CHAPTER 1

INTRODUCTION

1.1 Background and Introduction

Due to the proliferation of high-tech digital devices such as smart-phones, webcams, and

digital cameras, people commonly upload all kinds of multimedia data to social sites such

as Instagram, Flickr, YouTube, and Facebook. Every minute, there are thousands of pho-

tos posted on Instagram, hundreds of hours of videos uploaded to Youtube, and millions

of pieces of content shared on Facebook. The amount of digital data has exceeded the

Zettabyte (≈ 1021) in 2011 and will soon reach the Yottabyte (≈ 1024) [1]. The rising of

the multimedia big data wave has brought up a series of hot topics, which range from ba-

sic infrastructure, management, search and mining, to security, privacy, and applications.

As it is impossible to cover all aspects of multimedia big data within the scope of this dis-

sertation, the focus of this study is to provide a coherent and systematic semantic analysis

framework for efficiently and effectively managing and retrieving multimedia big data.

There are many challenges for creating such a semantic analysis framework, which can

be summarized as follows:

Semantic Gap: The multimedia research community has addressed the semantic

gap challenge by integrating multi-modality information and exploring different levels of

semantic features from raw data. Nevertheless, research on this problem remains active

due to the difficulty posed by the semantic gap between the low-level representation of

multimedia data and its high-level semantic meaning.

To effectively retrieve meaningful semantics from rapidly growing multimedia data, it

is essential to capture the correlations among features in order to enhance the effectiveness

of model training and classification tasks. In an attempt to tackle this problem, researchers

usually perform either a linear combination of the original features from different modal-
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ities, or use statistical techniques, such as principal component analysis (PCA) and inde-

pendent component analysis (ICA) to transform the original features into another space

and select the most important features. The problem with these statistical methods is that

they try to make each feature independent in the transformed space and may lose some

information during model training on the transformed feature set. Overall, these methods

do not thoroughly explore the correlation between features of different types and may not

fully utilize the complementary information from various features. For instance, the tag

“tree” (textual feature) implies the color green (visual feature) for the semantic concept

“forest”, which is considered as a hidden correlation between features as shown in Figure

1.1.

Figure 1.1: Hidden correlation among features.

On the other hand, even the same feature may play different roles and have distinct

significances in various semantic concepts. For example, the visual feature “green” is of

great importance for identifying “horse” sitting on the grassy ground (Figure 1.2 (a)) but

does not contribute much to the “cup” with the green background (Figure 1.2 (b)). There-

fore a good semantic representation scheme should be able to capture the above feature

correlation and take into consideration the contribution of a feature regarding different

concepts.

Data Imbalance: Learning from imbalanced data sets for binary classification prob-

lems has been a hot and challenging topic in the research societies and has many real-

world applications, such as fraud detection [2], medical diagnosis [3], intrusion detec-
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Figure 1.2: Feature significance level regarding concepts.

tion [4], face recognition [5], information retrieval [6, 7] and video event detection [8].

The class imbalance problem has been amplified and aggravated as the world steps into

the big data era. The underlying nature of the class imbalance issue is that the number

of samples (instances) in the majority (negative) class dramatically exceeds that of the

minority (positive) class of interest, which undermines the classification process. For ex-

ample, the positive to negative ratio is about 1:100 and 5:1000 for fraud detection [2] and

video event detection [8], respectively. Many attempts have been made to address the

class imbalance problems in different occasions [9]. However, there is no single method

that succeeds in all scenarios. In this work, we try to accommodate the class imbalance

situation for the video event detection problem.

Unorganized Big Data: Due to the ease of the Internet access, more and more mul-

timedia data, such as images and videos, along with corresponding textual descriptions,

becomes available through the web [10]. However, how to optimally utilize all sources of

information for effective classification and summarization of pervasive multimedia data

is still an ongoing question. The traditional way of accessing online multimedia data is

a keyword-based search, which suffers two major problems. The first one is caused by

the well-known semantic gap issue, as mentioned above. For example, a query using the

keyword “avalanche” may return results containing both images describing the disaster

event avalanche and the ones depicting cars with the brand “avalanche”. As shown in
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Figure 1.3, to the users intending to search for images regarding the topic of “avalanche”

as a disaster, the images tagged by the same keyword but with different semantics, to-

gether with the ones mis-tagged by the users, are considered as irrelevant images. The

other main concern is the lack of organization and summarization of the images within

one topic. For example, there may be different themes (scenes), such as building collapse

and evacuation, for the keyword “earthquake”. Without the well-structured and summa-

rized search results, it is difficult to identify those scenes under each topic for efficient

browsing and retrieval. With the ever growing amount of multimedia data, how to con-

vert the unorganized and unstructured data to a well-organized format is an emerging and

challenging question.

Figure 1.3: Problems with keyword-based search.

1.2 Proposed Solutions

In this dissertation, a systematic and integrated framework is proposed as a solution to

solve the aforementioned problems.
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Multimedia Semantic Representation: Efforts have been dedicated to providing a

hierarchical semantic data representation schema to serve as a solid foundation for fulfill-

ing multimedia analysis tasks and applications. Specifically, different levels of features

covering both visual and textual information are extracted to meet various semantic analy-

sis requirements. To be more specific, a Hidden Coherent Feature Group (HCFG) analysis

method is proposed to capture the correlation between features and partition the original

feature set into semantic feature groups for efficient and effective model training and

final retrieval. Furthermore, a multi-layer information integration scheme is proposed,

especially for video object retrieval, where the object-level (concept-level) information is

enhanced by the automatic object extraction.

Multimedia Temporal Analysis and Ensemble Learning: MCA (Multiple Corre-

spondence Analysis) has been successfully applied to various multimedia analysis tasks,

such as feature selection [11], discretization [12], data pruning [13], classification [14]

and video semantic concept detection [15]. Inspired by our HCFG algorithm and the in-

formation gain analysis method, an IF-MCA modeling approach is proposed with MapRe-

duce implementation to deal with large-scale multimedia data. However, how to incor-

porate temporal information with MCA for specific problems is a matter that has never

been explored. In this dissertation, a temporal MCA (or TMCA) method is presented as

the first attempt to explore temporal semantics for improving interesting event detection

performance. Furthermore, to tackle the imbalanced data set issue, a Positive Enhanced

Ensemble Learning (PEEL) framework based on an effective sampling technique is pro-

posed for improving concept detection performance.

Multimedia Semantic Classification and Summarization: Upon the proposed se-

mantic information integration scheme, a hierarchical classification framework is pre-

sented that seamlessly integrates textual and visual information at the decision level and

is able to perform effective concept classification. The classification task is further en-
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hanced and extended by an unsupervised filtering and summarization approach, which is

able to automatically identify and summarize latent semantics in a topic and filter irrele-

vant items simultaneously at the same time.

1.3 Contributions

The major contribution of this dissertation are listed as follows:

• A Hidden Coherent Feature Groups (HCFG) analysis approach is proposed to sup-

port efficient and effective multimedia semantic retrieval. The proposed feature

analysis method is able to capture the correlation between features and partition the

original feature set into semantic HCFGs, which have strong intra-group correlation

while maintaining low inter-correlation. Specifically, a feature similarity matrix is

built using correlation information between feature pairs, and the Affinity Propaga-

tion algorithm is applied to identify the HCFGs, each of which is modeled by one

or more classification methods. A novel, multi-model fusion scheme is presented

to effectively fuse the multi-model results and generate the final ranked retrieval

results. Furthermore, a multimedia semantic retrieval system based on HCFGs is

developed for mobile devices with a user feedback mechanism to refine the retrieval

results.

• An IF-MCA model is proposed with the MapReduce implementation for dealing

with large-scale datasets. Specifically, a Hierarchical Information Gain Analysis

(HIGA) method inspired by the decision tree algorithm is integrated with the Fea-

ture Affinity Propagation (FAP) approach for critical feature selection and Impor-

tance Factor (IF) assignment based on the ranking of the selected features. Then the

derived IFs is incorporated into the MCA algorithm for effective concept detection

and retrieval.
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• A TMCA algorithm is proposed to effectively incorporate temporal semantics for

interesting event detection based on an indicator weighting strategy. Then a re-

ranking procedure is carried out to retrieve the missed interesting events. The whole

semantic re-ranking framework is evaluated on a large collection of soccer videos

for interesting event detection. Furthermore, to accommodate class imbalance is-

sue, a positive enhanced ensemble learning (PEEL) algorithm is presented for video

event detection. The proposed PEEL framework involves a novel sampling tech-

nique combined with an ensemble learning mechanism built upon the base learning

algorithm (BLA). Exploratory experiments have been conducted to evaluate the re-

lated parameters and the comparison studies have been carried out.

• A hierarchical disaster image classification (HDIC) scheme based on multi-source

data fusion (MSDF) and multiple correspondence analysis (MCA) is proposed to

classify disaster images into different categories and subjects, which are logically

organized as a semantic hierarchy. In order to effectively fuse different sources

(visual and text) of information, a weighting scheme is presented to assign differ-

ent weights to each layer of the hierarchical structure by analyzing the dependency

between data resources and levels of interests. Furthermore, a Multimedia-Aided

Disaster information Integration System (MADIS) is developed based on the ex-

tended HDIC framework using the dynamic weighting schema for effective feature

fusion.

1.4 Scope and Limitations

The proposed framework has the following assumptions and limitations:
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• The temporal semantic features (such as football field, closeup shot, and audience

view) are sensitive to video quality for the TMCA algorithm in the application of

interesting event detection in soccer videos.

• Some of the parameters are determined empirically, such as the tuning parameter

λ , in the TMCA algorithm for weight calculation.

• Two domains of datasets are used for evaluation of the framework, i.e., disas-

ter datasets (including images and videos) and soccer datasets (including two sub

datasets collected before the year 2002 and after the year 2010 respectively).

1.5 Outline

The organization of this dissertation is as follows. In chapter 2, the literature review is

given in the areas of multimedia content representation, image classification and summa-

rization, semantic concept detection and retrieval. Chapter 3 provides an overview of the

proposed multimedia big data analysis framework. Each component of the framework

will be introduced in details. Chapter 4 discusses semantic data representation solutions,

especially the HCFG feature analysis method and the high-level object extraction and re-

trieval framework. Chapter 5 presents the IF-MCA and TMCA approaches as well as the

PEEL algorithm for rare concept detection in imbalanced datasets. Chapter 6 introduces

the proposed semantic classification and summarization approaches based on the semantic

representation schema. Furthermore, the MADIS system is presented with applications

in the disastrous domain. Finally in chapter 7, the conclusions are given, together with

the proposed future work.
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CHAPTER 2

RELATED WORK

In this chapter, the related work in the areas of multimedia feature analysis, content-

based multimedia classification and summarization, multimedia semantic retrieval will

be reviewed.

2.1 Feature Analysis

2.1.1 Low-Level Feature Correlation Analysis

With the purpose of effectively retrieving semantic concepts from multimedia data, many

research works have been done to project the original feature space to a low dimensional

space using linear or nonlinear mapping methods [16], and further derive the Euclidean

distance for each instance pair to represent the pairwise similarity. For example, Huang

et al. [17] propose an image retrieval system using only Euclidean distance of image

color features to calculate the ranking score for each image per specific concept. In [18],

Smaragdis et al. propose to employ the subspace projection on all the features by us-

ing PCA (Principal Component Analysis) and ICA (Independent Component Analysis)

to find out the maximally independent subspaces. Other works use statistical techniques

to capture the multimedia correlation in the feature level. In [19], Nefian et al. adopt

an early fusion approach incorporating audio and visual features for speech recognition

by using the coupled hidden Markov model (CHMM) and dynamic Bayesian networks.

Recently, Canonical Correlation Analysis (CCA), another powerful statistical technique,

has found its application in analyzing the correlation between two feature sets [20]. How-

ever, besides the correlation among multimedia data instance, the complementary and

mutual information among features from multiple modalities should also be extensively
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exploited as a reference [21]. It is necessary to know how to integrate them to improve

the performance and avoid possible information loss during the transformation between

different feature spaces.

2.1.2 Advanced Feature Representation Strategies

Due to the descriptive limitation of low-level features, recently researchers have shifted

their attention to explore more comprehensive and discriminative features, which can be

roughly categorized into the following three classes [22]:

• BOW(Bag-Of-Words)-based: A typical scheme for BOW-based feature extraction

includes the following steps: (a) interesting points detection; (b) descriptors com-

putation; (c) code book generation, and (d) feature histogram construction. One

major drawback of the BOW-based strategy is the neglect of spatial information.

To overcome this disadvantage, many works have been done on exploring spatial

context [23, 24]. Other improvement includes the utilization of sparse coding for

optimizing feature quantization [25].

• Region-based: The procedure for region-based approaches usually contains the

steps of unsupervised image segmentation, region label generation, and label fu-

sion. The essential aspect of this type of method is how to discover and model

the relationship among local classification results based on regions. Some repre-

sentative works include [26] using eigenregion for image representation, and [27]

modeling region semantics via contextual Bayesian networks. Two intrinsic prob-

lems of the region-based strategy are the limited number of object categories and

the imperfection of segmentation results.

• Fusion-based: There are three traditional fusion methodologies, i.e., early fusion

(feature level), late fusion (decision level) and the combination [28]. In addition,
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there is another emerging kernel-based fusion method [29, 30], which fuses differ-

ent types of features at the kernel level and achieves good performance. However

this kernel-based strategy usually suffers from high computation cost and the over-

fitting issue.

2.1.3 Multi-modal Multi-Layer Fusion

Other than the correlation captured at the feature level, the relationship between differ-

ent models and model confidence toward extracting semantic concepts should also be

learned [31, 32, 33]. In [34], separate generative probabilistic models are learned for

different classifiers respectively. Then the scores are combined to yield a final detection

score. In [35], Chen et al. propose a fusion strategy to combine ranking scores from

both tag-based and content-based models, where the adjustment, reliability, and corre-

lation of ranking scores from different models are all considered. Zhu et al. present a

Sparse Linear Integration (SLI) model for integrating visual content and its associated

metadata (i.e., the content and the context modalities), for the tasks of semantic concept

retrieval and content-based video recommendation [36, 37]. Furthermore, a method called

VideoTopic is proposed for content-based video analysis and recommendation by mod-

eling both textual and visual information [38, 39]. On the other hand, Liu et al. spend

considerable amounts of efforts on exploring spatial-temporal motion information and

local/global features for various applications, such as moving object detection [40, 41],

action detection and recognition [42, 43], and semantic retrieval [44, 45]. To leverage the

correlation from both the feature level and the model level, Bendjebbour et al. [46] per-

form fusion at both levels. At the feature level, the mass of a given pixel from two sensors

is fused, while at the decision level, the HMM outputs are combined. In [47], CCA is

used to fuse audio-visual features with joint subspace learning at different granularity and
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the final decision is made based on the Bayesian decision fusion of multiple HMM-based

classifiers. Although many attempts have been made to utilize two kinds of correlation

among multimedia data, the performance is far from being satisfactory.

2.1.4 Feature Selection

Data imbalance situations are observed in many areas, such as network intrusion detec-

tion, risk management, failure prediction of technical equipment, and multimedia concept

detection. To address this issue, research efforts have been directed towards various es-

sential aspects like feature selection [48, 49, 50, 21], training data selection [51, 15], and

classifier selection/fusion [52, 53]. Among them, feature selection is considered espe-

cially applicable in big data analysis because it eliminates features with little predictive

information, which also reduces the dimensionality of data and allows the learning al-

gorithms to operate faster and more effectively [50]. In addition, research shows that a

well designed feature selection method can not only handle high-dimensional data sets,

but also successfully enhance classification performance in coping with imbalanced data

[49, 21].

In the literature, many existing feature selection methods can be classified into two

categories: univariate and multivariate [50]. Univariate methods, such as information

gain and chi-square measure [50, 54], consider the effect of each feature on a class sepa-

rately without considering the inter-dependence among features. By contrast, multivariate

methods, such as correlation-based feature selection [55], take features’ interdependence

into account. While univariate methods are often more efficient and more scalable than its

counterpart, multivariate methods are in principle more powerful [56] though some stud-

ies have shown that it may not always be the case in practice [57]. Nevertheless, similar

to classifier fusion, these two types of methods, if properly integrated, can complement
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each other to achieve better performance. Specifically, information gain is a univariate

method that has been widely used as a splitting criterion in the decision tree algorithm.

Affinity propagation is an unsupervised deterministic clustering method, which has been

extended to group correlated features as clusters in our previous work [7]. In this paper,

we propose the new importance factor (IF) measures for feature selection by integrating

these two methods so that the IF measures for the selected features can be generated to

represent their weights with respect to a certain class.

After feature selection, various classification algorithms can be applied for semantic

concept detection. In particular, Multiple Correspondence Analysis (MCA) has shown

to be able to capture the correlation between the features and the classes [13], and has

been successfully applied to various multimedia analysis, including classification [14]

and video semantic concept detection [15]. In brief, MCA extends the standard Cor-

respondence Analysis (CA) by providing the ability to analyze tables containing some

measure of correspondence between the rows and columns with more than two variables.

It can be naturally applied to multimedia databases where the rows represent the data

instances and the columns represent the features and classes. Currently in the existing

studies, MCA is used to analyze data instances that are represented by a set of equally

weighted low-level features. In this paper, a new IF-MCA (Importance Factor based

Multiple Correspondence Analysis) extended from MCA is proposed to incorporate the

proposed feature selection component so that it analyzes the data instances represented by

a subset of the features (i.e., selected features instead of the entire feature set) to enhance

the algorithm efficiency by taking the full advantage of the feature important factors to

improve the accuracy.

To further reduce the computational time for big data, parallel computing is often

adopted to simultaneously utilize distributed resources for a computation task. Its ba-

sic idea is to decompose a problem and assign them to several separate processes to be
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independently completed, so as to achieve co-processing. In particular, more and more

attentions have been paid to take advantage of the MapReduce technique in processing

and analyzing the big data [58]. MapReduce provides an easy-to-use programming model

and processing framework for large-scale distributed applications and has been actively

used by top technology companies including Google, Amazon, etc. [59]. Recent work in

the literature has shown that MapReduce can be utilized to scale tasks in semantic clas-

sification [58][60, 61]. In this work, MapReduce is employed to speed up the IF-MCA

algorithm.

2.2 Semantic Retrieval

2.2.1 Semantic Event Detection for Concept Retrieval

Based on users’ points of view, multimedia (especially image/video) retrieval demands

can be generally categorized into two types: visual retrieval and concept retrieval. As

for visual retrieval, it refers to retrieving visually similar multimedia documents to the

given query. It can be easily realized by measuring and ranking the similarity between the

visual feature vector of the query example with that of the document from the retrieval

database. However, people are usually more interested in finding similar items containing

the same object (for image [62]) or event (for video [63]). Taking video retrieval as an

example, a large number of researchers have dedicated their work to sports video analysis

and event/highlight extraction, with a focus on shot classification, event detection, video

annotation, and so on [64]. Within these research topics, soccer goal event detection can

be applied for generating high-level indexing and selective video browsing, which has

attracted a lot of attention in this research area [65].
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Based on different types of features used for video event detection, the related work

can be classified into the following categories: (1) Audio-based methods [66, 67]: in

some early approaches, only audio features are analyzed for video event detection. For

example, in [66], Xu et al. developed the mid-level audio keywords for event detection

in soccer videos. In [67], Rui et al. used audio features alone for detecting hits and gen-

erating baseball highlights. (2) Visual-based methods [68, 69]: visual information is one

of the most important clues for video content analysis and is usually the first choice for

event detection. In [68], a group of mid-level visual features were proposed to present

the characteristics of a view, such as view label, motion descriptor and shot descriptor.

In another work [69], wang et al. developed a set of descriptors based on low-level vi-

sual features for soccer highlight extraction, namely field color descriptor, player size

descriptor, goal area descriptor, and midfield descriptor. (3) Multi-modal fusion meth-

ods [70, 71, 72, 73, 74, 75]: as mentioned before, it is a good strategy to integrate multi-

modal features for better performance. Most of the existing frameworks fall into this

category. Audio and visual data are usually combined for event detection in multiple

genres of field sports including soccer, rugby, hockey, and Gaelic football [70, 71, 72].

In [73], Xu et al. exploited web-casting text crawled from famous sports websites to as-

sist soccer video event detection. There are also studies conducting event detection by

applying collaborative analyses of the textual, visual, and audio modalities [74, 75].

Different levels of features (i.e., low-level, mid-level, and high-level) created from

multiple modalities are usually coupled with various machine learning and data mining

models for event detection. Specifically, A two-layer hierarchical SVM classifier was

proposed to perform mid-level audio classification in [71]. The fixed temporal struc-

ture of views was used in exploring an SVM-based incremental method to improve the

extensibility of view classification and event detection [68]. The temporal pattern of mid-

level keyword sequences was analyzed by the HMM classifier to detect high-level seman-
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tics [72]. In [76], Assfalg et al. proposed two approaches for soccer highlight detection

based on HMMs using only motion information or the combination of player location in-

formation. Wang et al. [77] presented a three-level framework that employs Conditional

Random Fields (CRFs) to fuse temporal multi-modal cues for event detection. Chen et

al. [78] extended the traditional association rule mining algorithm and presented a hierar-

chical temporal association mining approach to adapt the video event analysis. In other

studies, the subspace-based multimedia data mining framework using decision trees was

proposed for rare event detection [79, 15].

Despite all these studies on video event detection, there is limited work analyzing and

utilizing temporal semantic information. Some initial attempts were described in [80],

where a temporal pattern analysis step was conducted to systematically search for the op-

timal temporal patterns that are significant for characterizing the events. In addition, there

is also lack of research on how to incorporate re-ranking or post-processing technique(s)

for interesting event detection, which motivates us to develop the proposed framework.

2.2.2 Learning from Imbalanced Data Set

A considerable amount of efforts have been done in the research society on learning from

imbalanced data sets especially for binary classification problems. He et al. [9] overview

those methods and generally group them into three categories, namely, (1) sampling-

based methods [81, 82], (2) cost-sensitive methods [83, 84], and (3) kernel-based and

active learning methods [85, 86]. Among those approaches, the sampling-based methods

and the integration with ensemble learning ones have been widely studied and been shown

successful over the years [87], and hence they will be the focus of this work.

Studies have demonstrated that a balanced data set usually outperforms an imbalanced

one, which justifies the use of various sampling methods [88], such as random under-
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sampling and over-sampling [89, 90], informed under-sampling [91, 87, 92], synthetic

over-sampling [93, 94, 82], and clustering-based sampling [90, 95, 82]. The mechanics

behind under-sampling and over-sampling are the random removal of majority instances

and the replication of minority instances respectively [9]. Both ways have their intrinsic

problems, such as lost of majority information and overfitting [96]. The informed under-

sampling approaches alleviate those problems by using some statistical knowledge [87].

More recently, the clustering-based sampling methods have been proved effective by deal-

ing with both within-class and between-class imbalance issues, e.g., in [82], Barua et al.

propose a so-called Majority Weighted Minority Oversampling TEchnique (MWMOTE),

which generates the synthetic samples from the weighted minority class using a clustering

approach. Although the synthetic oversampling methods provide better balance between

the distribution between the majority and minority classes, they avoidably introduce error-

prone instances [82].

To overcome the limitation of sampling-based methods, the integration of ensemble

learning mechanism (such as bagging [97] and boosting [98]) is introduced. For example,

Chawla et al. [99] integrate SMOTE [93] with Adaboost [98] for boosting the perfor-

mance of minority class. In [100], Guo et al. combine the synthetic data generation

technique [101] and the Adaboost algorithm [98] to improve the overall accuracy. More

recently, the deep learning based methods have also been widely explored [102, 103].

Although the “sampling-ensemble” approaches have been proved to be efficient and ef-

fective, there is no single approach that applies to all scenarios.

2.3 Concept Classification and Summarization

Many pioneer studies have been done for image filtering and summarization respectively.

As for image filtering, it involves filtering out irrelevant images returned from typical
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keyword-based search engines because of mis-correspondence between the keyword and

the underlying image semantic. Xie et al. [104] propose a K-way min-max cut clustering

algorithm for filtering out junk images for Google Image search results, and the work is

further extended to inspect the cluster correlations between two different search engines

[105]. An inherited limitation with these two approaches is the number of clusters, i.e.,

K, has to be preset, which lacks the flexibility and may not match the semantic distribu-

tion for an image topic. In [106], a Translation and Scale Invariant probabilistic Latent

Semantic Analysis (TSI-pLSA) method is presented for image categorization based on a

visual vocabulary. Despite some promising results reported in [106], it may suffer from

the complexity of the model and the performance heavily relies on the quality of the train-

ing data. Wnuk et al. [107] propose a nonparametric measure of strangeness based on

visual characteristics of images, and perform an iterative feature elimination algorithm to

remove the strangest examples from the category. It neglects the role of textual features

in capturing image semantics.

Recently many researchers have been dedicated to image categorization and summa-

rization and have proved the effectiveness of AP-based methods in automatic image sum-

marization [108, 109, 110, 111]. Jia et al. [108] present a hierarchical affinity propagation

approach to image collection summarization based on visual features. Later, the authors

incorporate the textual information to update the AP algorithm and build a hybrid image

summarization scheme [109], where both homogeneous and heterogeneous relations are

taken into consideration by passing extra messages between data points. However, the

hybrid AP algorithm does not outperform the original version [112] in general. Dueck

and Frey [110] further adapt the AP clustering algorithm to non-metric similarities (e.g.,

number of matching SIFT [113] interesting points) and find good exemplars. In [111],

Liu et al. utilize both the temporally consistent and constrained AP algorithms to select

exemplars for performing semi-automatic tagging of photo albums. Other approaches
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for image summarization include using the greedy k-means algorithm to select a set of

exemplars by analyzing the canonical views of images [114], applying joint clustering

analysis based on both visual and textual features respectively [115], and considering the

association relations between words and images using the co-clustering technique [116].

However, none of the existing works has address the image filtering and summarization

tasks at the same time automatically.

There are two main applications for image classification in the area of disaster anal-

ysis: damage detection and damage prediction. Najab [117] used Principal Component

Analysis (PCA) to extract the features from remotely sensed data and classify them into

different landcover classes. Gandhe [118] leveraged the framework which includes dis-

crete wavelet transform (DWT) and PCA to help with image mining and weather forecast-

ing, and Hsu [119] applied wavelet transformation, support vector machines, and fuzzy

neural networks for image compression, classification and error correction respectively

to an intelligent typhoon damage prediction system. In addition, classification of high-

resolution disaster images could also support the process of damage assessment after en-

vironmental disasters, such as hurricanes, tsunamis, etc [120, 121, 122, 123, 124]. Unlike

most researchers who focus on satellite images [117, 123, 124], images retrieved from

multiple remote sensing sensors [120, 121] and aerial photos [119, 122], our framework

is able to classify the actual disaster images which have higher complexity and reduce the

semantic gap between the images and the disaster categories. In addition, the proposed

framework is able to fuse multi-source data (i.e., textual and visual information) in such

an efficient way that the fused model outperforms the single models separately.
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CHAPTER 3

OVERVIEW OF THE PROPOSED FRAMEWORK

The advances in data acquisition, storage, and Internet technologies have brought us into

a multimedia big data era. There are vast amounts of multimedia data available for shar-

ing among social networks and utilization for commercial applications. However, the

tools and techniques are still far beyond satisfactory in terms of describing, managing

and retrieving multimedia data. In this dissertation, an integrated multimedia big data

analysis framework is proposed for semantic information management and retrieval, as

shown in Figure 3.1. It consists of three major components: multimedia semantic repre-

sentation, temporal analysis and ensemble learning, as well as semantic classification and

summarization. These three components are seamlessly integrated and act as a coherent

entity to support the essential functionalities of a multimedia big data semantic analysis

and management framework. Specifically, the semantic representation component aims

at providing solutions for interpreting and representing the semantic information of mul-

timedia big data and serves as a basis for the other two components. To be specific, the

HCFGs analysis method and the multi-layer semantic fusion scheme are presented for ef-

fective and efficient multimedia content representation. Then the IF-MCA and temporal

semantic analysis methods as well as the ensemble learning mechanism are explored for

improving concept detection performance. The semantic classification and summariza-

tion component serves the purpose of cleaning, categorizing and organizing multimedia

data, which in turn will help efficient indexing and retrieval based on categorized and or-

ganized semantic concepts. Finally, two evaluation systems are developed upon the pro-

posed framework, i.e., the multimedia semantic retrieval mobile system based-on HCFGs

and the Multimedia-Aided Disaster Information Integration System (MADIS).
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Figure 3.1: Overview of the Framework.

3.1 Multimedia Content Representation

Low-level visual features, such as color, texture and shape, have long been utilized for

multimedia content representation, especially for images and videos. However, those
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low-level features are apparently not sufficient for representing rich semantic information

conveyed through varying types of multimedia data. Therefore, many research works

have explored mid-level and high-level semantic features. In this dissertation, efforts

have been made to develop a Hidden Coherent Feature Group (HCFG) analysis method,

which is able to capture the correlation between features and generate HCFGs, considered

as mid-level features implying hidden semantics. Furthermore, a novel multi-layer fusion

method based on concept-level spatial color and texture information is proposed, where

salient objects are automatically extracted from a complex background for feature extrac-

tion. Nowadays, multimedia data, such as images and video, often come with textual

information, such as titles, tags and descriptions. How to effectively integrate differ-

ent sources of multimedia information from multiple modalities is a benefitting, though

challenging, problem. In this dissertation, a visual-textual feature weighting scheme is

proposed that utilizes the idea of metric learning and incorporates the concept of dynamic

feature weighting.

3.2 Multimedia Temporal Analysis and Ensemble Learning

Inspired by the information gain and HCFG analysis methods, an IF-MCA modeling ap-

proach is presented (with MapReduce implementation) to improve concept detection per-

formance. Furthermore, although the multi-modality features (i.e., audio, visual, textual,

etc.) have been widely studied and successfully utilized for the aforementioned multi-

media analysis tasks, the temporal semantics (another important source of information

from time domain) have not been well explored, especially when in conjunction with the

MCA algorithm. In this dissertation, a novel indicator weighting strategy is proposed for

integrating the temporal semantics with the MCA algorithm for refining interesting event

detection results. Furthermore, to solve the class imbalance issue, an unique PEEL algo-
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rithm is presented, which contains a positive enhanced sampling scheme and an ensemble

learning mechanism.

3.3 Multimedia Semantic Classification and Summarization

Multimedia big data is characterized by its huge volume, high velocity, and wide variety.

Effective and efficient multimedia classification and summarization methods are needed

to organize the unstructured data into a structured format, thus making it more eligible

for management and retrieval. In this dissertation, we propose a multimedia filtering and

summarization method based on multi-layered affinity propagation. The proposed ap-

proach is able to automatically identify and summarize latent semantic themes (scenes) in

a topic and filter irrelevant items at the same time. Moreover, a hierarchical disaster image

classification approach based on multi-source data fusion is presented to classify multi-

media data (such as images) into different categories and subjects, logically organized as

a semantic hierarchy. In order to effectively fuse different sources (visual and text) of in-

formation, a linear weighting scheme is utilized to assign different weights to each layer

of the hierarchical structure by analyzing the dependency between data resources and

level of interests. It is worth noting that the multimedia filtering and summarization step

could be applied before the classification as a pre-process procedure for cleaner results

and probably better performance.

3.4 Applications Based on the Proposed Framework

As evidence to validate the proposed multimedia big data analysis solutions, two mobile

systems are designed and developed based on the proposed semantic formation manage-

ment and retrieval framework. Specifically, the MADIS is developed integrating the hi-
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erarchical classification scheme and the dynamic weighting schema by fusing both visual

and textual information. On the other hand, a multimedia semantic retrieval system based

on mid-level HCFGs is developed for mobile devices.
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CHAPTER 4

MULTIMEDIA CONTENT REPRESENTATION

How to represent multimedia content effectively and interpret as much semantic informa-

tion as possible is a very essential step for various multimedia analysis and information

retrieval tasks. In this chapter, a hierarchical semantic information representation schema

will be elaborated, which ranges from low-level feature to high-level semantics. Specifi-

cally, a Hidden Coherent Feature Groups (HCFGs) analysis approach will be introduced

to support multimedia semantic retrieval on mobile applications [7]. Furthermore, a high-

level semantic object extraction method is proposed for efficient object retrieval by fusing

spatial color and texture information [62]. Finally, a camera take detection algorithm is

presented for effective key frame selection [125].

4.1 Visual Feature Extraction

Visual content is a critical modality for multimedia content representation. In this sub-

section, the visual feature is discussed from three different aspects as follows.

4.1.1 Global Feature Extraction

Traditional color histograms are built on the statistical distribution of image pixels without

considering any spatial information [126, 127, 128], which would fail to distinguish two

images with the same color distribution but totally different semantics. To tackle this

problem, the auto color correlogram (ACC) algorithm is proposed [17], which takes into

consideration both spatial and statistical information, being able to describe embedded

object-level concept in a better way. Let I(x,y) represents image I with x and y being

the coordinates. There are n preset colors denoted as Cl1,Cl2, · · ·Cln. Let the distance
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between two identical colors in the image be d ∈ {d1,d2, · · · ,dm} measured by 8-way

connectivity (denoted as ‖·‖), ACC method tries to construct a histogram with dimension

n×m, where each bin Bin
(
Cli,d j

)
= ∑(x,y),(x′,y′)

{
‖I(x,y,Cli)− I(x′,y′,Cli)‖= d j

}
, i ∈

{1,2, . . . ,n}, j ∈ {1,2, . . . ,m}, representing the number of pixel pairs ((x,y),(x′,y′)) with

the same color Cli and distance d j. Other global low-level features include texture [129,

130] and shape [131], which are not detailed in this dissertation.

4.1.2 Local Feature Extraction

Histograms of Oriented Gradients (HOG) feature has emerged as an efficient visual con-

tent representation method being utilized in various visual analytic tasks and applications

[132]. The HOG descriptors are able to characterize the local object appearance and shape

within an image by analyzing the distribution of local intensity gradients or edge orien-

tations. The implementation of the descriptors is as follows. First, the image is divided

into small spatial regions, called cells, and then a local 1-D histogram of gradient/edge

directions is accumulated for each cell. Finally the combined histograms entries consti-

tute the descriptors. For better invariance to changes in illumination or shadowing, the

local histograms of cells can be normalized by the intensity across a larger region, called

a block. The HOG presentation outperforms other descriptor methods from several as-

pects. It captures the local edge or gradient structure that is invariant to low degree of

geometric and photometric transformations in the local area. This property makes the

HOG descriptor particularly suited for human detection in images. Other popular lo-

cal descriptors includes the famous SIFT (Scale-Invariant Feature Transform) [113] and

MSER (Maximally Stable Extremal Regions) [133].
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4.1.3 Compact Feature Extraction

Color and Edge Directivity Descriptor (CEDD) is a popular low level feature descrip-

tor which combines both color and texture features in a histogram [134]. The size of

CEDD is limited to 54 bytes per image, which is an appealing property when dealing

with large-scale dataset. First, the image is separated into a preset number of blocks and

a color histogram is calculated over the HSV color space. Then a set of fuzzy rules is

applied to obtain a 24-bins histogram. At the same time, five digital filters are used to

extract the texture information, including vertical, horizontal, 45-degree diagonal, 135-

degree diagonal and nondirectional edges. Finally, the CEDD histogram is composed of

6x24=144 regions, where the 6 regions are determined by the texture component and the

24 regions are originated from the color component. Other compact low-level features in-

clude Fuzzy Color and Texture Histogram (FCTH) [135] and Joint Composite Descriptor

(JCD), which is the combination of CEDD and FCTH.

4.2 Textual Feature Extraction

Textual context is known to be of greater descriptive power than visual content itself,

given the text is reasonably clean. To explore the semantic context within a specific

topic, latent semantic analysis is performed utilizing the textual information, such as tags,

titles, and available descriptions for each multimedia item (e.g., image or video). Specif-

ically, the term-document matrix X is first constructed. The top W words with maximum

term frequencies are selected. The standard tf-idf weight is used to transform the term-

document matrix [136]. The term frequency is normalized by log-frequency weighting as

follows.

wt,d =

 1+ log(T Ft,d), i f T Ft,d > 0

0, otherwise
(4.1)
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where wt,d denotes the log-frequency of term t in document d. The similarity matrix is

built based on cosine measurement shown below.

s(Dc, j,Dc,k) =
~Dc, j · ~Dc,k∥∥Dc, j
∥∥ ·∥∥Dc,k

∥∥ . (4.2)

where Dc, j and Dc,k represent the normalized document vector for image j and k in disas-

ter topic c respectively. Finally, PCA is also applied to extract main semantic components.

4.3 Hidden Coherent Feature Groups for Multimedia Semantic Re-

trieval

A typical concept retrieval framework is built upon the tasks of feature extraction, model

training, classification, and ranking. Although much research has been done on each of

these tasks [137, 28], significant challenges still remain, such as the semantic analysis and

utilization of multi-source, high-dimensional features. In addition to the feature analysis

problem, another issue is the integration of multiple models in the semantic space by

fusing the decisions (scores) from different models. The challenges lie in how to select

the training models for different feature types and how to evaluate the confidence of the

decision from different models and take that into account when performing final fusion.

With the aforementioned existing problems and challenges, we propose a correlation

based feature analysis method to explore Hidden Coherent Feature Groups (HCFGs) and

present a novel, multi-model fusion scheme [7]. Specifically, we analyze the correlation

between each feature pair and use the affinity propagation algorithm to separate the orig-

inal feature set into different feature groups (HCFGs), where the intra-group correlation

is maximized and the inter-group correlation is minimized.
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4.3.1 Feature Correlation Analysis

In this work we propose a feature correlation analysis method that explores the interre-

lationships amongst the features to lay down the basis for the identification of HCFGs

(elaborated in section 4.3.2).

Let X = {xi}N
i=1 be a given dataset, where xi ∈ RL represents each instance in the

dataset, and N and L are the number of instances and the dimension of the feature set

{fi}L
i=1, respectively. Then the feature matrix F of X is represented as

f 1
1 f 2

1 · · · f L
1

f 1
2 f 2

2 · · · f L
2

...
... . . . ...

f 1
N f 2

N · · · f L
N


where the ith column represents fi and rows data instances in X. Let (f j, fk), 1 ≤ j, k ≤

L, be a feature pair, then the correlation coefficient between them can be calculated as

follows

Cf j,fk =
∑

N
i=1( f j

i − f j)( f k
i − fk)√

∑
N
i=1( f j

i − f j)2
√

∑
N
i=1( f k

i − fk)2
, (4.3)

where f j and fk are the mean values of f j and fk respectively.

The above correlation coefficients analysis method is based on the calculation of Pear-

son product-moment correlation coefficient, which implies the assumption of the nor-

mally distributed data and the linear relationship between feature variables. However,

this is not always the case. In order to take into account the situation where the fea-

ture variables follow a non-linear relationship, we propose another correlation estimation

method based on the Spearman’s rank correlation coefficients, which use the ranks of the

observations instead of their values and are calculated as

Cp j,pk =
∑

N
i=1(p j

i −p j)(pk
i −pk)√

∑
N
i=1(p j

i −p j)2
√

∑
N
i=1(pk

i −pk)2
, (4.4)

29



where p is the rank representation1of the feature variable f.

Finally, the feature correlation matrix C is constructed as

Cv1,v1 Cv1,v2 · · · Cv1,vL

Cv2,v1 Cv2,v2 · · · Cv2,vL

...
... . . . ...

CvL,v1 CvL,v2 · · · CvL,vL


where v could be the feature variable f or it’s rank vector p. Each element in the ma-

trix presents the correlation coefficient between each feature pair, creating a symmetric

matrix, i.e., Cv j,vk equals Cvk,v j .

All the correlation coefficients are calculated based only on the positive instances, thus

identifying relationships between the features in a supervised manner, i.e., per concept. In

addition, the inclusion of the negative instances may hinder the discovery of correlations

between feature pairs. An added benefit is the improved computational efficiency of the

system, which is an important requirement in mobile systems.

4.3.2 Feature Grouping via Affinity Propagation

Because of its simplicity, general applicability, and performance, the affinity propagation

(AP) algorithm has found application in the fields of science and engineering [138], which

inspires us to adapt it to our framework for feature clustering. Specifically, we choose to

use the AP algorithm for the following reasons:

• AP generates clusters with much lower error than other clustering methods, such as

k-means and mixtures of Gaussian.

• AP is deterministic, i.e., its clustering results do not depend on initialization, unlike

most clustering methods such as k-means.
1The rank representation means the rank of a variable in a feature vector with a specific order

(e.g., by value).
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• AP is able to automatically determine the number of clusters.

Considering each feature as a data point, the input for AP is the similarity matrix S,

with each element computed as

s(v j,vk) =Cv j,vk . (4.5)

The AP algorithm propagates affinities by passing two types of messages between two

data points (e.g., features v j and vk) [112] as follows:

• The “responsibility” r(v j,vk) sent from v j to vk, representing how well vk serves as

the exemplar of v j considering other potential exemplars for v j.

• The “availability” a(v j,vk) sent from vk to v j, reflecting how appropriate v j chooses

vk as its exemplar considering other potential features that may choose vk as their

exemplar.

The responsibility and availability are updated iteratively using the following equations:

r(v j,vk)← s(v j,vk)−max
l:l 6=k

(a(v j,vl)+ s(v j,vl)), (4.6)

a(vk,v j)← min(0,r(vk,vk)+ ∑
l:l /∈{k, j}

max
{

0,r(vl,vk)
}
).

Based on the positive responsibilities sent to the candidate exemplar k from other features,

the self-availability is updated as

a(vk,vk)← ∑
l:l 6=k

max
{

0,r(vl,vk)
}
, (4.7)

reflecting an accumulated confidence that feature vk is an exemplar,

Finally, the exemplar for feature v j is chosen as follows.

e∗j ← argmax
vk

(r(v j,vk)+a(vk,v j)). (4.8)
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Figure 4.1 illustrates the feature grouping results for four disaster topics (with prefer-

ence value set to 30 times the minimum similarity, and using the visual features described

in section 4.1), where the x-axis and y-axis represent the first and second component of the

features in the projected subspace using PCA. Each colored point in the plots represents

one feature. All the feature points belonging to the same group are of the same color, and

there is a line between the exemplar feature point and each member of the feature group.

This figure demonstrates that the proposed feature grouping method is capable of cap-

turing the underlying correlation among all the features and separate them into different

feature groups. Each of the feature groups potentially implies distinct contexts relating

the disaster topic.

(a) Road Debris (b) Earthquake

(c) Flood (d) Vocalno

Figure 4.1: Feature grouping results for the four disaster semantic concepts.
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4.3.3 Multi-Model Fusion

The multi-model fusion procedure is depicted in Figure 4.2. First the feature correlation

analysis and affinity propagation (FCA-AP) algorithm is applied to the original feature

set, obtaining M HCFGs; then each HCFG is modeled by a series of classifiers, named A

to N, generating a score array, denoted as
[
Score(t)m

g
]
, where t represents each concept, g

and m denote the HCFG group id and the model used for training, respectively. The score

array is sorted against the training performance evaluated using MAP measurement. Only

the top Q scores are kept for the final fusion. This procedure ensures the best HCFGs are

selected for the fusion and so as to optimize the final retrieval performance.

Figure 4.2: Multi-model fusion procedure.

The fusion of the selected scores from multiple models are combined using the refined

formula from [35] expressed as

Score(x) =
Q

∑
q=1

γq ·βq

γq +βq
·
(

Scoreq(x)
αq

)
, (4.9)

where the parameters are explained as follows:
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• αq denotes the refined scale factor for balancing the ranking score from the qth

model. It is calculated as the absolute mean score for all the training instances for

that model. We refine this parameter by taking the absolute value to accommodate

negative scores.

• βq expresses the relationship between the testing score for the qth model and the

target concept, which is measured based on the correlation value between the testing

score interval and the related concept [35].

• γq represents the reliability of model q based on training performance. Specifically,

it is calculated as the average precision of the qth model evaluated on the instances

in the training set.

4.3.4 Multimedia Semantic Retrieval Mobile System Based on HCFGs

Most of the mobile multimedia retrieval systems mainly focus on improving performance

in terms of transmitting time. In [139], David et al. propose to first compress low level

feature descriptors, such as Compressed Histogram of Gradients (CHoG), and progres-

sively transmit compressed data to avoid having network transmission latency. Another

way to expedite multimedia retrieval process is to unify the approach of retrieving and

processing various multimedia data. A multimedia query language called MPEG Query

Format (MPQF) is introduced in [140] to save complex interpretation among all kinds

of description formats by generally expressing multimedia requests. Different from the

above-mentioned research work, our proposed framework decides to perform off-line

training on server side and upload them periodically with the corresponding conceptual

relationship, thus users can real-time retrieve a set of well-trained models without having

end-to-end network latency.
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The proposed multimedia semantic retrieval mobile system based on HCFGs analysis

is depicted in Figure 4.3. The system design follows a Model-View-Controller (MVC)

pattern. The Model part (labeled as A) implements the main logic of the system, i.e., a

retrieval model built from the fusion of multiple classification models, which are based

on hidden feature groups. The usage of the retrieval model consists of training and testing

phases. During the training phase, the meta-model is trained based on training data with

ground-truth information, and unknown multimedia data are classified using the learned

model during the testing phase. All the processed data and the trained models are stored in

the production database. The multimedia retrieval Controller (labeled as C) translates user

input into operations on the model and controls the data transfer between the front-end

user interface and the back-end server through a REST API. Finally, the View (labeled as

B) generates and presents output to users. The detailed architecture of the front-end mo-

bile application as well as the user interface will be discussed in section 4.3.4.2. Following

is a specific description of the steps for building a retrieval model based on multi-model

fusion.

The proposed system builds the retrieval model following a five-step process that con-

sists of (a) feature extraction, (b) pre-processing, (c) correlation-based feature analysis

and clustering, (d) model training, and (e) model fusion. Firstly, in the first two steps, the

system extracts visual features (e.g., HOG, CEED) from the training data and performs

pre-processing to normalize the features and remove those with relatively low variance.

Secondly, in the correlation-based feature analysis and clustering step, the system com-

putes a feature similarity matrix based on correlation coefficients for all pairs of retained

features and applies the Affinity Propagation (AP) algorithm to cluster the feature set to

obtain multiple Hidden, Coherent Feature Groups (HCFGs) that exhibit low inter-group

correlation and high intra-group correlation. Subsequently, the model training step builds

a classification model for each discovered feature group. Finally, the model fusion step
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Figure 4.3: Multimedia semantic retrieval mobile system based on HCFGs.

combines the individual models using the proposed multi-model fusion strategy (section

4.3.3). Such a partition of the feature set into HCFGs aims “untapping” hidden feature

groups that will enhance the predictive power of the fused model.

When a query is issued to the system, the system performs feature extraction and pre-

processing and groups the features into the same HCFGs identified in the training phase.

The HCFGs are then fed to the trained models obtained during the model training step.

The generated testing scores are afterward fused and ranked. The ranked results are shown

via a mobile application. In addition, the system contains a user feedback component that

incorporates user interactions in the retrieval process to refine the retrieval results.
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4.3.4.1 User Feedback Mechanism

One important component of the proposed system is the user feedback mechanism based

on Markov Model Mediator (MMM) [141]. The objective is to improve the multimedia

semantic retrieval performance by incorporating user interaction. The MMM mechanism

is used to model the searching and retrieval process for content-based image retrieval. One

distinctive characteristic of MMM model is that it carries out the searching and similar-

ity computing process dynamically, taking into consideration not only the image content

features, but also other properties of multimedia data instances, such as their access fre-

quencies and access patterns. Details of the MMM model training can be found in section

6.3.4.

4.3.4.2 Experimental Analysis

4.3.4.2.1 Dataset Description

The evaluation of our proposed framework is based on a disaster dataset, which contains

over 10,000 images with the associated tags and descriptions covering 11 disaster topics

are crawled from Flickr, which includes both natural disasters, such as “Earthquake” and

“Floods”, and man-made disasters like “Road debris” and “Oil spill”. Table 4.1 shows

the composition of the data set.

4.3.4.2.2 Experimental Setup

To thoroughly evaluate the effectiveness of the proposed framework, a series of experi-

ments are conducted. First, the significance of the feature grouping approach is analyzed

by discussing the number of feature groups; second the multi-model fusing scheme is

evaluated using the disaster image data set under 3-fold cross validation; finally we com-

pare the overall performance of our fusion framework with the other modeling methods.

37



Table 4.1: Disaster image data set.

ID Disaster Topic # of Images
1 Avalanche 624
2 Drought 599
3 Earthquake 884
4 Flood 1,009
5 Ice Storm 1,078
6 Mudflow 266
7 Oil Spill 1,847
8 Volcano 800
9 Tornado 266

10 Gas Explosion 1,019
11 Road Debris 2,009

Total: 10,401

The evaluation criteria is the well-known Mean Average Precision (MAP) widely used

in the information retrieval society, which is calculated as

MAP(T ) =
1
|T |

|T |

∑
i=1

1
ni

ni

∑
j=1

Precision(Ri j), (4.10)

where Ri j is the top- j ranked results for concept i, and |T | denotes the total number of

queried concepts.

4.3.4.2.3 Analysis on the number of feature groups

The AP algorithm has a heuristic parameter P, called preference, which indicates the

preference that an instance is chosen as an exemplar. The work in [138] shows that the

number of groups is monotonically increasing with P polynomially. The value of P is em-

pirical set to -10 in the following experiments. Figure 4.4 shows the number of groups for

each concept in each of the three folds, which range from 4 to 9. Experimental analysis

shows the advantages of our proposed feature grouping method, i.e., the decomposition of

features enables parallel processing, which is a very important characteristic for mobile

applications. In addition, the feature grouping method keeps all the original informa-
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tion, thus avoiding potential information loss by using the previously discussed subspace

analysis methods.

Figure 4.4: Number of groups for each concept.

4.3.4.2.4 Evaluation on multi-model fusion scheme

Figure 4.5 shows the MAP values when selecting a different number of models for multi-

model fusion described in section 4.3.3. There are two major observations as follows:

(1) the MAP values increase as more and more groups (models) being selected for final

fusion, which is intuitive because we add more valuable information for final decision;

(2) The performance stabilizes when the number of models reaches a certain point, in this

case, top 6 groups, which indicates that we capture the most important information for

final decision with a subset of the original features. It also means that our framework can

automatically filter out the irrelevant information which is not useful for the final decision

making.

We further compare the final fusion results with the average performance for all the

groups using different modeling methods, i.e., LibSVM [142] and Multiple Correspon-

dence Analysis (MCA) [35], as shown in Figure 4.6. The results demonstrate that the

fused scheme outperforms single models by taking advantages of both models. It is worth
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noting that our framework is adaptable to multiple training models and is able to optimize

the overall performance by fusing the most promising HCFGs from different models.

Figure 4.5: MAP values for different number of HCFG.

Figure 4.6: MAP values for different modeling methods and the proposed fusion scheme.

4.3.4.2.5 Multimedia Retrieval via Mobile Devices

An iPad application has been developed based on our proposed framework which follows

a three-tiered architecture. The production database is implemented as a PostgreSQL

database, which stores all the processing results of the back-end system. The API to

access the database and perform complicated data queries is done through the REST API,

implemented as a Java Tomcat servlet (using the Restlet framework). Upon these two

layers, the Client is implemented in iOS, specifically for Apple’s iPad devices.
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Figure 4.7 shows two search results with the developed application tested on the dis-

aster image dataset. It allows a user to search for multimedia content based on one or

more keywords. Upon submission of the search terms in the mobile application, these

terms are sent to our back-end server where a query is generated dynamically to search

our database for images that match the given keywords. Relevant information about each

image is then sent to the mobile application. This information includes the keywords

(concept names as well as their synonyms) associated with the image, its subject, loca-

tion, description, and URL for retrieving the image for display. The mobile application is

designed with a built-in image cache so that when an image is requested to be displayed

multiple times, the cache is checked first, before the call to retrieve the image from the

servers; this reduces overhead when retrieving and displaying an image multiple times.

In addition to simply search based on keywords, the system also allows the user to

specify a date range for the search. This enables the user to search for images that are rel-

evant to a specific disaster event. Once the user submits a search, the mobile application

groups all the images based on location and displays the results on the map to the left.

Selecting one of the push pins on the map filters the list of images, showing only the im-

ages at the specific location. Moreover, users are allowed to give feedback to the retrieval

results with the following three options, (1) thumbs up: system made a correct match, but

some image(s) is/are more relevant than others; (2) thumbs down: system made a correct

match, but some image(s) is/are less relevant than others; (3) flag: image is completely

inappropriate, and should be hidden from all future image lists. Those user feedback is

collected and processed by the MMM component to further refine the retrieval results.

41



(a) (b)

Figure 4.7: Application interface: (a) Search results using keyword “earthquake”; (b)
Search results using keyword “flood”.

4.4 Multimedia Semantic Object Extraction for Retrieval

As a conceptual level of content-based image retrieval (CBIR), object (especially from

videos) retrieval has gained significant importance and attracted more and more atten-

tion [143]. Object retrieval is not only a hot topic in academic society but also a promis-

ing practice in real-world. For example, it is not unusual that people are interested in

finding the same or similar object that appears in the video they just watched. Traditional

CBIR works [144, 145] engage in bridging the gap between low-level image features and

high-level semantics by analyzing the whole content of static images without considering

human interest. To put more emphasis on the potential object region, many attempts have

been made to approach the human perception system by segmenting images into regions

and model the image content via so-called region-based local features. However, the per-

formance is far beyond satisfactory due to the limitation of segmentation techniques and

the obstacle of salient object identification especially when multiple objects are involved

with occlusion [143, 146, 147].
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The difficulty of the retrieval task escalates into another level when dealing with the

frames from digital videos instead of static images because videos are usually filmed

under various lighting conditions in an unconstrained manner [148]. Specifically, there

are three major difficulties for the task of video object retrieval. First, the potential objects

of human interest in the videos are accompanied by extremely noisy background with

numerous variants, such as deformation, occultation, rotation, scale, affine transform, and

translation. Second, how to effectively and efficiently describe and represent the content

in an image (video frame) is very critical for precisely retrieving the exact or similar object

appeared in the video. Finally, the evaluation of an image retrieval system is relatively

subjective and lacks a widely acknowledged standard, which makes the improvement of

object retrieval task even harder.

In this work, we have presented a novel object retrieval approach that is able to au-

tomatically extract video object from a complex background and conduct efficient object

retrieval by fusing spatial color and texture information [62]. To the best of our knowl-

edge, this is the first attempt to perform automatic video object retrieval based on the

integration of concept-level spatial color and texture knowledge. The novelties of this

work are summarized as follows:

• Proposes a novel multi-layer fusion method based on concept-level spatial color and

texture information, where salient objects are automatically extracted from complex

backgrounds for feature extraction.

• Develops a novel video object retrieval approach that seamlessly integrates auto-

matic object extraction and semantic fusion for effective object retrieval.

The overall framework of the proposed object retrieval approach contains three major

components (as shown in Figure 4.8), naming (1) video object extraction; (2) object-level

feature extraction and similarity fusion; and (3) the final visual retrieval. In this work the
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first two components are the main contributions and will be elaborated in the following

subsections.

Figure 4.8: Object Retrieval Framework.

4.4.1 Video Object Extraction

4.4.1.1 Object detection

There are existing works for detecting an arbitrary object in a video given the object

modal being sufficiently well trained. However, false detection may still occur, which

should be taken into consideration. Fortunately, there is a refinement method for object

detection in unconstrained video sequences based on multimodal cues [149]. Specifically,

it combines appearance, spatial-temporal, and topological cues to aid object detection,

where the appearance cue dictates the probability of object occurrence and its location in a
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video frame, while the spatial-temporal and topological cues reflect relational constraints

between the target object class and a related object class. For example, if a bag is a target

object, then the related object could be a face. The three cues are modeled respectively as

follows

ρ
(
Oi,O j)=

 0 if i = 0;

c
(
v
(
Oi) ,v(O j)) otherwise.

(4.11)

η
(
Oi,O j)=

 0 if i = 0;

1− min(A,B)
max(A,B)+ε

otherwise.
(4.12)

ϕ
(
Oi)= max

(
0,

∥∥l(Oi)− l(Ri)
∥∥

2
max(‖l(Oi)‖2 ,‖l(Ri)‖2)

−θt

)
, (4.13)

where A =
∥∥l(Oi)− l(O j)

∥∥
2, B =

∥∥l(Ri)− l(R j)
∥∥

2, i 6= j, ‖·‖2 is the L2 norm, O and R

denote the occurrences of the target and related object classes respectively. The function

c(·) represents a correlation measurement for feature vector v(·), and l (·) denotes the

location of an object. The constant ε is for avoiding divisions by zero and θt ∈ [0,1)

is the distance constraint between the target and related objects. Finally, the problem

of finding the best path for the “real” object O∗ can be formalized into an optimization

problem by including the three constrains as

Minimize Ω(O1,O2, . . . ,OT ) =
T

∑
i=1



γ1ρ(Oi−1,Oi)

+ γ2[1−P(Oi|C)]

+ γ3[1−η(Oi−1,Oi)]

+ (1− γ1− γ2− γ3)ϕ(Oi)


(4.14)

where γ1,γ2,γ3 are weighting factors such that γ1 + γ2 + γ3 = 1, and T is the total number

of occurrences of target object class, and P(Oi|C) is the probability of object occurrence

Oi being in the target class C. The optimal solution of this optimization problem can

be solved via a dynamic programming procedure, assuming the selection of the current

target object is independent of the previously selected objects.
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4.4.1.2 Pre-processing

Figure 4.9: Object bounding box image pre-processing.

As aforementioned, with unconstrained lighting conditions and video recording envi-

ronment, even the same object in different videos may appear in a variety of poses, colors,

occluding situations and so on. Besides, the video quality would be another concern for

effective object retrieval. Therefore a necessary pre-precessing procedure is required for

the bounding box image containing the detected object. The pre-processing includes two

steps, where the first step is to perform histogram equalization and the second step is to

carry out image fusion.

• Equalization: The purpose of equalization is to adjust the global contrast of an

image for enhancing the bone structure in the image and reveal more details. Since

we target at color images, the operation is applied to the luminance channel in the

HSV color space. Let the probability of an occurrence of an intensity level i in the

image be

p(i) =
number of pixels with intensity i

total number of pixels in an image
, (4.15)

where i = 0,1, . . . ,L− 1, with L being the total number of intensity levels. The

operation of equalization is equivalent to transforming the pixel intensity value i to
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the new one by using the following function

T (i) = f loor ((L−1)Cd f (i)) , (4.16)

where Cd f (i) = ∑
i
j=0 p( j) is the cumulative distribution function. As can be seen

from Figure 4.9 column (c), the equalized images have better contrast and carry

more details, and the corresponding intensity histograms in column (d) prove the

uniform distribution of intensity distribution within the same range.

• Image Fusion: One disadvantage of the equalization operation is that it will also

enhance the contrast of background content, hence introduce unnecessary noise, so

the fusion step is to balance between the image quality and global contrast level,

where the original bounding box image (columns (a) in Figure 4.9) and the equal-

ized image are taken as the two input sources for image fusion. The fusion strategy

is the pixel-wise weighted averaging. Examples of fused images are shown in Fig-

ure 4.9 column (f), which render more smoothed results by supplying complemen-

tary information.

4.4.1.3 Object extraction via GrabCut

For the past decades, object segmentation has been a fundamental problem in computer

vision, which leads to the applications of object recognition, image classification and im-

age/video retrieval. Many efforts have been put to this area, obtaining promising results.

Carreira and Sminchisescu [150] propose an automatic object segmentation method based

on constrained parametric Min-Cuts (called CPMC), which is able to automatically detect

multiple objects in static natural images. Other works requiring a certain amount of man-

ual interaction include GrabCut [151] algorithm and Bagon et al.’s work [152]. In this

work, we propose an automatic object extraction approach based on the popular GrabCut

algorithm without human interaction. It is enabled by automatically feeding the detected
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object bounding box image with a single salient object. The segmentation results can

be further improved under certain circumstances via the salient object detection methods

[153, 154] ignoring computation complexity.

Different from the traditional GrabCut approach which requires human interaction to

provide an initial bounding box for interested object and refine segmentation results, we

automate the object extraction procedure without user intervention by taking advantage

of the object detection results in the following ways: (1) feed as input the pre-processed

bounding box image with a user interested object; and (2) initialize the segmentation

process by assigning boundary pixels as background.

Being initialized with some background pixels, the GrabCut algorithm iteratively finds

a binary segmentation(foreground, i.e., the object we are interested in, and background,

i.e., the noise we pay less attention to) of an image by transforming into an energy mini-

mization problem using color information, which is modeled by a full-covariance GMM

mixture with K components for foreground and background respectively. The GMMs are

modeled as

θ = {π (α,k) ,µ (α,k) ,Σ(α,k) , α = 0,1, k = 1 · · ·K} , (4.17)

where π , µ , and Σ are the weights, means, and covariance matrices of the modal; and

α ∈ {0,1} is a label indicator denoting whether a pixel in an image I belongs to the

foreground (α = 1) or background (α = 0). The energy function for segmentation is then

defined as

E(α,k,θ ,z) = U(α,k,θ ,z)+V(α,z), (4.18)

being z = (z1, · · · ,zi, · · · ,zN) the pixel array with N pixels, α = (α1, · · · ,αi, · · · ,αN) the

indicator array, and k = {k1, · · · ,ki, · · · ,kN}, ki ∈ {1, . . . ,K}, i = 1,2, . . . ,N, a vector with

each entry indicating the component of the foreground/background GMM (according to

αi) the pixel zi ∈ I belongs to. The region component U represents the penalty of assigning

a pixel to foreground/background determined by the probability distributions p(·) of the
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Algorithm 1 Automatic object extraction

Input: Pre-processed bounding box image containing detected object.
Output: Segmented foreground object and background.

1: Initialize trimap T with object rectangle.
2: Initialize αi = 0 for i ∈ TB and αi = 1 for i ∈ TU ∪TF .
3: Initialize foreground and background GMMs from sets αi = 1 and αi = 0 respectively.
4: Assign pixels to GMM components and learn GMM parameters from data z.
5: Estimate segmentation based on graph-cut scheme.
6: Repeat from step 4, until convergence.

GMM

U(α,k,θ ,z) = ∑
i
{−log p(zi|αi,ki,θ)− log π (αi,ki)} , (4.19)

and the edge component V is a smoothness term encouraging the coherence in regions of

similar color, taking into account G as a set of pairs of neighboring pixels,

V(α,z) = γ ∑
(i, j)∈G

[αi 6= α j]exp
(
−β
∥∥zi− z j

∥∥
2

)
, (4.20)

where the constants γ and β are for adjusting the effect of contrast.

Let T be a trimap consisting of three regions TF , TB and TU , denoting initial fore-

ground, background, and uncertain pixels respectively. Given the energy minimization

scheme described, the GrabCut tries to label the pixels in TU by using a minimum cut

method. Algorithm 1 summarizes the final automatic GrabCut algorithm.

4.4.2 Object-Level Feature Extraction and Similarity Fusion

To effectively utilize the object segmentation results, we propose to perform object-level

feature extraction (using ACC and CEDD features) as illustrated in Figure 4.10. Specif-

ically, we apply an importance weight to each of the foreground (wF) and background

(wB) pixels and obtain the final fused feature vector, where wF +wB = 1, wF ∈ (0,1],

wB ∈ [0,1). It is worth mentioning that the determination of wF and wB are application
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dependent. For example, under the unconstrained video condition, wB should be mini-

mized to diminish the effect of noisy background; however, if the interested object (e.g.,

a horse) is highly related with background (e.g., grass), hence wB should be increased. As

illustrated in Figure 4.10, the histogram representation of the two examples after weight-

ing shows coherent and smooth results.

Figure 4.10: Image feature extraction procedure.

The ACC feature dissimilarity is calculated based on normalized Manhattan distance

as

Dab =
1

DM+ξ
(‖a−b‖1) , (4.21)

and the CEDD feature dissimilarity is measured by Tanimoto coefficient as

Tab =
1

T M+ξ

(
1− aT b

aT a+bT b−aT b

)
, (4.22)

being a and b two feature vectors, ξ a constant greater than zero for avoiding division by

zero, DM = max{Dab} and T M = max{Tab} denoting the maximum values of distances

among all queries for feature ACC and CEDD respectively. Finally, the similarity score

is determined by

SimF(a,b) = λ1 ·SimACC(a,b)+λ2 ·SimCEDD(a,b)

= λ1 · (1−Dab)+λ2 · (1−Tab) (4.23)
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where λ1,λ2 ∈ [0,1] are the corresponding weights for each type of feature with λ1+λ2 =

1.

Given the fused similarity scores of the query example, with each of the items in the

database, the retrieval is simply by ranking all the items according to the similarity scores.

4.4.3 Experimental Results

To evaluate the effectiveness of the proposed framework, two sets of experiments are

conducted. First, we evaluate the performance of our proposed object-level spatial color

and texture information integration scheme using benchmark data set and provide the

comparison with other state-of-the-art algorithms. Second, we evaluate the effectiveness

of the whole video object retrieval framework over real-world data set. The experimental

results demonstrate the efficacy of our proposed approaches.

4.4.3.1 Evaluation Criteria

Average Normalized Modified Retrieval Rank (ANMRR)

ANMRR is a standard subjective criterion for evaluating the performance of retrieval

rank with its value normalized between 0 and 1. The lower the value, the better the

performance. The ANMRR for a query q is defined as follows

ANMRR(q) =
1
Q

Q

∑
q=1

NMRR(q), (4.24)

NMRR(q) =
MRR(q)

1.25×K−0.5× (1+NG(q))
, (4.25)

MRR(q) = AV G(q)−0.5× (1+NG(q)), (4.26)

AV G(q) =
1

NG(q)

NG(q)

∑
k=1

Rank(k), (4.27)

where NQ is the total number of queries; NG(q) is the total number of ground truth

images for query q; Rank(k) is the rank position of image k. If this image is beyond the
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first K retrievals, then Rank(k) = (K + 1), where K = min(4×NG(q),2×GT M), with

GT M = max{NG(q)} denoting the maximum number of ground truth images among all

queries.

Mean Average Precision (MAP)

MAP is a commonly used evaluation criterion in the information retrieval community,

which is calculated as

MAP(q) =
1
Q

Q

∑
q=1

AP(q), (4.28)

AP(q) =
1

NR(q)

NR(q)

∑
k=1

Precision(k), (4.29)

where NR(q) is the number of retrieved ground truth images for queried q, and Precision(k)

is the precision of the top-k ranked results for query q. The higher the value of MAP, the

better the performance.

4.4.3.2 Evaluation on Multi-Layer Information Integration Scheme

The WANG database is a subset of 1000 carefully selected images from the Corel stock

photo database. It includes ten classes with 100 images per each category. We first evalu-

ate the performance of individual low-level features, such as color and texture as a base-

line. Shape features are not included because they highly rely on object segmentation

results whose performance is not guaranteed in most real-world scenario. In addition,

we do not conduct the experiment on BOW-based features; however the comparison with

those methods are given. The results are illustrated in Figure 4.11. There are some ob-

servations from the figure: (1) color-based features (e.g., AutoColorCorrelogram (ACC),

ColorHistogram, JointHistogram, ColorLayout, DominantColor, ScalableColor) outper-

form texture-based features (e.g., Haralick, Tamura, Gabor); (2) compact composite fea-

tures (e.g., JCD, CEDD, FCTH) outperform single-channel features; (3) ACC and CEDD

features perform the best among all features, which inspires us to explore the integration
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of these two features. The ANMRR values for each individual feature shown in Figure

4.12 are almost consistent with the MAP evaluation results and confirm the above ob-

servations. Based on the experimental observations and analysis, we further conduct

Figure 4.11: MAP values for low-level individual features on WANG database.

Figure 4.12: ANMRR values for low-level individual features on WANG database.

experiments to validate the proposed multi-layer object-level spatial color and texture
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information fusion strategy. Specifically, the foreground and background pixels are as-

signed equal weights (i.e., wF = wB = 0.5) since they are considered equally important for

natural static images. At them same time, we tune the weight of ACC feature (λ1) from 1

to 0 with step 0.1 and CEDD feature weight (λ2) changing accordingly, and observe the

respective performance. The results are shown in Figure 4.13, where the fused features

outperform the original features with an average of 5% to 10% gain on the MAP values.

Finally, we compare the performance of our proposed multi-layer fusion algorithm with

Figure 4.13: MAP values for multi-layer fusion on WANG database.

the other state-of-the-art algorithms and the results are given in Figure 4.14, and Table 4.2

lists the basic features used in those algorithms. The experimental results demonstrate the

advantage of our approach over the other existing methods with a 5% to 16% increase on

the MAP@100 value.

4.4.3.3 Evaluation on Video Object Retrieval Framework

To demonstrate the effectiveness of the proposed object retrieval framework, a real-world

data set is composed (In this experiment, “bag” is taken as an object example due to its
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Figure 4.14: MAP@100 comparison with the state-of-the-art.

Table 4.2: Feature composition of the state-of-the-art algorithms.

Methods Features MAP
Color Texture Shape SIFT HOG LBP

Hiremath [155] X X X - - - 54.9%
Wang [156] X X X - - - 59.2%
Jurie [157] - - - X - - 61.7%
Yang [158] - - - X - - 64.1%
Yu [159] - - - X X X 65.7%
Proposed X X - - - - 70.6%

popularity. Generally the proposed framework applies to an arbitrary object). The data

set contains a real-time recorded video and a set of manually-collected images with 371

bags. The experiment targets at retrieving the most similar bags to the ones appeared

in the video. The video first goes through the automatic object detection and extraction

module, obtaining the detected bags with bounding boxes. Then the bounding box images

are applied with the object-level information extraction and integration for final retrieval.

Figure 4.15 displays the retrieval results before applying our proposed information inte-

gration strategy, where the leftmost image in red rectangle is the original bounding box
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image; and Figure 4.16 shows the results after object segmentation. Apparently the visual

results verify the efficacy of our method.

Figure 4.15: Video object retrieval results before object segmentation.

Figure 4.16: Video object retrieval results after object segmentation.

4.4.4 Conclusions

In this work, a novel approach for video object retrieval with complex background is

proposed in this work. The proposed method is able to automatically extract human

interested objects from complex background based on an auto-initiated segmentation al-

gorithm. Spatial color and texture information are then seamlessly integrated and fused

together, generating object-level features. Finally, the fused similarity based on differ-

ent sources of features is obtained for efficient and effective visual retrieval. It is worth

mentioning that the proposed multi-layer object-level information integration strategy is

applicable to both tasks of image retrieval and image classification. However the effi-

ciency and complexity should be further studied on a larger data set in the future.

4.5 Camera Take Detection

A camera take is a series of consecutive frames taken by a camera. It can be cut into

a sequence of segments and interleaved with other camera takes to form a scene which
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Figure 4.17: Examples of camera takes.

completes an event or a story in a video program. This is a common process in film

editing. Figure 4.17 shows an example of camera take editing results from the Chinese

movie “Finding Mr. Right”. Each picture in the figure is a key frame selected from a

shot (as illustrated in Figure 4.17(a)), thus frames (a) to (h) represent consecutive shots,

composing a scene. To take a closer look at the key frames, it is obvious that frames

(a), (c) and (f) are from the same camera take, so are frames (b) and (e), as well as (d)

and (g). Apparently, the shots from the same camera take could be grouped together

and represented by one or more frames. It will highly reduce the throughput for further

processing.

Figure 4.18 depicts the process of camera take detection. Specifically, it takes the

following four steps for camera take detection:

1. Frame difference calculation: based on the assumption that two consecutive frames

in a video shot should have high similarity in terms of visual content, the frame

difference is calculated using color histogram (or raw pixel values for saving com-

putational cost) as a measurement of similarity between two frames.

57



2. Shot detection: if the frame difference is above some preset threshold, then a new

shot is claimed. The selection of threshold is critical since it may cause over seg-

mentation or down segmentation depending on the types of video programs (action,

drama, etc.). To determine a proper threshold and further refine the detection re-

sults, certain constraints may apply, such as shot duration.

3. Key frame selection: a key frame should properly represent the visual content of a

shot. Without loss of generality, the last frame of a shot is selected as the key frame

for later processing. It is worth mentioning that more advanced techniques may be

utilized to select (or generate) the most representative key frame(s).

4. Camera take detection: each detected shot (represented by a key frame) will be

matched with the last shot in each detected camera take. If certain matching crite-

rion is satisfied, then the current shot will be added to the end of the matched camera

take. It is based on the assumption that a shot is most related to the one with closest

temporal relationship. Initially, within a certain time period, we may assume the

first shot as a camera take. The matching strategies vary from SIFT [113] point

matching to frame difference matching depending on various performance require-

ment.

To validate the effectiveness of the proposed camera take detection method, we care-

fully select three types of movie/TV series with different motion intensities for evaluation.

The first type is “romantic”, characterized by slow motion, close-up shots, and frequent

camera takes interleaving. A 5-min video clip from the Korean TV series “Missing You”

is extracted for the experiment. We first perform shot boundary detection, which is the

foundation of camera take detection. The experimental results are shown in Table 4.3.

As can be seen from the results, all of the shot boundaries are successfully detected. Al-
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Figure 4.18: Process of camera take detection.

though there are three over segmented shots, we are more interested in retrieving all the

true shot boundaries.

Table 4.3: Shot boundary detection results for movie type I.

Movie/TV
Series Type

No. Frames
(5 min.) No. Shots Detected

No. Shots Precision Recall

Romantic 7,500 48 50 96% 100%

Based on the detected shot boundaries, the camera take detection is carried out using

the approach described above. The experimental results are illustrated in Table 4.3, where

the first column represents camera take ID and the second column shows the shot array

for each camera take. To be specific, each sub-picture in the shot array represents the key

frame for each shot. There are totally 13 detected camera takes, which covers almost all of

the detected shots. Based on the experimental results, there are several observations and

conclusions: First, some camera takes are over segmented. For example, camera takes 2,
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5, 6, 7, and 8 should belong to the same camera take. They are separated mostly due to the

global change because of close-up effect. The other reason would be the relatively simple

background, which results in few interest points. It is also noticed that the shots from

the same camera take may not be consecutive in the original video sequence. Second,

the proposed camera take detection method is effective for romantic movies with slow-

motion and little film editing (i.e., most of the shot boundaries are cut change). Third,

there are some constraints for the proposed method. For example, there are about five

adjusting parameters, which are empirical values and have to be tested thoroughly to adapt

to different types of movies. Finally, it is worth mentioning that the total processing time

is 42sec (32-bit Windows XP, 4G RAM, 2.5G Hz), which meets real-time requirement.

More experiments have been conducted for the other two types of movies (as shown

in Table 4.5)
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Table 4.4: Camera take detection results for movie type I.

Camera
Take Id Shot Array

1

2

3

4

5

6

7

8

9

10

11

12

13

Table 4.5: Camera take detection results for three types of movies.

Movie/TV
Series Type

No. Frames
(5 min.) No. Shots No. Camera

Takes
Processing

Time
I. Romantic 7,500 50 13 38s
II. Low Motion (a) 7,500 46 25 46s
II. Low Motion (b) 9,000 143 78 142s
III. High Motion 7,200 280 264 143s

61



CHAPTER 5

MULTIMEDIA TEMPORAL ANALYSIS AND ENSEMBLE LEARNING

Multimedia concept detection is a challenging topic due to the well known class imbal-

ance issue, especially in the current big data era. With the rapid growth of multimedia

data, such as audio, image and video, as well as text data, applying powerful data mining

approaches is a necessity to tackle the issues of large and imbalanced datasets. For this

purpose, the IF-MCA modeling method is proposed with the MapReduce implementation

for dealing with large scale datasets. Specifically, the HIGA method inspired by the de-

cision tree algorithm is combined with the AP algorithm for critical feature selection and

IF assignment according to the ordering of the selected features. Then the derived IFs is

incorporated with the MCA algorithm for effective concept detection and retrieval. Tra-

ditional multimedia analysis tasks usually utilize multi-modal features including visual,

audio, and textual. In addition, temporal information is another important clue for ex-

ploring multimedia semantics. To effectively incorporate temporal semantics, a temporal

multiple correspondence analysis (TMCA) algorithm [8] that adopts an indicator weight-

ing scheme is proposed to re-rank the interesting event detection results and improve the

final performance.

Learning from imbalanced datasets is a hot and challenging research topic with many

real world applications. Many studies have been done on integrating sampling-based

techniques and ensemble learning for imbalanced datasets. However, most existing sam-

pling methods suffer from the problems of information loss, overfitting, and additional

bias. Moreover, there is no single model that can be applied to all scenarios. There-

fore, a positive enhanced ensemble learning (PEEL) algorithm [160] is presented in this

work for effective video event detection. The proposed PEEL framework involves a novel

sampling technique combined with an ensemble learning mechanism built upon the base

learning algorithm (BLA). Exploratory experiments have been conducted to evaluate the
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related parameters and the comparison studies have been carried out. The experimental

results demonstrate the effectiveness of the proposed PEEL framework for video event

detection.

5.1 Importance Factor based Temporal MCA for Multimedia Big

Data Analysis

Currently, multimedia data including image, video, and audio accounts for 60% of inter-

net traffic, 70% of mobile phone traffic, and 70% of all available unstructured data [161].

It is considered as “big data” not only because of its huge volume, but also because of

its increasingly eminent position as a valuable source of insight and information in ap-

plications, ranging from business forecasting, healthcare, to science and hi-tech, to name

a few [162]. However, with the emergence of extremely large-scale datasets, researchers

in machine learning and data mining communities are faced with numerous challenges

as many well-established classification and regression approaches were not designed and

thus not suitable for such memory- and time-intensive tasks [163]. Therefore, how to

effectively and efficiently “mine” the datasets to reveal their intrinsic properties becomes

one of the critical challenges in this big data era.

The challenge becomes even more daunting given the fact that in many real-world

applications, large amounts of data are generated with skewed distributions (or called

data imbalance) since the events of interests often occur infrequently [164]. For example,

there are often more samples of normal cells (considered negative class) than the abnor-

mal (positive) ones in cancer research, more normal transactions than fraud activities in

banking operations, etc. In such imbalanced datasets, the class that has more data in-

stances is defined as a major class; while the one with fewer data instances is called a

minor class. Since most classifiers are modeled by exploring data statistics, as a result,
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they may be biased towards the major classes and hence show very poor classification

accuracy on the minor classes while in fact minor classes are often more important and

interesting in a wide range of applications. In the literature, various data mining algo-

rithms have been extended for big data analysis, which aim to maximize the value of the

big data by concentrating, extracting, and refining useful data hidden in them, and by

identifying the inherent law of the subject matter [165]. Example algorithms include de-

cision tree learning [166][167], neural networks [168], association rule mining [169], and

clustering techniques [170][171], etc. However, imbalanced data classification remains a

challenging research problem, and more work is needed to tackle it.

Videos contain rich multi-modal information, such as visual, audio, and textual. Multi-

modal approaches become more and more popular since different modalities contribute

to interesting event detection from various aspects [172, 173, 174]. In [172], a multi-

modal framework is utilized to leverage the audio/visual/text features for the purpose of

goal detection. However, due to the limitation of text availability, the framework does not

always benefit from text semantic information. In [173], visual clues are extracted for the

usage of shot segmentation, shot classification, and goal detection. Then the audience’s

cheering and the commentator’s excited speech are extracted as the audio clues. At the

end, both visual and audio values are combined with the domain knowledge of soccer

videos to define goal event detection rules.

In addition to the multi-modal features, temporal information is also a critical clue for

analyzing potential interesting events. For example, a typical goal shot in a soccer game

is usually followed by one or multiple close-up shot, multi-player shot, and audience

shot. However, there is no strict order for these temporal patterns. In other words, the

temporal information has a loose structure. The good representation and utilization of

these temporal semantic features will greatly facilitate the detection of rare interesting

events in sports videos, alleviating the class imbalance problem.
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Furthermore, with data being generated at unprecedented rates and scales, there is

a compelling need for more efficient classification methods to rapidly extract key in-

formation from the massive data as values hidden in big data generally depend on data

freshness. One of the main ideas is to use parallel computing systems or tools, such as

MapReduce [175], AllReduce [176], and GraphLab [177], to simultaneously utilize sev-

eral computing resources for fast computation. Among them, MapReduce in particular

has become the framework of choice for data-intensive applications and is actively used

by top technology companies to process big data [59]. It has led to the development of a

parallelizable variety of popular machine learning algorithms, such as k-means, percep-

tron, logistic regression, PCA, and others [163]. However, as discussed in [163], these

classification methods mostly rely on iterative training and two-way communication be-

tween the compute nodes. This may impose significant costs during training as it does

not closely follow the computational paradigm of MapReduce based on the autonomy of

computation nodes.

In this work, we propose a novel Importance Factor based Temporal Multiple Corre-

spondence Analysis (IF-TMCA) framework for multimedia big data analysis. It performs

data pruning, feature selection, classification, and re-ranking in a coherent framework to

effectively tackle the imbalanced data classification issue. In addition, it is capable of

fully employing the MapReduce framework to significantly speed up the training process

for big data analysis. Specifically, the contributions of this paper are threefold:

• A novel Hierarchical Information Gain Analysis (HIGA) method is proposed with

the integration of the Feature Affinity Propagation (FAP) scheme for critical feature

selection and Importance Factor (IF) generation;

• An IF-MCA framework is presented with the seamless incorporation of the gener-

ated IF to the traditional MCA algorithm for effective semantic concept detection;
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• A TMCA algorithm is proposed to incorporate the well designed temporal semantic

features by using an indicator weighting scheme.

• A MapReduce implementation of the proposed IF-TMCA framework is presented

for dealing with large-scale datasets and efficiently performing multimedia big data

analysis.

The integrated IF-TMCA framework is shown in Figure 5.1, the whole procedure can

be described in three phases: the pre-processing phase, the training phase, and the testing

phase. In the pre-processing phase, sub-routines including data cleaning, feature extrac-

tion, normalization, etc., are carried out to properly represent the raw data. It is worth

noting that the pre-processing step is domain-specific, i.e., different applications may re-

quire a particular set of features (such as visual, audio, and textual features depending on

the input) and different feature extraction techniques. In addition, because of the wide

variety of data sources in big data applications, the collected datasets may vary with re-

spect to noise, redundancy, and consistency, etc. Therefore, in order to enable effective

data analysis, data may be pre-processed under many circumstances to integrate the data

from different sources to reduce the storage expense and to improve the analysis accu-

racy. After pre-processing, data are separated into a training set and a testing set. In the

training phase, the IF-MCA and TMCA models are trained with the MapReduce imple-

mentation [59], which will later be used during the testing phase for identifying semantic

concepts. Specifically, the IF-MCA model will be used for generating the basic ranking

scores, and the TMCA model will serve the purpose of re-ranking the retrieval results. In

the following subsections, each component of the proposed framework will be discussed

in details, including hierarchical information gain analysis, feature affinity propagation,

feature selection and importance factor generation, IF-MCA and TMCA modeling, test-

ing score generation, re-ranking, and the MapReduce implementation.
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Figure 5.1: Illustration of the IF-TMCA framework.
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5.1.1 IF-MCA Modeling

5.1.1.1 Training phase

5.1.1.1.1 Hierarchical Information Gain Analysis

Information Gain (IG) (also called Kullback-Leibler divergence [178]) is an efficient and

simple measure in data mining and has been widely used as a splitting criterion in the

decision tree algorithms. To measure the IG values for a data set, it is necessary to first

calculate the entropy or the uncertainty value (as shown in Equation (5.1)).

Entropy(S) =−
C

∑
c=1

pclog2 (pc) , (5.1)

where S is a set of data instances, C is the total number of classes (x1,x2,...,xC), and pc

is the probability of occurrence of a particular class (event) c with respect to the feature

values. Based on this equation, it is reasonable to derive that the more predictable the

feature is, the lower entropy it has. Then, IG is calculated using Equation (5.2).

IG(S,A) = Entropy(S)−
Φ

∑
v=1

|Sv|
S

Entropy(Sv), (5.2)

where A is the selected feature (attribute) with Φ distinct values (a1,a2,...,aΦ), and Sv is a

subset of S with A = v.

Because Equation (5.2) requires each feature to have a certain number of distinct

values, for those features with numerical values, the discretization step is needed to divide

the data instances into several groups before calculating the IG values which are then

used in the traditional information gain feature selection method to choose those features

with bigger IG values. In this work, we propose to extend the traditional method into

a hierarchical information gain analysis (HIGA) algorithm by selecting and ranking the

features based on the J48 tree structure. J48 is a modified version of the popular decision

tree algorithm C4.5 [179] and is implemented in the WEKA workbench [180]. It handles
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both nominal and numerical data by selecting a proper threshold value (such as the mean

of the data) to separate the data into two groups. It is able to handle noisy data as well

as data with missing values. In addition, it includes a pruning step to control over-fitting

and generalize the framework to unseen data. The proposed HIGA algorithm takes the

full advantage of these desirable properties by using the hierarchical structure of J48.

According to the C4.5 pseudo-code described in [179], the steps of generating a decision

tree are as follows. First, it checks some border cases (e.g., if no remaining feature, if no

remaining instance, or if all the remaining training instances belong to one class). Then,

starting with all the training data, it calculates the normalized information gain for each

feature (say feature a), and finds the highest value, a∗, which is used as a splitting node of

the tree. This algorithm recursively constructs sub-trees on each branch based on a subset

of the training data. Thereafter, the HIGA algorithm is performed as follows.

• Apply the Breadth First Search (BFS) algorithm to traverse the tree level-by-level

and save each visited node in the Candidate Feature (CF1) array, respectively;

• Sort the nodes in an ascending order based on the levels they are located in the tree;

• Remove the repetitive features, and keep only the first appearance of each feature

in the sorted array;

• For those feature nodes with the same level value, use the information gain value

to reorder the array. For instance, suppose CF1 = {F1,F3,F9,F5,F10}, while F3 and

F9 are at the same level of the tree. Then, IG(S,F9) and IG(S,F3) are calculated to

determine which feature (in this case F3 or F9) is more predictive. Using IG, CF1 is

updated as follows. If IG(S,F3) > IG(S,F9), then CF1 is not changed; otherwise,

CF1 = {F1,F9,F3,F5,F10}.

The rationale of HIGA is that the features used to build the decision tree are more pre-

dictive toward a class, and they follow a specific selection order to build the tree in a
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top-down fashion. Therefore, it is reasonable to conclude that the earlier the feature is

selected, the more important it is. However, it is also known that the selected feature at

each node of the decision tree for splitting is considered as local optimal, because the

features are evaluated using a subset of the parent node as the tree grows. Therefore, they

might not be the global optimal solution for the whole data set. To accommodate this is-

sue and to refine the feature selection results, the ordered feature subset CF1 output from

HIGA will be used to integrate with the result from the proposed FAP feature selection

method (to be discussed below) to produce the final list of the selected features and their

importance factors.

5.1.1.1.2 Feature Affinity Propagation

As an unsupervised deterministic clustering method, the affinity propagation (AP) algo-

rithm has found various applications in the field of science and engineering due to its

simplicity, general applicability, and good performance [112]. In our previous work [7],

it has been successfully applied for concept retrieval. Compared with the traditional clus-

tering algorithms, such as k-means and mixtures of Gaussian, the AP algorithm is able to

automatically determine the number of clusters with both the lower error and computa-

tional complexity. The algorithm works by passing the messages between data points and

updating the so-called responsibility r(·) and availability v(·) iteratively for determining

the exemplar (i.e., clustering center) for each cluster. The input of AP is a similarity ma-

trix (C) and a preference value (pre f ) which indicates the confidence of an instance to

serve as an exemplar. Each element in the similarity matrix represents the closeness of

two data points. In our scenario, the features to be clustered is considered as data points

(hence the name FAP) and their pair-wise similarity is represented by their Spearman’s
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rank1correlation coefficient calculated in Equation (5.3).

s(Fj,Fk) =
∑

N
i=1( fi, j−Fj)( fi,k−Fk)√

∑
N
i=1( fi, j−Fj)2

√
∑

N
i=1( fi,k−Fk)2

, (5.3)

where Fj and Fk denote the jth and kth features ( j, k = 1, 2,· · · , J) with mean values Fj

and Fk, fi, j is the value (rank) of the jth feature for the data instance i, and N is the total

number of positive instances in the training set.

The responsibility, availability, and self-availability are updated iteratively as follows.

r(Fj,Fk) ← s(Fj,Fk)−max
l:l 6=k

{
a(Fj,Fl)+ s(Fj,Fl)

}
,

a(Fj,Fk) ← min{0,r(Fk,Fk)+ ∑
l:l /∈{k, j}

max{0,r(Fl,Fk)}},

a(Fk,Fk) ← ∑
l:l 6=k

max{0,r(Fl,Fk)} .

Finally, the exemplar feature Fj is chosen as the one with the maximum sum of respon-

sibility and availability as presented in Equation (5.4). At the end of FAP, each feature

will be assigned to a cluster with an exemplar feature. It is worth mentioning that the

exemplar features belong to the original feature set, unlike the other traditional clustering

algorithms which may use “synthetic” cluster centers.

e∗j ← argmax
Fj

(r(Fj,Fk)+a(Fj,Fk)). (5.4)

5.1.1.1.3 Feature Selection and Importance Factor Generation

In this component, the feature set derived from the HIGA (CF1) and the one from the

FAP method (CF2) are intersected to generate the final set of the selected features (SF)

as shown in Lines 2-5 of Algorithm 2. Please note that while some of the features may

be removed from (CF1) because of the intersection, the order of its remaining features is

preserved in SF .
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Algorithm 2 Feature Selection and IF Generation
Input: Original feature set {Fj| j = 1, · · · ,J} for the training data set Tr.
Output: The new training set Tr′ with the selected feature set {SFj′| j′ = 1, · · · ,J′}, and
the corresponding IF set {IFj′| j′ = 1, · · · ,J′}, J′ <= J.

1: procedure GENIF(F)
2: CF1← HIGA(F);
3: Calculate covariance matrix C based on Equation (5.3);
4: CF2← FAP(C, p);
5: SF ←CF1∩CF2; . |SF |= J′

6: for all SFj′ ( j′ = 1, · · · ,J′) do
7: Calculate IFj′ based on Equation (5.5);
8: end for
9: return Tr′, SF and IF

10: end procedure

Then the importance factor (IF) generation scheme is proposed to assign the weight

to each of the features in SF using Equation (5.5).

IFj′ =
J
J′
· 1

log2 ( j′+1)
, j′ = 1,2,3, · · · ,J′ (5.5)

where J and J′ are the size of the original feature set F and final selected feature set SF

respectively, 1
log2( j′+1) is a penalty factor to smoothly decrease the weight of a feature

based on its ranking j′. Again this is inspired by the HIGA method where the feature

shows in the upper level of the decision tree (ranked earlier in SF) is considered more

important than the ones in the lower level of the tree. As can be seen from this equation,

j′ is increased by one in the denominator to avoid the zero division error for j′ = 1. To

continue the example of CF1, suppose the CF2 = {F1,F3,F5,F11}, then SF = {F1,F3,F5}.

5.1.1.1.4 IF-MCA Model Training

MCA (Multiple Correspondence Analysis) has been successfully applied to various mul-

timedia analysis tasks like feature selection [11], discretization [12], data pruning [13],

classification [14, 181], and video semantic concept detection and retrieval [15][8], etc.,

as shown in Figure 5.2. In this framework, the proposed IF generation method is inte-
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grated with the MCA algorithm (i.e., IF-MCA) to perform semantic concept detection.

The MCA algorithm is originated from the statistics discipline as an exploratory data an-

alytic technique to analyze multi-way tables for some measurement of correspondence

between the rows and columns [182]. Inspired by this idea, MCA is extended for ana-

lyzing the multimedia data by discretizing continuous features into categorical values and

capturing the correspondence between feature items and classes (concepts). Specifically,

as the first step, each feature Fj′ in the selected feature set (SF) is discretized into Φ j′

items, generating a categorical data table as shown in Figure 5.3, where each row in the

table presents an instance Xi ∈ Tr′, i = 1,2, · · · ,N. For example, instance X1 has feature

items F1,1 ∈ F1, F2,1 ∈ F2, FJ′,1 ∈ FJ′ , and the class label Ω1 ∈ Ωc,c = 1, · · · ,C, where C

is the number of classes (for binary classification, C = 2). Without loss of generality, we

use 1-D subscripts to represent a feature attribute (e.g., F1) and 2-D subscripts to repre-

sent a feature item (e.g., F1,1) throughout this work. Let the total number of items for

all features be Φ. Then an indicator matrix with dimension (Φ+C)× (Φ+C) will be

constructed as shown in Table 5.4 and step 2 of Figure 5.2. As can be inferred from the

table, for each instance, it can only belong to one of the items for each feature, where the

indicator value is 1. After that, the Burt matrix is calculated by B = IT × I as shown in

Figure 5.5, where each number in a cell representing the total number of occurrences for

a particular feature-item pair. For example, B(F1,1,Ω1) = 2 means there are two instances

with feature item F1,1 belonging to class Ω1. Then B will be normalized by the grand

total of I, i.e., G, denoted as Z = I/G in step 3 of Figure 5.2. Then a Singular Value

Decomposition (SVD) will be performed to transform the centralized probability matrix

Z to the projected space using Equation (5.6).

D−
1
2 (Z−MMT )(DT )−

1
2 =U∆V T , (5.6)

73



where M is a vector of the column totals of Z, D = diag(M), and ∆ is the diagonal matrix

of the singular values. The columns of U and rows of V T are the left and right singular

vectors, respectively. The original feature-item pairs are then projected into a new space

by using the eigenvectors obtained from SVD as shown in step 4 of Figure 5.2. Finally,

the similarity (weight) of pairwise feature-item and class label can be represented by their

inner product (or the cosine value of their angle). A smaller angle indicates a higher

correlation. This weight (angle) value will be used later for calculating the final score for

each instance. Figure 5.6 illustrates the projection of features F1 and F2 with binary class

labels Ω1 (target class) and Ω2, where θ and ω are the angles for feature-items F1,1 and

F1,2; and α , β , and γ are the angles for feature-items F2,1, F2,2, and F2,3, respectively.

An EN-MCA algorithm was proposed in our previous work [8] for enhancing the orig-

inal MCA algorithm by fully utilizing all critical principal components. In this work, we

further improve the EN-MCA algorithm by incorporating the IF values, hence the name

IF-MCA in Algorithm 3. Specifically, the training data set Tr is first discretized into

nominal values using the Minimum Description Length (MDL) algorithm [183]. Then,

an indicator matrix (I j) is built for each selected feature (using j′th feature as an exam-

ple), followed by the generation of Burt matrix B j′ . Subsequently, the traditional MCA

is performed, obtaining the centralized and normalized Burt matrix Z j′ , the sorted eigen-

vectors Vj′ and the corresponding eigenvalues E j′ . The number of PCs to be retained is

determined by the accumulated variance based on Vj′ [184]. Then Z j′ and Vj′ are used

for generating the projected vectors F ′j′ and Ω j′ for each pair of PCs. Lines 13-18 in Al-

gorithm 3 calculate the MCA weight for each feature-item F ′j′,ϕ and class vector Ω j′,c.

Please refer to [185] for more details on how to calculate the weight. The significance of

each PC pair is evaluated in Algorithm 3 line 19. Finally, the final MCA weight for each

pair of F ′j′,ϕ and Ω j′,c is calculated using the linear combination of each W c
j′,ϕ based on

the normalized weight factor wq and IFj′ as shown in Line 25-30, where C and Φ j′ are
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Figure 5.2: MCA procedure.

the total number of classes and the number of items (nominal intervals) for feature Fj′ ,

respectively.
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Algorithm 3 IF-MCA
Input: Training data set Tr and the original feature set {Fj, j = 1,2, · · · ,J}.
Output: Weight matrix MW .

1: procedure GENMW(Tr)
2: {SF, IF}← GENIF(Tr,F);
3: Discretize Tr into nominal intervals;
4: for all Fj′ ∈ SF,( j′ = 1, · · · ,J′) do
5: Construct indicator matrix I j′;

6: Calculate Burt matrix B j′;

7: {Z j′,Vj′,E j′}←MCA(B j′);

8: Determine the number of PCs, Q j′;

9: count← 1;
10: for all m← 1 : (Q j′−1) do
11: for all n← (m+1) : Q j′ do
12: V P← [ ];
13: Calculate F ′j′ and C j′;

14: for all F ′j′,ϕ(ϕ = 1, · · · ,Φ j′) do
15: for all Ω j′,c(c = 1, · · · ,C) do
16: Calculate W c

j′,ϕ(count);

17: end for
18: end for
19: V P[count]← E j′[m]∗E j′[n];
20: count← count +1;
21: end for
22: end for
23: for all q← 1 : count do
24: wq←V P[q]/sum(V P);
25: for all F ′j′,ϕ(ϕ = 1, · · · ,Φ j′) do
26: for all Ω j′,c(c = 1, · · · ,C) do
27: MW c

j′,ϕ ←MW c
j′,ϕ +W c

j′,ϕ(q)∗wq;

28: end for
29: MW c

j′,ϕ ←MW c
j′,ϕ ∗ IFj′;

30: end for
31: end for
32: end for
33: return MW . MW is a 3-D matrix.
34: end procedure
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Figure 5.3: Categorical data table.

Figure 5.4: Indicator matrix.

Figure 5.5: Burt matrix.

5.1.1.2 Testing Phase

The testing phase is based on the generated MW matrix from the training phase (as shown

in Line 3 of Algorithm 4). Specifically, the score for each testing instance is calculated

by accumulating the effect of all the feature-items for a particular class as presented in

Equation (5.7), where mw j′ is the looked up weight for the j′th feature of the i′th instance.
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(a) Feature F1 (b) Feature F2

Figure 5.6: Feature projection.

Finally, Scorei′ is normalized by the total number of features (i.e., J′). Algorithm 4 illus-

trates the procedure for calculating the scores, where N′ is the total number of instances

in the testing set. These scores can be directly used for ranking the testing instances.

For classifying an instance, an appropriate threshold should be determined by evaluating

the training performance as illustrated in Algorithm 5, where Line 5 finds the candidate

thresholds which are iteratively evaluated to determine the final threshold (Lines 6-12)

assuming the target class being Ω1.

Scorei′ =

(
J′

∑
j′=1

(1−mw j′)
2

)
∗ 1

J′
. (5.7)

5.1.2 TMCA Modeling

5.1.2.1 Semantic Feature Extraction

As mentioned before, the semantic information could be useful for identifying interesting

events. The problem is how to appropriately represent the semantics and effectively utilize

it. In the proposed framework, the semantics are represented by binary features and used

as additional information for improving the basic detection results.
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Algorithm 4 Ranking Score Generation
Input: Training data set Tr and testing data set Te
Output: Ranking score for Te

1: procedure CALCSCORE(Tr, Te)
2: RS← [ ]; . create an empty ranking score set
3: MW ← GENMW(Tr);
4: for all Xi′ ∈ Te (i′ = 1, · · · ,N′) do
5: for all Fj′ ( j′ = 1, · · · ,J′) do
6: Look up mw j′ from MW;

7: Scorei′ ← Scorei′+(1−mw j′)
2;

8: end for
9: Scorei′ ← Scorei′/J′;

10: RS← Scorei′;
11: end for
12: return RS
13: end procedure

Algorithm 5 Threshold Generation
Input: Training score set T S
Output: Classification threshold th∗

1: procedure GENTH(T S)
2: F1∗← 0; . initialize global maximum F1 score
3: th∗← 0; . initialize final threshold
4: T S′← sort(T S); . sort by descending order
5: T H←{T S′t |Ω(t) = Ω1}; . get candidate threshold
6: for all t ∈ 1 : |T H|) do
7: Ω̂(T S′ > T Ht)←Ω1; . set predicted label
8: Calculate F1 score;
9: if F1∗ < F1 then

10: F1∗← F1; . update the optimal F1 score
11: th∗← T Ht; . update the optimal threshold
12: end if
13: end for
14: return th∗

15: end procedure
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(a) Interesting event. (b) Successive shot 1 (c) Successive shot 2

(d) Successive shot 3 (e) Successive shot 4 (f) Successive shot 5

Figure 5.7: Examples of semantics.

Without loss of generality, the interesting event in soccer games is used as an example.

Figure 5.7 shows the key frames of an interesting event (goal shot) and the following five

consecutive shots. As can be seen from the figure, a typical interesting event is usually

followed by one (or more) close-up shot (usually the shooter), multi-player shot, and

audience shot, which can be characterized as a temporal pattern. In addition, the goal

shot should have a high grass ratio and high volume because of the excitement from both

audience and commentator. Therefore, a set of binary semantic features are defined in

Table 5.1, where each feature is denoted as Fj, j = 1, . . . ,J, and J is the total number

of features (it is worth noting that the value of J is different from that of the IF-MCA

modeling). The next problem is how to evaluate the significance of each semantic feature

and calculate the total impact for assisting video event detection.

5.1.2.2 Temporal MCA

Generally speaking, MCA is performed on the attribute level and correspondence analy-

sis is carried out to project the original feature items to a new space for better represen-

tation. However, there is inevitable information loss during the projection and each new

component in the projected space does not hold specific physical meaning. MCA has

demonstrated its efficiency and effectiveness over numerical features, where each feature
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Table 5.1: Semantic features.

Feature Id Semantics Example

F1 Football field

F2 Close-up shot

F3 Multi-player shot

F4 Audience shot

F5

Excitement from
audience and
commentator

N/A

item after routine discretization does not carry semantic in the first place. However, in our

scenario, each semantic feature attribute is already a bit vector (with the nominal value 0

or 1), which carries specific semantics. It is desirable to retain the original semantic infor-

mation as much as possible while exploring the feature item level associations. To solve

this problem, the Temporal MCA (TMCA) algorithm is proposed to analyze feature item

correspondence and seamlessly integrate temporal information for semantic re-ranking.

Let I1 ∈ RN×4 be an indicator matrix for a particular semantic feature (F1) as shown in

Figure 5.8, where each column represents a feature item (F1,1 or F1,2) or a class label (Ω1

or Ω2), and each line is an instance (or some analysis unit, such as a video shot), with a

total number of N shots. The semantic meaning embedded in the indicator matrix is as

follows. For example, the values for F1,1 and Ω1 for shot 1 are both 1, which means shot

1 shows a football field and it is an interesting event. On the contrary, shot 2 has F1,2 and

Ω2 with the value 1, which means it does not show a football field and it is not an interest-
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Figure 5.8: Indicator weight generation.

ing event. To calculate the correlation between a feature item (Fj,ϕ , ϕ = 1, . . . ,Φ) and a

class label (Ωl, l = 1, . . . ,C), an indicator weighting method is illustrated in Equation 5.8,

where Φ is the total number of feature items for attribute F1, C is the number of classes,

and λ ∈ [0,1] is a tuning parameter to accommodate the effect of the number of features.

This indicator weight calculation approach takes advantages of both the traditional cosine

similarity and Tanimoto coefficient [186].

IW c
j,ϕ =

~Fj,ϕ ·~Ωc∥∥∥~Fj,ϕ

∥∥∥
2
·
∥∥∥~Ωc

∥∥∥
2
−λ ·~Fj,ϕ ·~Ωc

(5.8)

=
∑

N
i=1( f i

j,ϕ ·Ωi
c)√

∑
N
i=1( f i

j,ϕ)
2 ·
√

∑
N
i=1(Ω

i
c)

2−λ ·∑N
i=1( f i

j,ϕ ·Ωi
c)

The above indicator weight generation procedure is considered as a training process

(as described in Algorithm 6 lines 1 to 11). Intuitively, to calculate the overall effect of

all the feature items for a specific instance towards a particular class, a summarization

over all the feature attributes is required. The summarized value is known as an instance

score. Equation 5.9 shows the weighting scheme based on the trained indicator matrix

IW , where the final score is normalized by the total number of attributes. Algorithm 6

lines 12 to 23 describe the procedure for calculating the scores, known as the testing
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Algorithm 6 Indicator Weight for Ranking
Input: Training data set Tr, testing data set Te
Output: Re-ranking score for Te based on indicator weights

1: procedure GENIW(Tr) . Training
2: for all Fj ( j = 1, · · · ,J) do
3: Construct indicator matrix I j;
4: for all Fj,ϕ (ϕ = 1, · · · ,Φ) do
5: for all Ω j,c (c = 1, · · · ,C) do
6: Calculate IW c

j,ϕ using Equation 5.8;

7: end for
8: end for
9: end for

10: return IW . IW is a 3-D matrix.
11: end procedure

12: procedure CALCSCORE(Tr, Te) . Testing
13: IW ← GENIW(Tr);
14: for all Xi in Te (i = 1, · · · ,N) do
15: for all Fj ( j = 1, · · · ,J) do
16: Look up iw j from IW;
17: Si← Si +(1− iw j)

2;
18: end for
19: Si← Si/J;
20: Add Si to RS1;
21: end for
22: return RRS . Re-ranking score for Te
23: end procedure
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process. For ease of illustration, the number of testing instances is also denoted as N.

RRSi =
∑

J
j=1(1− iw j)

2

J
(5.9)

5.1.2.3 Re-ranking

In this work, the binary classification problem is taken as an example to illustrate the

proposed re-ranking procedure. As shown in Algorithm 7, the input of the re-ranking

algorithm is the initial classification results, denoted as CM, which contains the classified

positive and negative instances represented as G1 and G2 respectively. Another input is

the re-ranking score from the TMCA model, i.e., RRS. Then the refined positive instances

G1
′ is generated by excluding the instances below a preset threshold θ1 in G1 (Algorithm 7

line 6), and including the instances above θ2 in G2 (Algorithm 7 line 12), vise versa for

G2
′.

Algorithm 7 Re-Ranking
Input: Classification results CM = {G1,G2}, ranking score for different models RRS
Output: Refined classification results based on re-ranking CM′

1: procedure RERANKING(CM, RRS)
2: Φ← [ ];
3: CM′←CM;
4: for all Xi in G1 (i = 1, · · · , |G1|) do
5: if RRS(Xi)< θ1 then
6: G1

′← G1
′−Xi;

7: G2
′← G2

′+Xi;
8: end if
9: end for

10: for all Xi in G2 (i = 1, · · · , |G2|) do
11: if RRS(Xi)> θ2 then
12: G1

′← G1
′+Xi;

13: G2
′← G2

′−Xi;
14: end if
15: end for
16: return CM′

17: end procedure
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5.1.3 MapReduce Implementation

When the number of instances N increases dramatically, it is unfeasible to fit all the

required intermediate variables (e.g., the indicator matrix I j′ as shown in Line 5 of Algo-

rithm 3) into the memory. To tackle this issue and adapt the IF-MCA to a large data set, a

MapReduce version of the IF-MCA is presented in Algorithm 8 based on the extension of

our previous work [59]. The MapReduce IF-MCA framework contains three procedures.

The Map procedure takes as an input the training data set (Tr′) with the selected features

SF , and counts the occurrences of the feature-item (Fj′,ϕ ) and class (Ωc) combinations for

each feature Fj′ . Line 5 in Algorithm 8 illustrates the key-value pair of the Map procedure,

where the key is the feature Fj′ , and the value is a three-tuple containing the feature-item

Fj′,ϕ , class label c, and the number 1. The Combine procedure is carried out when the

number of key-value pairs produced by the Map tasks is significantly large due to the big

datasets. It takes as an input a list of the intermediate values list([Fj′,ϕ ,Ωc,count]) for

the feature Fj′ and uses a hash map H to aggregate the count, which will be used in the

Reduce procedure for generating the Burt matrix B j′ , a square matrix with the dimension

of Φ j′+C. Equations (5.10) and (5.11) define the map and reduce functions.

map(Xi, [{Fj′},Ωc])→ list(Fj′, [Fj′,ϕ ,Ωc,1]), (5.10)

reduce(Fj′, list([Fj′,ϕ ,Ωc,count]))→ list(Fj′,MWj′). (5.11)

Finally, the testing phase of the IF-MCA algorithm can be conducted using only the Map

function since it only involves the lookup of the feature-item weight in MW . For more

details about the implementation, please refer to [59].

The MapReduce implementation of the TMCA algorithm is simpler than that of IF-

MCA since it gets rid of the overhead of Burt matrix calculation and projection.

85



Algorithm 8 MapReduce IF-MCA

1: procedure MAP(Tr′)
2: for all X ′i ∈ Tr′ (i = 1, · · · ,N) do
3: for all Ωc (c = 1, · · · ,C) do
4: for all Fj′,ϕ ( j′ = 1, · · · ,J′) do
5: Output < Fj′, [Fj′,ϕ ,c,1]>;
6: end for
7: end for
8: end for
9: end procedure

10: procedure COMBINE(Fj′, list([Fj′,ϕ ,Ωc,count]))
11: Create hash map H;
12: for all [Fj′,ϕ ,Ωc,count] ∈ list([Fj′,ϕ ,Ωc,count]) do
13: H[Fj′,ϕ ,c]← H[Fj′,ϕ ,c]+ count;
14: end for
15: for all [Fj′,ϕ ] ∈ H do
16: Output < Fj′, [Fj′,ϕ ,c,H[Fj′,ϕ ,c]]>;
17: end for
18: end procedure

19: procedure REDUCE(Fj′, list([Fj′,ϕ ,Ωc,count]))
20: Allocate burt matrix B j′;

21: for all [Fj′,ϕ ,Ωc,count] ∈ list([Fj′,ϕ ,Ωc,count]) do
22: B j′[Fj′,ϕ ,Fj′,ϕ ]← B j′ [Fj′,ϕ ,Fj′,ϕ ]+ count;
23: B j′[Fj′,ϕ ,c]← B j′[Fj′,ϕ ,c]+ count;
24: B j′[c,c]← B j′[c,c]+ count;
25: B j′[c,Fj′,ϕ ]← B j′[c,Fj′,ϕ ]+ count;
26: end for
27: Execute Algorithm 3 lines 7-31;
28: Output < Fj′,MWj′ >;
29: end procedure
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5.1.4 Experimental Analysis

5.1.4.1 Dataset Description

The proposed IF-TMCA framework is a general framework and can be applied to a vari-

ety of multimedia applications that involve data in image, video, audio, text, etc. formats.

As a demonstration for performance evaluation, in this work, the framework will be tested

from different aspects using two datasets , i.e., the disaster dataset and the soccer dataset.

Specifically, the disaster dataset contains 65 videos with over 5000 video shots and 9

disaster-related concepts, which will be used to evaluate the IF-MCA approach. On the

other hand, the soccer dataset is intended for evaluation the whole IF-TMCA framework

since it contains rich temporal information. The dataset includes 23 soccer games col-

lected from the FIFA World Cup in 2010 and 2014, which has a total duration of over 32

hours with 58 goal shots.

5.1.4.2 Evaluation of IF-MCA

Both visual and textual features are extracted from the disaster dataset as described in [187].

The IF-MCA framework is evaluated through 3-fold cross validation by using the com-

monly adopted measurement metrics: precision, recall, and F1 as defined in Equations

(5.12), (5.13), and (5.14).

Precision =
T P

T P+FP
, (5.12)

Recall =
T P

T P+FN
, (5.13)

F1 = 2∗ Precision∗Recall
(Precision+Recall)

, (5.14)

where TP (true positive) refers to the number of positive instances that are correctly pre-

dicted, FP (false positive) is the number of negative instances that are wrongly predicted

as the positive class, and finally FN (false negative) indicates the number of positive in-

stances that are wrongly predicted as the negative class. The evaluation results are shown
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in Table 5.2. As can be seen from the table, the average F1 score for the 9 disaster con-

cepts is about 95%, which is very promising.

Table 5.2: Performance evaluation on disaster dataset.

Concepts Precision Recall F1
Damage 0.928 0.870 0.898

Flood 0.967 0.868 0.915

Fire 0.916 0.942 0.929

Storm 1.000 1.000 1.000

Snow 1.000 1.000 1.000

Lightening 1.000 1.000 1.000

Tornado 1.000 0.932 0.964

Tsunami 1.000 1.000 1.000

Mud-rock 0.888 0.864 0.876

Average 0.967 0.942 0.954

To further evaluate the effectiveness and sensitivity of multi-modality features (i.e.,

visual vs. textual), another experiment is conducted with single modality as shown in

Table 5.3. As is indicated from the table, the integration of multi-modality features out-

performs individual modality. To be specific, the overall F1 score improves by 23% over

the visual modality and by 18% over the textual modality.

Table 5.3: Performance evaluation on disaster dataset.

Feature Set Precision Recall F1
Visual 0.827 0.745 0.779

Textual 0.771 0.995 0.803

Visual + Textual 0.967 0.942 0.954

5.1.4.3 Evaluation of IF-TMCA

To evaluate the efficiency and effectiveness of the while IF-TMCA framework, a set of

experiments are conducted based on the soccer dataset. As discussed in the previous

88



section, the proposed IF-TMCA framework contains three phases: pre-processing phase,

training phase, and testing phase. Since pre-processing is domain specific and not the

focus of our framework, in our experiments, we will adopt the same steps discussed in

[188]. In brief, the pre-processing phase includes shot boundary detection, multimodal

feature extraction, and an optional step called instance pre-filtering. First, the video files

are parsed by applying a shot boundary detection algorithm described in [189]. Second,

seventeen multimodal features are extracted for each video shot: 12 audio and 5 visual

features. For more details about the descriptions of the feature set, please refer to [188].

Afterwards, this data set is passed to the instance pre-filtering module, an optional pre-

processing step, to remove some outliers and noisy data as discussed in [188].

After the pre-processing phase, the data are then divided into 10 different folds with

approximate 2/3 of the data instances for training and 1/3 for testing. In the training phase,

as explained in section 5.1.1.1, two different feature analysis modules (HIGA and FAP)

are utilized to select the most useful features from the original data set. Figure 5.9 shows

the examples of tree structures used as the feature selector for four different training folds.

These features later will be intersected with the exemplar features selected from the FAP

module as the final feature set vector. In this experiment, the preference value of the FAP

module is initialized to be the median of the covariance matrix C. Then the final feature

set is fed to the IF-MCA module to train the model. Finally, in the testing phase, the

trained IF-MCA model is used as a classifier to detect the interesting events of from the

testing data.

As mentioned in section 5.1.3, the MapReduce MCA approach in our previous work [59],

which was implemented using Java and Hadoop version 1.0.4, is extended to integrate

with the proposed IF-TMCA (for short MapReduce IF-TMCA). It is executed on a clus-

ter consisting of 10 nodes with the ability of running 83 tasks simultaneously. For more

details regarding the MapReduce setup for the MCA-based classifiers, please refer to [59].
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Figure 5.9: The tree structures of the HIGA module for four training groups (N and G
refer to the non-goal and goal classes, respectively).
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To demonstrate the effectiveness of the proposed IF-TMCA method over the other

algorithms, its classification performance is compared with that of several well-known

algorithms in WEKA, such as Support Vector Machine (SVM), RandomForest, Multi-

layer Perceptron (MLP), Simple Logistic, and one ensemble algorithm called Adaboost

M1, as well as the MCA classifier [190]. The evaluation criteria are precision, recall and

F1. It is worth noting that for imbalanced data classification, the recall value is normally

considered as a more important criterion because it is more desirable to detect as many

interesting events as possible, even at the expense of adding a reasonable number of false

positives. In addition, F1 achieves the trade-offs between precision and recall, and is con-

sidered as an objective quality metric of a classifier. All the classifiers are tuned to reach

their best performance on the data set for comparison. Table 5.4 summarizes the aver-

age precision, recall, and F1 measures for each classifier. As can be seen, the proposed

IF-TMCA framework outperforms almost all the other classifiers in the recall and F1

measures. In particular, its F1 score is improved by 17% compared to that of the original

MCA classifier, which shows the effectiveness of the proposed feature selection process

and its integration with MCA. For the SVM classifier, although it often achieves good per-

formance in many data mining applications, it has shown limited success in dealing with

an imbalanced dataset [191]. It is worth noting that the proposed IF-TMCA framework

improves the precision measure of the IF-MCA algorithm by incorporating temporal in-

formation. In addition, the proposed IF-TMCA framework improves both the recall and

F1 measures with minor sacrifice of the precision comparing to J48 (the previously best

model for this dataset reported in [188]).

To further demonstrate the robustness of our proposed IF-TMCA framework and its

superiority over the other traditional classifiers, a comparison on the Recall values and F1

scores (for 10 folds) between IF-TMCA and the other methods is visualized using the box

plot in R [192] as shown in Figure 5.10 and 5.11 respectively. In the plot, the performance
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Table 5.4: Performance evaluation for different classifiers.

Algorithm Precision Recall F1
SimpleLogistic 0.958 0.719 0.789

MLP 0.950 0.760 0.814

MCA 0.900 0.772 0.808

RandomForest 0.962 0.789 0.836

AdaboostM1 0.888 0.824 0.816

SVM 0.909 0.911 0.900

J48 0.954 0.912 0.925

IF-MCA 0.923 0.952 0.933

IF-TMCA 0.942 0.952 0.943

of the 10 folds for each method is represented by a box, where the vertical bar in the

middle denotes the median value of a criterion, while the top and bottom ones represent

the maximum and minimum values, respectively. Outliers in the plot are denoted by

small circles. The height of a box reflects the interquartile range. Therefore, the box

plot provides a good representation of the distribution of the performance. As can be

inferred from the figure, the proposed IF-TMCA framework achieves the highest possible

recall value (i.e., 1) for over 50% of the times, and it outperforms all the other classifiers

except for the IF-MCA. Regarding the F1 score, our IF-TMCA algorithm beats almost

all the other methods with minimum fluctuation. Furthermore, to evaluate the statistical

significance of the IF-TMCA framework, the two-tail paired t-test [193] is conducted

with the null hypothesis being that there is no difference in the mean F1 score between

the proposed IF-TMCA framework and the others. As can be seen from Table 5.5, the

p-values for MCA, SimpleLogistic, and SVM are less than 0.05%, which means the IF-

TMCA framework significantly outperforms these three methods. It is superior to the rest

of the methods although the improvement is not significant according to the p-value.
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Figure 5.10: Comparison on the Recall values among different methods using the box
plot (best viewed in colors).

In summary, based on the experimental results, IF-TMCA achieves promising results

as compared to the original MCA, decision tree (J48, RandomForest), SVM, MLP, logis-

tic regression, and even ensemble methods. Although the F1-score is improved by only

1% compared to J48, IF-TMCA achieves much better recall values than the others. These

observations demonstrate that the proposed IF-TMCA framework effectively detects in-

teresting video events and handles imbalanced datasets. In addition, the framework can

be easily extended to other big data applications (in multimedia and data mining).

To evaluate the scalability of the proposed IF-MCA framework using MapReduce, an

experiment is conducted to compare its computational time in training and classification

to that of the MCA classifier. As mentioned earlier, IF-MCA is executed on a cluster with

10 nodes, while the original MCA is run in one node of the cluster. In this experiment,
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Figure 5.11: Comparison on the F1 scores among different methods using the box plot
(best viewed in colors).

the training time and classification time of both frameworks are measured for all 10 folds.

For each fold, the computational times of MapReduce IF-MCA in training and classifi-

cation are over 80% and 65% shorter than those of the MCA classifier. This experiment

shows that IF-MCA can be properly deployed incorporating the MapReduce technique

for various big data applications.

5.1.5 Conclusions

Concept detection from the big data is of great importance to discover useful information,

suggest conclusions, and support decision making. However, the high volume, velocity,

and variability of the massive amount of data together with the imbalanced data distri-
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Table 5.5: Paired t-test results with IF-TMCA on F1.

Algorithm MCA
Simple-
Logistic

SVM MLP
Adaboost-

M1
Random-

Forest
IF-

MCA J48

p-value 0.009 0.023 0.047 0.051 0.067 0.081 0.170 0.423

bution often inhibit the viability of traditional data mining approaches for the big data

applications. To tackle these challenges, in this work, a novel feature selection algorithm

is proposed to integrate the information gain analysis method with the affinity propaga-

tion algorithm. As a result, critical features are selected, each with an important factor to

indicate the level of association with a class. The proposed IF-MCA framework is then

performed to analyze and classify the data instances using the selected features and their

important factors. Furthermore, an extended IF-TMCA framework is presented by incor-

porating temporal semantic analysis to improve the final performance. The distributed im-

plementation of IF-TMCA (called MapReduce IF-TMCA) enables its application on big

data analysis. Using disaster concept detection and soccer goal event recognition as exam-

ple applications, the experimental results demonstrate the effectiveness and adaptivity of

the proposed framework. In our future work, this framework will be further extended and

tested on more concept/event detection applications, such as detecting significant events

from surveillance videos and important concepts (indoors, outdoor, landscape, etc.) from

other videos.

5.2 Ensemble Learning from Imbalanced Data Set for Video Event

Detection

A video event is defined as an activity of particular user interest, e.g., a goal event in a

soccer video. The rareness of a video event (positive instance) makes the detection task
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extremely difficult because of the aforementioned class imbalance issue [194, 80, 15]. By

further analyzing the problem, it is found that most of the false alarms (false positives)

are pretty close to the real events in certain sense, e.g., goal attempt and foul, which might

also attracts users’ interest. A good video event detection framework should retrieve as

many true positive instances as possible, although it might potentially include more false

positive instances. In other words, the video event detector learner should enhance the

favor of positive class. With this goal in mind, a positive-enhanced ensemble learning

(PEEL) algorithm is presented for video event detection. The proposed framework in-

tegrates the sampling-based technique and ensemble learning mechanism, being able to

detect most of the real event at the expense of including a small amount of related events.

The proposed method outperforms most of well-known single models and ensemble clas-

sifiers under the Receiver Operating Characteristic (ROC) or the Area Under the Curve

(AUC) criterion [195].

5.2.1 Ensemble Learning Framework

As illustrated in Figure 5.12, the proposed PEEL framework contains three phases, i.e.,

pre-processing, training and testing. In phase I, the input raw videos are pre-processed

to generate a pre-filtered candidate instance set with extracted features. In phase II, the

proposed PEEL algorithm is applied to obtain an ensemble of base learners. Finally, in

phase III, the ensemble learner is applied to classify the target video event. Details of

each of the three phases are discussed in the following subsections.

5.2.1.1 Pre-processing

The pre-processing phase of the proposed framework consists of three main steps, i.e.,

shot boundary detection, low-level feature extraction, and instance pre-filtering. Usually
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Figure 5.12: The proposed PEEL framework.

a video shot is treated as the basic unit for video event detection. Therefore, the first

step of pre-processing is shot boundary detection, which provides the shot boundaries for

video feature extraction. In this work, the unsupervised multi-filtering method proposed

in [189] is adopted for effective shot boundary detection. Due to the prevalence and

effectiveness of multi-modal features for video content analysis, a set of visual and audio

features are extracted for each video shot, which cover both low-level characteristics (such

as pixel change), and mid-level semantics (such as grass ratio and audience volume) [196].

After feature extraction, the video data set is ready for event detection. However, the data

set is highly imbalanced with a large number of irrelevant instances. As reported in [8],

the interesting events (such as goal, goal attempt and foul) only count less than 1% in

the whole data set, not to mention the goal event only. As a first attempt to relieve the
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class imbalance issue to some extent, a pre-filtering step is performed to remove as many

irrelevant instances as possible. For more details about the pre-processing process, please

refer to [8].

5.2.1.2 Positive Enhanced Ensemble Learning

Algorithm 9 Positive Enhanced Ensemble Learning Algorithm
Input: Training set Tr, BLA, positive ratio r, voting confidence v ∈ [0,1].
Output: Ensemble learner C(x).

1: procedure PEEL(Tr) . training phase
2: M←∅;
3: separate Tr into positive set P and negative set Q;
4: NP← |P|; . obtain the size of P
5: NQ← |Q|; . obtain the size of Q
6: nq← NP ∗ r; . determine split size based on the given positive ratio
7: K← NQ / nq; . calculate the number of split for Q
8: evenly split Q into K subsets as S = {S j | j = 1, · · · ,K};
9: for all j = 1, · · · ,K do

10: if r >= 1 then
11: D j← S j∪P; . perform merge
12: else if r < 1 then . i.i.d. sampling with replacement
13: D j← S j∪ (randomly draw nq samples from P);
14: end if
15: train model M j based on D j using BLA;
16: M←M j;
17: end for
18: return the hypothesis:

19: C(x) =
{

1 if ∑
K
j=1 M j(x)> K ∗ v, M j(x) ∈ {0,1};

0 othersise
20: end procedure

As aforementioned, most of the existing sampling algorithms (e.g., random under/over-

sampling and synthetic sampling) suffer from the problems of information loss, overfit-

ting, and the introduction of bias. To overcome these limitations, we propose a novel

sampling method which makes full usage of all the positive and negative instances in the

training set and builds an ensemble learner based on the base learning algorithm (BLA,
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as presented in Algorithm 10). As shown in Algorithm 9, the proposed PEEL algorithm

first separates the given training set Tr into the positive set P and negative set Q. Then

Q is evenly split into K subsets (S j, j = 1, · · · ,K) based on the given positive ratio r

(lines 4 to 7), which represents the percentage of positive instances used in each batch

(D j, j = 1, · · · ,K) for base model training (lines 8 to 15). When r >= 1 (case 1), all

positive instances will be used for training in each batch with the number of negative

instances increasing as r goes up; otherwise, when r < 1 (case 2), the positive instances

will be randomly sampled with replacement (assuming independent identical distribution,

i.i.d.) based on the calculated nq (line 5), therefore the numbers of positive and negative

instances are identical for each batch in this case. In either cases, all of the negative in-

stances in Tr will participate in the training process. When the value of r is relatively

small (<= 1), the positive class will dominate the characteristic of each batch data set

due to superior inter-class coherency compared with the negative class, hence the name

PEEL. After each base model (M j, j = 1, · · · ,K) is properly trained, the final ensemble

learner (hypothesis) is built based on the equation in line 17. As can be inferred from Al-

gorithm 9, there are two critical parameters in this algorithm, i.e., the positive ratio r and

the voting confidence v. While r decides the dominant level of positive class in each base

model, v reflects the confidence level for each model, the higher the value, the larger the

number of positive outcomes are required from based models for classifying an instance

x as positive for C(x). The selection and evaluation of r and v will be presented in the

experimental section.

5.2.1.3 Base Learning Algorithm

The BLA is constructed based on a set of weak learners (L = {Lh | h = 1, · · · ,H}) as

shown in Algorithm 10. The output of each weak learner is linearly combined using the

given weight vector w = {wh | h = 1, · · · ,H}, where each element represents the confi-
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dence for the corresponding weak learner. The combined results will be used to determine

the final outcome of the base learner B(x) as depicted in the equation in line 6. Theoret-

ically a “stronger” classifier should be assigned a larger weight. If all the weak learners

are with equal weights, then the base learner reduces to a majority voting algorithm. The

combination of BLA and PEEL algorithm has an “ensemble of ensemble” flavor. Consid-

ering the small sample size of each training batch, the computation overhead of the overall

PEEL mechanism is negligible compared with the performance gain. The construction of

BLA will be analyzed in section 5.2.2.2.

Algorithm 10 Base Learning Algorithm
Input: Training set Tr′, weak learners L = {Lh | h = 1, · · · ,H}, weight vector w =
{wh | h = 1, · · · ,H}, s.t. ∑

H
h=1 wh = 1.

Output: Base learner B(x).
1: procedure BLA(Tr′)
2: for all h = 1, · · · ,H do
3: train model Lh from Tr′;
4: end for
5: return the hypothesis:

6: B(x) =
{

1 if ∑
H
h=1 Lh(x)∗wh > 1/2;

0 othersise
7: end procedure

5.2.2 Experimental Analysis

The proposed framework was extensively tested upon a large data set, which contains 58

soccer videos collected from the FIFA World Cup of 2003, 2010 and 2014. The total

number of frames is over 4.7 millions and the total duration of the videos is about 52

hours. Among the total 32k video shots, only 105 of them contain goal event, which

contributes less than 0.5% to the total number of shots. A summary of the data set is

shown in Table 5.6.
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Table 5.6: Data set summary for video events.

No. Files No.
Frames

Total
Time No. Shots No. Goal

Events

58 4,731,807
51 hours
48 min.

32,463 105

5.2.2.1 Evaluation Criteria

The ROC curve is chosen as the evaluation method (under stratified cross-validation

scheme) over the precision recall (PR) curve since we care more about the true positive

rate (recall) than the precision [195]. In other words, a low precision is more tolerable

than a low recall. This is because some false positives is also of user interest, especially in

the video event detection scenario as mentioned before. Therefore, when determining the

threshold for classification, we tend to achieve a high true positive rate (low false negative

rate) and reduce the impact of negatives on the total classification costs. Table 5.7 shows

the definition of confusion matrix (CM) and Equ. 5.15-5.17 present the basic metrics for

analysis.

Table 5.7: Confusion Matrix.

CM Predicted
positive

Predicted
negative

Actual positive TP FN

Actual negative FP TN

True Positive Rate (TPR) =
T P

T P+FN
, (5.15)

False Positive Rate (FPR) =
FP

FP+T N
, (5.16)

False Negative Rate (FNR) =
FN

FN +T P
. (5.17)
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5.2.2.2 Selection of Weak Learners for BLA

The multiple correspondence analysis (MCA) approach [13, 14] has found its success-

ful applications in various video analysis tasks especially the interesting event detection

problem [197, 8]. In this work, it is combined with the traditional decision tree (DT)

algorithm [179] for constructing the BLA, since DT is usually used as a weak learner

in the ensemble learning mechanism and it has been proved effective for goal event de-

tection [196, 188]. In our experiment, MCA and DT are assigned with equal weights.

MCA is a continuous classifier which outputs probability-like ranking scores for testing

instances. Thus the selection of proper threshold for binary classification greatly affects

the performance of MCA. To evaluate the impact of the threshold for MCA algorithm,

the ROC curve is plotted in Figure 5.13 using a subset of the training data set. As can

be seen from the figure, the MCA algorithm has a satisfactory performance for video

event detection with an AUC value of 0.918. The AUC of the Conv Hull (shorted for

convex hull) illustrates the theoretical maximum performance of the target algorithm for

the corresponding evaluation data set. For comparison purpose, the performance of the

DT algorithm (as a discrete classifier with binary output) on the same testing set is also

depicted in the figure (as a red circle), where the green dotted line represents a random

(by chance) classifier. As can be inferred from the figure, the MCA has over 10% gain of

TPR over the DT in the ideal situation. The optimal threshold is obtained by minimizing

the average expected cost of classification at point (y,z) in the ROC space as follows,

Minimize: Cost(y,z) = (1− p)∗α ∗ y+ p∗β ∗ (1− z) (5.18)

where α and β are the penalties of a false positive and a false negative respectively, and

p is the positive portion calculated as

p =
NP

NP +NQ
(5.19)
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Figure 5.13: MCA ROC curve.

where NP and NQ are the numbers of positives and negatives in the training as illustrated

in Algorithm 9. In our scenario, α and β are assigned with the values of 0.2 and 0.8

respectively in order to emphasize the importance of TPR.

5.2.2.3 Analysis of Positive Ratio

To evaluate the performance and impact of positive ratio r, the ROC curve over r is plotted

with a fixed value of v (=0.5) as shown in Figure 5.14. There are two main observations

and conclusions from the figure. First, the PEEL algorithm outperforms the individual

weak learner (i.e., DT) in the sense of TPR by about 10% while maintaining comparable

FPR. Second, the performance of PEEL boosted rapidly with relatively low FPR. Based

on our experimental analysis, the PEEL algorithm achieves the best performance when

the value of r is around 1.0, which means the positives and negatives are comparable. In

other words, the training set is relatively balanced for each batch.
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Figure 5.14: ROC curve on positive ratio (r).

5.2.2.4 Analysis of Voting Confidence

The ROC curve over the voting confidence v for the proposed PEEL algorithm is shown

in Figure 5.15 with r = 0.8, As can be seen, the figure is similar to Figure 5.14. The AUC

(=0.937) is slightly better than in Figure 5.14 (with AUC=0.934), which means v has a

relatively higher impact on the performance of PEEL than r. It is also observed that FPR

degrades relatively faster with varying v values than r values. Based on the experimental

results, the best performance is achieved when v is about 0.5, which is equivalent to

majority voting among base learners (M j).

5.2.2.5 Comparison with Other Methods

Finally, we compare the proposed PEEL algorithms with various traditional single models

(e.g., KNN, SVM, Naive Bayes and DT) and other ensemble learners (e.g., Adboost,

Bagging, and RandomForest). All the comparison methods (treated as discrete classifiers)

are based on the implementation of WEKA [180] with default parameter settings. As
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Figure 5.15: ROC curve on voting confidence (v).

can be seen from Figure 5.16, our PEEL algorithm outperforms all the other methods

with over 90% of TPR and comparable FPR. To be specific, it achieves about 10% TPR

gain over the DT and Bagging algorithms; 20% TPR gain over the SVM, NaiveBayes,

RandomForest, and Adaboost algorithms; finally almost 40% TPR gain over the KNN

algorithm.

5.2.3 Conclusions

In this work, an effective ensemble learning algorithm called PEEL is proposed for video

event detection. The PEEL algorithm contains a novel sampling method which makes full

use of all negative instances while enhancing the impact of positive class for base learner

training in the ensemble mechanism.
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Figure 5.16: Comparison on various methods.
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CHAPTER 6

MULTIMEDIA SEMANTIC CLASSIFICATION AND SUMMARIZATION

This chapter provides solutions for semantically classifying and summarizing unstruc-

tured data based on the proposed semantic information integration schema. Specifically,

a hierarchical classification scheme is presented for effective concept classification [14].

Then an unsupervised filtering and summarization approach is proposed to automatically

identify and summarize latent semantics in a topic and filter irrelevant items at the same

time [187]. Finally, a multimedia semantic retrieval system is developed based the pro-

posed framework on mobile devices for further evaluation [181].

6.1 Hierarchical Image Classification

Due to the ease of access and wide reach of Internet, more and more multimedia data,

such as images and videos, along with corresponding textual descriptions, become avail-

able through the web. Such availability of content-rich data is extremely valuable for

emergency management (EM) personnel as they can take more accurate decisions in dis-

aster situations by having both textual and visual information of the disaster. Never-

theless, currently, EM personnel mostly utilize disaster situation reports (also called just

situation reports) which provide just a textual description of a particular issue of the disas-

ter. Therefore, a hierarchical disaster image classification (HDIC) framework is proposed

to augment situation reports with related disaster images and thus provide EM person-

nel with images and videos that present valuable information about the disaster. Based

on multi-source data fusion (MSDF) and the original MCA algorithm, our framework

classifies disaster multimedia data into different categories and links these images to re-

lated situation reports. In order to obtain the images from disaster domain, we collected

both the images and their corresponding titles and description from a well known website

called Flickr [198]. The HDIC framework utilized both visual features from images and
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text description to demonstrate the performance of combining MCA-based data fusion

method with the hierarchical classification approach.

Depicted in Figure 6.1, the HDIC framework is composed of two main components:

multi-source model training and hierarchical classification. During the model training

process, visual and textual features are extracted respectively, and fused based on the

weighting scheme presented in section 6.1.2. Then the models for different categories and

subjects are trained based on the MCA algorithm, generating thresholds for classification.

The feature extraction of testing data depends on that of the training data. For example,

the discretization intervals of test visual feature should correspond to that of training data.

Finally, the trained models are applied to the hierarchical classification of images, where

the images are firstly classified into general categories, and then passed to the next layer

to be assigned to specific subjects.

Figure 6.1: HDIC framework.
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6.1.1 Visual-Text Model Training Based on MCA

This section reveals the feature extraction processes for both visual and text data as well

as the model training procedure based on the MCA algorithm. An iterative threshold

determination algorithm is also presented to find out the most appropriate threshold for

classification.

6.1.1.1 Visual feature extraction

There are mainly three steps for visual feature extraction: feature extraction, normaliza-

tion, and discretization. The first two steps for both training images and testing images

are the same; however, the discretization of the features of the testing images is based on

the discretized intervals resulted from training image instances.

In order to capture the visual contents of images, two types of feature are extracted:

low-level color features and mid-level object location features, which are shown as fol-

lows:

• 12 color features: black, white, red, red-yellow, yellow, yellow-green, green, green-

blue, blue, blue-purple, purple, and purple-red; the above color features for each

image are generated from its HSV color space according to the combinations of

different ranges of the hue, saturation and the intensity value [199, 200].

• 9 object location features: In our work, we utilize the SPCPE algorithm [201] to

extract object location features. Specifically, each image is divided into 3×3 equal-

sized regions, i.e., nine locations are ordered from left to right and from top to

bottom: L1, · · · ,L9, where Li = 1 if there is an object in the image whose centroid

falls inside Li, 1≤ i≤ 9, otherwise Li = 0. And the object with its area less than 8%

area of the total region can be ignored. In order to effectively determine whether

there is an object inside a designated region or not, we adopt the minimal bounding
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rectangle (MBR) concept in R-tree to guarantee that each object can be covered by

a rectangle.

Therefore a total number of 21 features are obtained, where the color features are

based on the HSV color space, and the object location features are extracted using the

SPCPE algorithm [201]. Since the color features and object location features are consid-

ered equally important, an equal weight (i.e., 0.5) is assigned to each type of features in

the normalization step. Finally, an information-gain-based discretization method is used

for numerical to nominal transformation.

6.1.1.2 Text feature extraction

As for text feature extraction, it requires more preprocessing than visual features as il-

lustrated in Figure 6.2. First, the punctuation characters are removed and then the stop

words, thus obtaining a list of valid words for each image instance. The word frequency

is calculated based on all the training instances for each concept (subject). The top N

words with the highest frequencies are selected as features. A pair of nominal values is

assigned to each feature representing the existence or absence of it. Then each image

instance could be transformed into a sequence of nominal variables with N dimensions.

As shown in Figure 6.2, the feature extraction process of the testing data set is almost the

same as that of the training data set except for the “get word frequency” step.

6.1.1.3 Visual-Text Model Training

The process of visual-text model training is depicted in Figure 6.3. It can be summarized

into two major steps: MCA score calculation and threshold generation. More specifically,

after visual and text feature extraction of the training data sets, the two sets of feature

vectors are concatenated together to form a data set of fused instances, which are used

for angle generation based on MCA correlation analysis. The angles, denoted as A, are
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Figure 6.2: Procedure of text feature extraction.

calculated using Equation 6.1, where I and C are two-dimensional principal components

representing items and classes respectively, and j, k are indicators of items and features.

Then the generated angles are applied to weight conversion as shown in Equation 6.2. The

weight here is a measure of the similarity between each item and class. The sum of all of

the weights within one instance is denoted as S (shown in Equation 6.3), which is the final

evaluation of the relationship between each instance and class. A higher score implies a

higher possibility that the instance belongs to the class. This implies the existence of a

cut point (threshold), which determines the positive or negative attribute of one instance

for certain class (subject).

A j
k = arccos(

I j
k ·C)∣∣∣I j
k

∣∣∣ |C|), (6.1)

weight j
k =±(1+ cos(A j

k×π/180)), (6.2)

Si =
K

∑
k=1

weight j
k , i ∈ {1,2, · · · ,N} . (6.3)

How to determine the threshold is a critical issue and plays an extremely important

role in the final performance of the whole classification algorithm. Therefore an iterative
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Figure 6.3: MCA model training.

method is designed to find out the threshold for classification based on training instances

as described in Algorithm 5.

In step 2, the sort function sorts training scores in descending order, and step 3 finds

the indexes of positive scores from the sorted array as candidate thresholds. Step 5 cal-

culates the F1 scores based on precision and recall. In step 6, the latter condition (i.e.,

f inalF1−F1) is designed to include the neglected positive instances; it provides the func-

tionality of balancing between recall and precision measures and improves F1 scores. The

term γ is a practical parameter, and it is set to be 0.03 in the experiments.

6.1.2 Hierarchical Classification

In order to explore the extensive relationship between various subjects and perform the

classification in a more efficient way, a hierarchical classification mechanism is proposed.

As shown in Figure 6.4, a top-down subject tree is designed and used to classify each

image into pre-defined subjects. For example, in the second layer, an image could be
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classified into one the three categories, i.e., hurricane, oil spill and earthquake, based on

text-visual models, and then it will be further classified into a specific subject belonging to

a certain category presented in the upper layer. Based on the observation that the text data

in the second layer has a stronger pattern than that of visual model while visual pattern is

enhanced in the third layer, a weighting scheme is proposed to distinguish the significance

of visual and text models at different layers and obtain a better fusion result. The fusion

score is calculated as follows:

score f = αWv ∗ scorev +βWt ∗ scoret , (6.4)

thresh f = αWv ∗ threshv +βWt ∗ thresht , (6.5)

Wv =
F1v

F1v +F1t
, Wt =

F1t

F1v +F1t
, (6.6)

Wv +Wt = 1, α +β = 2. (6.7)

where scorev and scoret represent the scores obtained from visual and text models, while

αWv and βWt denote the weight factors of visual and text models respectively, and score f

is the final fused score. The thresholds are fused in the same manner. The Wv and Wt are

calculated based on the F1 measures of visual and text models at different layers, while

the α and β are tuning parameters. In the experimental analysis, the α and β are set to

be 1.7 and 0.3 in the second layer; 1.0 and 1.0 in the third layer. Finally, the classification

rules are generated as follows:

f inalLabel =

 positive, i f score f ≥ thresh f ,

negative, i f score f < thresh f .
(6.8)

6.1.3 Experimental Analysis

In order to demonstrate the effectiveness of the proposed MCA-based multimedia content

analysis, a set of experiments have been conducted to evaluate its performance. The test
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Figure 6.4: Hierarchical classification.

Figure 6.5: Composition of categories and subjects.

bed is a a web-crawled dataset consisting of 1183 images with texts downloaded form

the website Flickr [198]. The images contain three categories and cover six subjects as

shown in Figure 6.5. The categories are denoted as Cat1, Cat2 and Cat3, and the subjects

are denoted as Sub1 through Sub6. Figure 6.6 shows one example image for each of the

six subjects.

In the experimental settings, a hierarchical classification scheme as illustrated in Fig-

ure 6.4 is adopted. Multi-source (text and visual) data fusion is performed at both layer 2

and layer 3. To show the advantages of the multi-source model over single-source mod-

els, a comparison between the performances of the multi-source text-visual model and the

single-source text and visual models are conducted at each layer. The precision (Equation

10), recall (Equation 11), and F1 (Equation 12) are calculated as the measurements of
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(a) Sub1 (b) Sub2 (c) Sub3

(d) Sub4 (e) Sub5 (f) Sub6

Figure 6.6: Examples of the six subjects.

performance under the 3-fold cross validation approach.

precision =
T P

T P+FP
, (6.9)

recall =
T P

T P+FN
, (6.10)

F1 =
2 · precision · recall
precision+ recall

, (6.11)

where T P, FP, and FN represent the number of ture positive, false positve and false

negative intances respectively.

Tables 6.1 through 6.3 show the performance evaluation results for layer 2. Specifi-

cally, tables 6.1 and 6.2 give the scores of text and visual models respectively, and table 6.3

shows the results of the fused model. As shown in the tables, the fused model outperforms

the single-source models. The visual-text model approach achieves a 3% improvement

over the text model and a 26% over the visual model. Another observation is that the text

model outperforms the visual model. This is because the text information in layer 2 shows

a stronger pattern than that of visual information. For example, there is a high possibility

that the text files describing images of Cat1 contain the key “hurricane”, while the text

files belonging to Cat2 contain the words “oil” and “spill”. However, the visual contents

of the corresponding images are more abstract and complicated, especially when many

categories and subjects are involved. In order to reflect the importance of different data
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sources, a weighting scheme is designed to assign different weight to each data source.

For example, a higher weight is assigned to text features in layer 2.

The advantages of text features revealed at the first layers diminish gradually as the

categories are further classified into specific subjects since there is not strong distinc-

tion among those text files in the same category. On the other hand, the visual features

demonstrate their superior characteristics for extracting visual patterns when there are

fewer subjects involved. Therefore, the visual features are assigned a higher weight com-

pared to text features in layer 3. Tables 6.4 through 6.6 contain the subject classification

results of layer 3. Specifically, table 6.4 and table 6.5 present the scores of text and visual

models respectively, and table 6.6 shows the performance of the combined model. The

categorization results of layer 2 enhances the power of visual model in layer 3, hence a

higher weight is assigned to visual model in the fusion procedure. The final F1 score of

the whole classification framework is 88%, which is 3% and 7% more than the visual and

text models respectively. The experimental results demonstrate the advantages of the data

fusion method based on MCA as well as the effectiveness of the hierarchical classification

approach.

Table 6.1: Performance evaluation for text model (Layer-2).

Cateories Precision Recall F1
Cat1 0.992 0.99462 0.99328
Cat2 0.79943 0.91317 0.82583

Average 0.89571 0.95389 0.90956

Table 6.2: Performance evaluation for visual model (Layer-2).

Cateories Precision Recall F1
Cat1 0.64594 0.77419 0.70405
Cat2 0.64104 0.64986 0.63528

Average 0.64349 0.71203 0.66966
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Table 6.3: Performance evaluation for visual-text model (Layer-2).

Cateories Precision Recall F1
Cat1 0.99204 0.99731 0.99465
Cat2 0.85866 0.91597 0.87702

Average 0.92535 0.95664 0.93583

Table 6.4: Performance evaluation for text model (Layer-3).

Subjects Precision Recall F1
Sub1 0.93638 0.89498 0.90821
Sub2 0.88782 0.93451 0.91012
Sub3 0.95361 0.68967 0.79671
Sub4 0.78631 0.84292 0.80853

Average 0.89103 0.84052 0.85589

Table 6.5: Performance evaluation for visual model (Layer-3).

Subjects Precision Recall F1
Sub1 0.80248 0.86301 0.82509
Sub2 0.77604 0.74941 0.75531
Sub3 0.80669 0.86633 0.82971
Sub4 0.813 0.92146 0.86174

Average 0.79955 0.85005 0.81796

Table 6.6: Performance evaluation for visual-text model (Layer-3).

Subjects Precision Recall F1
Sub1 0.89801 0.96347 0.92803
Sub2 0.9116 0.94745 0.92878
Sub3 0.95361 0.68967 0.79671
Sub4 0.87005 0.90575 0.88415

Average 0.90832 0.87659 0.88442

6.1.4 Conclusions

In this work, a hierarchical disaster image classification scheme is developed for enhanc-

ing disaster situation reports with relevant multimedia data and consequently improve the
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decision making process in disaster situations. The experimental results show the effec-

tiveness of the proposed method. However, there are several aspects of this algorithm to

be improved. First, the hierarchical structure and weighting scheme are fixed for a spe-

cific scenario, where an adaptive approach is preferable. Second, the visual feature are

mainly low-level, and more mid-level features are needed to better describe the content of

images. Finally, the range of disaster categories and subjects should be extended to serve

more general purposes.

6.2 Unsupervised Image Summarization

With the proliferation of digital cameras and handhold devices, the world has been wit-

nessing an ever-increasing amount of personal photo albums. People are sharing the

events happened around them whenever it is and wherever they are. Sometimes those

photos can be of a great value for approaching and evaluating a public event when there is

a limited set of official material available, especially for events, such as various disasters

like hurricane, earthquake, tsunami, etc.

The traditional way of accessing online images is keyword-based search, which mostly

relies on textual information, such as in Flickr [198] and Youtube [202]. There are two

main problems with the retrieved results using the keyword-based search method, i.e.,

the well-known semantic gap issue and the lack of organization/summarization. In order

to solve these two problems, an effective image filtering and summarization framework

is in urgent need that can automatically filter out those irrelevant images and provide

meaningful summarization results.

In our previous work [14, 203], we presented a hierarchical disaster image categoriza-

tion framework, which classifies images in a supervised manner. In this paper, we focused

on the unsupervised filtering and summarization of disaster images collected from Flickr
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[198]. To solve the aforementioned two problems, we develop a disaster image filtering

and summarization (DIFS) framework based on multi-layered affinity propagation (AP)

[112]. The proposed framework first clusters the initial collection into visually differen-

tiated groups. Next, the top-ranked instances within each group are selected to build a

typical subset of the data, followed by the second layer of clustering using both visual

and textual similarities concurrently. Finally, the distribution of the primary clusters will

be analyzed to determine the final positive clusters generated in the first layer and filter

out the irrelevant images at the same time.

The proposed DIFS framework is depicted in Figure 6.7. It is characterized by a

multi-layered AP mechanism. The left part of the framework illustrated the procedure for

the first-layer AP clustering, where the visual similarity matrix is constructed from the

original image collections for each disaster topic based on visual descriptors and other

low-level visual features. Then the AP algorithm is applied to cluster the images within

one disaster topic into different latent visual groups. The top-ranked instances are selected

from each group to form a data set of typical instances, which are fed into the second layer

of AP clustering based on visual and textual similarities respectively. Finally, the positive

clusters are identified by analyzing the distribution of the primary clusters. This section

discusses the details for each step in the framework.

6.2.1 Visual Similarity Construction

The appropriateness of the similarity matrix greatly affects the performance of image

clustering. In this paper, we propose to construct a similarity matrix using visual descrip-

tors, such as HOG [132], and CEDD [134], as well as other low-level visual features. The

details of HOG and CEDD features could be referred in section 4.1.
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Figure 6.7: Disaster image filtering and summarization (DIFS) framework.

The extracted low level features include 48-dimensional (48-d) color histogram in the

HSV space, 120-d local features for color moment in the YCbCr space, and 260-d features

for texture wavelet [187].

The combination of the above three types of features forms a 707-d feature vector for

each image instance. In order to perform efficient clustering in a later stage, a Principle

Component Analysis (PCA)-based feature reduction is performed. We keep the top Q

feature components having the individual energy distribution larger than a preset thresh-

old as expressed in the following formula, where λi is the ith largest eigen value and N

denotes the number of images.{
λi(i = 1...Q),

λi(
∑

N
i=1 λi

) > T hreshold, e.g.,0.01

}
(6.12)
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Finally, the similarity between an image pair (Ic, j, Ic,k) for disaster topic c is repre-

sented by the negative square of Euclidean distance as shown below.

s(Ic, j, Ic,k) =−
∥∥∥−→Ic, j−

−→
Ic,k

∥∥∥2
, j 6= k (6.13)

6.2.2 First-layer Affinity Propagation and Typical Instances Selec-

tion

In our previous work, the AP clustering algorithm has been successfully used for seman-

tic feature group analysis 4.3.2. In this work, it is applied for typical instances selection.

Specifically, the AP algorithm propagates affinities by passing two types of messages be-

tween two data points (images) [112]: the “responsibility” r(Ic, j, Ic,k) sent from image Ic, j

to image Ic,k, representing how well Ic,k serves as the exemplar of Ic, j considering other

potential exemplars for Ic, j; and the “availability” a(Ic, j, Ic,k) sent from image Ic,k to image

Ic, j, reflecting how appropriate Ic, j chooses Ic,k as its exemplar considering other poten-

tial images that may choose Ic,k as their exemplar. The responsibility and availability are

updated iteratively together with the self-availability a(Ic,k, Ic,k), which reflects an accu-

mulated confidence that image Ic,k is an exemplar, based on the positive responsibilities

sent to the candidate exemplar k from other images.

Finally, the exemplar for image Ic, j is chosen as follows.

e∗c, j← argmax
Ic,k

(r(Ic, j, Ic,k)+a(Ic,k, Ic, j)). (6.14)

6.2.3 Textual Similarity Construction

To explore the semantic context within a specific disaster topic, we construct textual sim-

ilarity matrix based on the TF-IDF weighting scheme described in section 4.2.
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6.2.4 Second-layer Affinity Propagation

At the second layer, both visual clustering and textual clustering are performed based on

the selected typical instances. Next, the distribution of the primary clusters is analyzed,

i.e., to determine which original clusters are included in the primary cluster produced at

the second layer. Finally, the intersection of the visual and textual cluster distribution

identifies the final positive clusters. The procedure for the second-layer affinity propaga-

tion and positive cluster identification is illustrated in Figure 6.8, where the typical data

set is collected from the top H (H = 20 in our experiments) instances from each cluster

in a specific disaster topic. Based on our experimental observation, most of the clusters

in the first layer are both visually and semantically related to the disaster topic, especially

the top-ranked instances within each cluster. Therefore, it is reasonable to expect the

primary cluster (with the largest number of instances) in the second layer to accumulate

most of the relevant instances, which can be used to trace back the relevant clusters (called

positive clusters in this work) in the first layer. We use the intersection of the identified

positive clusters from visual and textual clustering respectively to ensure the pureness and

accuracy of the positive clusters.

The second layer affinity propagation and filtering procedure is summarized in Algo-

rithm 11:

6.2.5 Experimental Results

In this section, the effectiveness of the proposed DIFS framework will be demonstrated

from different aspects at different levels. First, the relationship between the preference

value (i.e., the parameter for AP) and the number of clusters is explored and represented

by a curve fitting function for evaluating and selecting a proper input for the AP algorithm;

and then the clustering results at the first layer and the second layer are presented and
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Figure 6.8: Second-layer affinity propagation and positive cluster identification.

analyzed in details respectively by using the disaster topics (for example, “Avalanche”

and “Road Debris”).

6.2.5.1 Dataset Collection

Over 110,000 images as well as their tags and descriptions covering 28 disaster topics are

crawled from Flickr [198], which includes both natural disasters, such as “Avalanche” and

“Tsunami”, and man-made disasters like “Road debris” and “Oil spill”. Table 6.7 shows

the composition of the data set.

6.2.5.2 Preference Selection

The AP algorithm has a heuristic parameter P, called preference, which may be a real

number or a vector of N numbers, and P(Ic,i) indicates the preference that image Ic,i be
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Algorithm 11 Second Layer Affinity Propagation
Input: Typical instance set A, visual similarity matrix SV , and textual similarity matrix
ST for all topics.
Output: Recognized positive clusters.

1: for all topic c do
2: procedure SECONDLAYERAP(Ac,Sc

V ,S
c
T )

3: perform AP clustering based on Sc
V;

4: Bc
V ← the primary cluster;

5: Gc
V ← group IDs in Bc

V;
6: perform AP clustering based on Sc

T;
7: Bc

T ← the primary cluster;
8: Gc

T ← group IDs in Bc
T;

9: return Gc
V
⋂

Gc
T;

10: end procedure
11: end for

Table 6.7: Disaster image data set (28 topics).

ID Disaster Topic # of Images ID Disaster Topic # of Images
1 Avalanche 2,974 15 Maelstrom 4,433
2 Blizzard 2,546 16 Mudflow 998
3 Cyclone 1,819 17 Mudslides 6,599
4 Disease 2,086 18 Oil spill 7,185
5 Drought 6,119 19 Volcano 1,730
6 Earthquake 6,531 20 Tornado 7,274
7 Epidemic 6,103 21 Tsunami 2,916
8 Famine 5,917 22 Typhoon 5,313
9 Floods 2,493 23 Wildfire 2,200

10 Hailstorm 3,551 24 Gas explosion 5,545
11 Heat wave 4,486 25 Road debris 7,572
12 Hurricane 2,087 26 Nuclear bomb 2,695
13 Ice storm 3,530 27 Transport disasters 1,143
14 Lahar 3,441 28 Terrorist 1,500

Total: 110,786
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chosen as an exemplar. Although the AP algorithm can automatically determine the num-

ber of clusters, i.e., K, based on the P value, there is no explicit relationship between

K and P. Usually, it is suggested to set P as the median similarity (Smed) or minimum

similarity (Smin). However, it is not always a good choice, especially for our image sum-

marization task. To explore the underlying relationship between K and P, the following

experiment is conducted (based on the visual similarity). 100 runs of AP clustering are

performed with P values ranging from 10∗Smin to Smed with an equal footstep for each of

the 28 topics as listed in table 6.7. The evolution of K as a function of P is illustrated in

Figure 6.9. The P value is normalized using the scaling factor 1/10∗Smin to diminish the

effect of a variant number of images for different disaster topics. As shown in the figure,

the P−K curves follow a similar pattern. To be more specific, K is almost monotonically

increasing with P polynomially. Therefore, we use the least-square fitting method to cap-

ture the relationship between P and K, where K is expressed as a polynomial function for

P as shown below. The fitting curve is highlighted in red-dot circles in Figure 6.9. It is

worth noting that the fitting function is similarity sensitive, i.e., different similarity matri-

ces may adapt to distinct fitting functions. For example, the visual and textual similarity

matrices in our framework may result in two versions of fitting functions. Furthermore,

extra (P, K) points may be added to better approximate the curve near Smin. Once the P−K

curve fitting functions are constructed, we may estimate and select the P values without

actually running the AP clustering algorithm as done in most existing approaches.

K(P) = anPn +an−1Pn−1 + ...+a1P1 +a0P0 =
n

∑
i=0

aiPi (6.15)

As can be seen from Figure 6.9 that the number of clusters increases dramatically when

P value approaches Smed . To further analysis P−K relationship in real cases, we fur-

ther plot each the K values for each disaster topic given different P values, i.e., Smin,

(Smed−Smin)/2 and Smed . The clustering results are shown in Figure 6.10, 6.11, and 6.12
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Figure 6.9: Number of clusters (K) as a function of preference (P) value.

respectively. Based on our experimental observation, the number of clusters using Smin is

too small to capture the semantic distribution of each disaster topic, while the ones using

Smed may break up the semantic scenes into small pieces of clusters. Therefore the P is set

to (Smed−Smin)/2 in our experiments for most disaster topics; however for the big topics

with large number of images, such as “Mudslides”, “Typhoon”, and “Road debris”, P is

set to Smin.

6.2.5.3 First-layer Clustering Results Evaluation

Figure 6.13 and 6.14 illustrates the first-layer clustering results for the disaster topics

“Avalanche” and “Road debris” with different number of clusters at the feature level,

where the x-axis and y-axis represent the first and second component of the PCA features

respectively. As can be seen from the figures, the AP clustering procedure can reasonably
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Figure 6.10: Number of clusters for 28 disaster topics with P = Smin.

Figure 6.11: Number of clusters for 28 disaster topics with P = (Smed−Smin)/2.

capture the distribution of images instances in the feature space. The clustering results

are satisfactory in the sense that different clusters depict distinct scenes (possibly differ-

ent semantics) related to the disaster topic; these relevant clusters are defined as positive

clusters to be identified in the second layer. It is worth noting that there also exist some

irrelevant clusters, which are to be filtered. In our experiments, we also discard the clus-

ters with two few instances, i.e., less than 5. Figure 9 and 10 show the exemplars together

with the top 3 images ranked by similarity within each cluster when the number of clus-

ters reaches 16 and 20 for the disaster topic “Avalanche” and “Road debris” respectively.
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Figure 6.12: Number of clusters for 28 disaster topics with P = Smed .

(a) 3 clusters (b) 5 clusters

(c) 7 clusters (d) 16 clusters

Figure 6.13: Clustering results illustration for the disaster topic “Avalanche” with differ-
ent number of clusters.
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(a) 3 clusters (b) 5 clusters

(c) 7 clusters (d) 20 clusters

Figure 6.14: Clustering results illustration for the disaster topic “Road debris” with dif-
ferent number of clusters.

6.2.5.4 Second-layer Clustering and Filtering Results Evaluation

The purpose of the second-layer clustering is to identify most of the positive clusters gen-

erated in the first layer and filter out the irrelevant clusters. Specifically, for the disaster

topic “Avalanche”, 5 out of 6 true positive clusters are identified with just one false posi-

tive. As for “Road debris”, 7 out of 9 true positive clusters are identified without any false

positive. To further investigate the distribution and filtering of the irrelevant instances

within each cluster,the average precision analysis is performed for each recognized pos-

itive cluster as shown in Tables 6.8 and 6.9, where the first column lists the recognized

positive clusters as shown in Figures 6.15 and 6.16, while columns 2 through 7 present the
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average precisions with top T % of instances in a descending similarity order. The last row

calculates the mean average precisions (MAP) for all positive clusters. As indicated by

the evaluation results, the positive instances dominant over 90% of the positive clusters,

indicating the relative accuracy of clustering results. Finally, we select the top 4 images

(including the exemplar) in each positive cluster as the summarization results, and filter

out the last 30% instances considered as irrelevant to further improve the pureness.

Table 6.8: Average precision for topic “Avalanche”.

Cluster IDTop 10%Top 30%Top 50%Top 70%Top 90% All

1 1.000 0.991 0.968 0.948 0.933 0.928
3 1.000 0.998 0.967 0.947 0.934 0.930
5 0.982 0.860 0.840 0.829 0.820 0.816

10 1.000 0.995 0.964 0.950 0.929 0.923
11 1.000 1.000 1.000 0.993 0.975 0.966

MAP 0.996 0.969 0.948 0.933 0.918 0.912

Table 6.9: Average precision for topic “Road debris”.

Cluster IDTop 10%Top 30%Top 50%Top 70%Top 90% All

1 1.000 1.000 0.999 0.996 0.988 0.984
2 1.000 0.969 0.955 0.953 0.951 0.950
4 1.000 1.000 0.998 0.994 0.993 0.991
5 1.000 1.000 1.000 0.999 0.995 0.992
7 0.820 0.892 0.907 0.910 0.909 0.906

11 0.876 0.852 0.837 0.802 0.780 0.773
17 1.000 1.000 0.924 0.900 0.878 0.873

MAP 0.956 0.959 0.946 0.936 0.928 0.924

6.2.6 Conclusions

In this work, we have proposed a multi-layered DIFS framework, where the AP was

first applied to build the initial clusters for each disaster topic; then both the visual and

130



Figure 6.15: Clustering results for the disaster topic “Avalanche” with 16 clusters. There
are four images in each cluster, where the top-left one is the exemplar and the rest are the
top three images ranked by similarity.

textual similarities were utilized in the second layer to identify the positive clusters and

filter out irrelevant images. A curve fitting method is also presented for selecting P value

appropriately. In the future, we will further investigate the general relationship between

the preference value and the number of clusters under various similarity construction

strategies, and study the interrelationship between visual and textual similarities to refine

the clustering results.
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Figure 6.16: Clustering results for the disaster topic “Road debris” with 20 clusters. There
are four images in each cluster, where the top-left one is the exemplar and the rest are the
top three images ranked by similarity.

6.3 Multimedia-Aided Disaster Information Integration System

In recent years, disasters such as hurricanes and earthquakes have caused huge damages

in terms of both property loss and human lives. In 2005, hurricane Katrina reported a

total property damage of $81 billion. Thousands of people died in the actual hurricane

and in subsequent floods. In 2010, the Haiti earthquake affected billions of people, and

an estimated 550,000 buildings collapsed or were severely damaged. In order to reduce
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such loss, emergency managers are required to not only be well prepared but also provide

rapid response activities [204, 205].

For fulfilling a response plan in a disaster event, emergency management (EM) per-

sonnel should integrate jurisdictional resources, coordinate multi-agency responses, and

establish executing processes among the EM community. However, currently decision

makers responsible for emergency responses rely mostly on situation reports, which are

usually textual description of the disaster scene. The limitation of plain textual informa-

tion provided by situation reports lowers the efficiency of assessing the disaster situation;

hence the urgent need of additional multimedia information, such as pictures and videos

taken at the disaster scene, for enhancing the text-based reports and providing more details

of the disaster event [205]. A system that integrates multi-source information, such as tex-

tual reports and multimedia data, would greatly assist emergency managers in making a

better assessment of a disaster situation and performing efficient and timely responses cor-

respondingly [206]. Furthermore, due to its portable and ease-of-use characteristics [207],

mobile devices have been proven to be a must-have utility in disaster management areas,

especially when considering quick emergency response.

In this paper, built on our previous work [14, 203], we have designed and developed a

Multimedia-Aided Disaster information Integration System (MADIS) that semanti-

cally associates situation reports with disaster-related multimedia data and is implemented

within an iPad-specific application that conveys all such information via a unified and

intuitive graphical interface [181]. The mobility of the iPad device provides the EM

personnel with free and fast interaction in communicating between both the command

centers and the actual disaster sites. Compared with the original prototype, the advanced

system has improved from both back-end techniques and front-end user experience per-

spectives. Specifically, a dynamic weighting scheme is introduced for automatically inte-

grating multi-source multimedia information; a more comprehensive user feedback mech-
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anism is designed for improving integration results; user interfaces are refined and more

functionalities are included for better user experiences. The proposed MADIS system

tries to solve the following problems and challenges:

• Classification of images into different subjects by fusing image and text informa-

tion: Images taken at disaster scenes usually come along with descriptive informa-

tion which is of great help for better understanding of the imagery data. However,

how to effectively fuse text information with visual data for identifying the subjects

in images is a challenging problem. In order to solve this issue, a dynamic hierar-

chical classification mechanism is proposed to classify images into various subjects

using semantic analysis techniques based on Multiple Correspondence Analysis

(MCA) [208] and a self-adaptive weighting scheme for information fusion.

• Associating situation reports with classified images: After the images have been

properly classified, the next problem is how to analyze the situation reports and

build the relationship between the report and multimedia data. An intuitive solution

is to identify the same subjects as assigned to the images. For solving this problem,

advanced text and document processing techniques, such as GATE [209] system

and WordNet [210] are utilized to analyze and extract location and subject-related

information, which is further used to build the association between situation reports

and classified images.

• Incorporating user feedback for better association: User feedback plays an im-

portant role in refining data integration results and helps to improve the system and

provide better services. There are different types of feedback regarding the targeted

resources. For example, users may not only show interest in the relationship be-

tween images and reports but also in the affinities among images. In our proposed

system, a comprehensive user feedback processing mechanism is presented to refine
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both report-image association and image-image affinity based on the Markov Model

Mediator (MMM) [141] mechanism inspired by the Markov model theory [211].

MADIS is a multi-source information integration framework designed and devel-

oped on mobile platform for enhancing situation report and enabling quick emergency

response. The system adopts advanced data mining techniques for multimedia content

analysis and document processing, which semantically associates situation reports with

multimedia data. The developed iPad application provides the EM personnel with an

intuitive and interactive solution for fast and efficient disaster situation assessment.

As depicted in Figure 6.17, MADIS takes as input images, text, situation reports, and

user feedback for multi-source information integration and renders a user-friendly mobile

platform for effective and timely emergency responses. To fuse image and textual infor-

mation for image classification, the system performs multimedia analysis based on the

collected data and categorizes the images into different subjects via a hierarchical struc-

ture and dynamic weighting schema. At the same time, document analysis is conducted

upon the situation reports, which tries to build the association with the classified images.

The MMM mechanism is applied to incorporate user feedback for adjusting the affinity

between images and obtaining better association results. At the front-end of the system,

a series of controllers are used to control different views of the system, including report

lists, related images for reports, images filter, image timelines, and related images for

image, which will be touched in the next section.

6.3.1 MADIS Architecture

The implementation of MADIS follows a three-tiered architecture: (1) the client (iPad

application); (2) the RESTful, JSP-based API; and (3) the production database.
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Figure 6.17: MADIS overview.

The production database is a relational database built using PostgreSQL. It stores

all the data related to the situation reports, including multimedia data as well as user-

feedback. The relational schema of the database models the semantic relationship be-

tween the situation reports and the multimedia data as shown in Figure 6.18. In their

contents, situation reports may reference one or more geographic locations and subjects,

which are in turn described by pictures taken at the disaster area. For example, in the sce-

nario of a hurricane that affects South Florida, geographic locations may be Miami-Dade

or Miami Beach. Such locations are represented by images, which can be categorized

136



into before or after the natural hazard. The subjects of images are the damages affecting

the corresponding locations, such as ”building collapse” and ”flooding” in the hurricane

disaster.

Figure 6.18: MADIS database relational schema.

The RESTful, JSP-based API answers requests from the user interface by accessing

the production database via structured queries. The REST API is implemented as a Java

Tomcat servlet and follows the Model-View-Controller (MVC) design pattern. All the

requests and responses are in XML format. For example, through this RESTful API, the

front-end application can retrieve situation report related information, such as the list of

reports, the list of locations and subjects associated with the reports, and the list of images

that related to such locations and subjects, etc. It can also send user feedback to the back

end and re-arrange related images based on feedback processing results. Over the above

two layers, the top tier is implemented in iOS, specifically for Apple’s iPad devices. The

iPad application communicates with the server layer via RESTful API and XML-based

responses, finally presenting a user-friendly graphical interface for information retrieval

and active interaction.

The major components of MADIS are illustrated in Figure 6.19 and described as fol-

lows.
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(a) Report list. (b) Related images for report.

(c) Image filter. (d) Image timeline.

(e) Related images for image. (f) Image description.

Figure 6.19: MADIS major components.

• Report List: This component shows the main report list, which displays one to

three related images next to each entry. They are the most recently taken pictures,

each of a different subject associated with the report as shown in Figure 6.19(a).

138



• Related Images for Report: Once the user enters a specific report page, he/she can

browse the related images associated with current report. Long press on any one

image will bring up the voting options for user feedback as shown in Figure 6.19(b).

• Image Filter: This component allows a user to filter the image list based on several

factors simultaneously. The images can be filtered by locations, subjects, or key-

words (which are the synonyms of locations and subjects, being highlighted in the

report) as shown in Figure 6.19(c). In each case, the user can select multiple values

to filter on and the image list is updated dynamically. This feature can be useful for

displaying only the images that pertain to a specific aspect of the report.

• Image Timeline: Users may enter the image page and view the timeline by se-

lecting an image from the related image list. The timeline is a set of images that

depict the same location and are organized by date from earliest to latest. Users

are allowed to vote for an image to report relationship under this view as shown in

Figure 6.19(d).

• Related Images for Image: Besides the report-image association, the system also

presents the image-image relationships and provides the user with voting options as

shown in Figure 6.19(e), where the anchor image is selected from the report page.

In addition, the user can tap the description button to get a basic description of the

image and additional metadata we may have on the picture, such as taken date and

author as shown in Figure 6.19(f).

6.3.2 Dynamic Hierarchical Image Classification

The adaptive hierarchical image classification framework addresses multi-source data fu-

sion via MCA and dynamic weighting scheme. MCA has been proven to be effective for

multimedia semantic analysis, especially for video concept detection [212]. In the dis-
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aster image classification scenario, the MCA algorithm is introduced for mining the cor-

relation between multi-source data (i.e., image and text) and subjects, such as “building

collapse” and “flooding”. This section describes the component of dynamic hierarchical

image classification based on data fusion and MCA. Depicted in Figure 6.1, the frame-

work is composed of two main components: multi-source model training and hierarchical

classification. During the model training process, visual and text features are extracted

respectively and fused based on the dynamic weighting scheme. Then the models at dif-

ferent granularity levels are trained based on the MCA mechanism, generating thresholds

for classification. Details of how to train MCA models could be found at section 6.1.1.3.

6.3.2.1 Dynamic Visual-Text Information Fusion

There are mainly three steps for visual feature extraction: feature extraction, normaliza-

tion, and discretization. The discretization step is special for the MCA model since it

requires nominal input. The first two steps for both training images and testing images

are the same; however, the discretization of the features of the testing images is based on

the discretized intervals resulted from training image instances. In order to capture the

visual contents of images, two types of features are extracted: low-level color features

and mid-level object location features (shown in section 6.1.1). Therefore a total number

of 21 features are obtained for each image, and these visual features will be integrated

with corresponding text feature.

As for text feature extraction, it requires more preprocessing than visual features.

First, the punctuation characters are removed and then the stop words, thus obtaining a

list of valid words for each image instance. After that we analyze the above valid words

related to each image, and then obtain the top N high-frequency words in the list by

using MALLET [213], a Java-based package for statistical natural language processing.

Since the extracted visual feature is a 21-dimension vector, in order to balance the con-
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tribution of different features to the subsequent classification results, we choose the top

21, (i.e., N=21) words with high frequencies as the text features. Finally, each original

text should be represented as an N-dimension feature vector by the combination of these

high-frequency words according to the tf-idf schema discussed in section 4.2. Each di-

mensionality represents the number of times the high-frequency word appears in the text.

The feature extraction process of the testing data set is similar to that of the training data

set except for the “get word frequency” step.

Among the above-mentioned various visual features, some of them might carry signif-

icant semantic information about the image, whereas some others might be less important.

Particularly in the classification, the extracted features should be more representative and

carry more significance. For example, when identifying sun and grass, color features red

and green will play more important roles than other color features, such as yellow, blue,

etc.; whereas when distinguishing sky from sea, the object location features might be

more crucial than the color feature blue. Therefore, it might be helpful to dynamically

assign different weights to different visual features so that the features with more impor-

tance can be captured and play more meaningful roles on the classification. In order to

find out a suitable weight for each feature, a possible solution is to take the metric learn-

ing [214, 215, 216] into consideration. Some previous work [216] on music information

retrieval demonstrate how to learn appropriate similarity metrics based on the correla-

tion between acoustic features and user access patterns. Motivated by this, we utilize the

idea of metric learning and incorporate the concept of dynamic feature weighting into our

solution. Figure 6.20 presents the framework of dynamic weighting.

Specifically in the classification, given that human perception of an image is well

approximated by its text, a good weighting schema for the extracted visual features guided

by text information may lead to a high-quality similarity measurement, and therefore

better classification results. Let S f (fi, f j;α) = ∑l fi,l f j,lαl be the image-based similarity
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Figure 6.20: Framework of dynamic weighting.

measurement between the i-th and the j-th images when the parameterized weights are

given by α , where fi,l is the l-th feature in the visual feature set fi and f j,l is the l-th

feature in the visual feature set f j. Let St(ti, t j) = ∑k ti,kt j,k be the similarity measurement

between the i-th and the j-th text features, in general, the words with high frequency

extracted from texts. Here for each k, ti,k denotes whether the k-th word appears in the

i-th text or not. To learn appropriate weights α for visual features, we can enforce the

consistency between similarity measurements S f (fi, f j;α) and St(ti, t j). The above idea

leads to the following optimization problem:

α
∗ = argmin ∑

i6= j
(S f (fi, f j;α)−St(ti, t j))

2 s.t.α ≥ 0. (6.16)

By rewriting and calculating the summation in Equation (6.16), the optimization prob-

lem can be addressed using quadratic programming techniques [217]. After obtaining the

optimal weighting information for each visual feature, we can get the weighted visual

features.

Similar to the visual feature, among those high-frequency words, some of them also

might be more significant to the subsequent classification, whereas some others might be
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less important. Therefore, in order to learn appropriate weights β for text features, we can

perform the similar weighting procedure to the text features. Note that the consistency

is enforced between the similarity measurements of the weighted visual features under

known weights α and vice versa. After obtaining the optimal weighting information for

each text feature, both of the optimal weights α and β can be utilized in the subsequent

classification tasks.

6.3.2.2 Hierarchical Classification

Much work has been done in the field of hierarchical classification [218, 219, 220, 221,

222]. For example, Fan et al. have built hierarchical mixture models for semantic im-

age classification [219]; then extended the work by incorporating concept ontology for

hierarchical image concept organization [221]. Li et al. have also incorporated prior

knowledge to improve hierarchical image classification [220]. In order to explore the

extensive relationship between various subjects and perform the classification in a more

efficient way, an intuitive and simple hierarchical classification mechanism is adopted for

our system [14]. Specifically, a topology tree is designed and used to classify images into

pre-defined subjects in a top-down manner. Based on the fact that visual and text features

at different layer may have unequal importance, the dynamic weighting scheme is applied

at each level to obtain a better integration result.

6.3.3 Document Analysis and Image Association

This section addresses the problem of how to associate locations and subjects to docu-

ments, hence the association of situation report and classified images. Specifically, the

GATE system is used to extract entities from document, and the WordNet tool is used to

explore the synonyms of subjects in order to overcome the exact match limitation.
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6.3.3.1 GATE System and Entity Extraction

Natural language processing for information retrieval plays an important role in the pro-

posed system. The GATE system is applied to identify certain types of entities, such

as date and location. The GATE system requires three main processing resources: Tok-

enizer, Gazetteer and Grammar. GATE’s annotation API communicates these resources

by a directed graph. The implementation of the processing resources focuses on the ro-

bustness and usability of the system, as well as the clear distinction between declarative

data representations and finite state algorithms. The Tokenizer splits text into simple to-

kens, for example, symbols, numbers, or words in different types, such as words with

an initial capital, and so on. The Gazetteer is used to group entities and names of use-

ful indicators, such as IP, cities, organizations, or names of people. As for Grammar, it

is constructed from hand-crafted rules to represent patterns by analyzing a specific text

string or annotations previously attached to tokens.

6.3.3.2 WordNet for Synonym Extraction

WordNet is a lexical database for the English language. It groups English words into sets

of synonyms called synsets, provides short, general definitions, and records the various

semantic relations between these synonym sets. The development of synonym extrac-

tion component is based on the open source package which uses synonyms defined by

WordNet [210]. The usage of the package requires users to download the WordNet pro-

log database. Inside this archive is a file named wn s.pl, which contains the WordNet

synonyms. We mainly use two classes in the package, i.e., Syns2Index and SynLookup.

Specifically, the class Syns2Index is used for converting the prolog file wn s.pl into a

Lucene index suitable for looking up synonyms, and the class SynLookup is for looking

up synonyms.
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6.3.3.3 Report-Image Association

The purpose of document analysis is to associate locations and subjects with situation

reports. The procedure for location-subject association is illustrated in Figure 6.21. First,

the document (situation reports) is processed by GATE system [209] and a list of loca-

tions and tokens are obtained. Then we find out the matched locations and the candidate

subjects by comparing the extracted locations with our records stored in database. Con-

sidering the fact that the same location in different document may involve different sub-

jects, each candidate subject should be checked in the document to verify their existence.

However, different documents may use variant words for the same subject. Therefore

the candidate subjects are extended by including their synonyms. Then all the candidate

subjects as well as the synonyms are matched with the set of tokens extracted by GATE

system to retrieve the matched ones. Finally, the candidate location-subject pairs are for-

matted by converting the synonyms to the original subject names.

Figure 6.21: Document analysis.
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6.3.4 Incorporation of User Feedback

Considering the user and application domain of the proposed framework, it would be

extremely useful to incorporate domain knowledge and user interaction. One effective

type of user interaction is user feedback [223, 224, 225, 226]. In this work, a system

improvement mechanism based on user feedback is designed to refine the association

between situation reports and multimedia data, i.e., images in current version. There are

two feedback situations and four types of feedbacks in the current scenario. This section

provides a detailed description of the feedback as well as its usage.

6.3.4.1 Feedback Description

There are two categories of user feedback: (1) feedback for image-document; and (2)

feedback for related images.

The feedback for image-document indicates user impression for image-document re-

lationships, i.e., whether a particular image matches the content of the document (situa-

tion report). On the other hand, the feedback for related images implies the fondness of

a particular image regarding the target image, which to some sense reflects the similar-

ity (affinity) of image pairs. There are four types of feedback impressions described as

follows: (1) no action: system made a correct match, no changes should be made; (2)

thumbs up: system made a correct match, but some image(s) is/are more relevant than

others; (3) thumbs down: system made a correct match, but some image(s) is/are less

relevant than others; (4) flag: image is completely inappropriate, should be hidden from

all future image lists.

The processing for flag feedback is the same for both the situations, i.e., hidden from

all future image lists. The following two sections will discuss the processing of thumbs

up/down feedback in both scenarios.
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6.3.4.2 Feedback for Report-Image

The processing or image-document feedback is based on a rather simple counter mech-

anism. Specifically, a counter is created for each image belonging to certain situation

reports and update the counter by increasing 1 (for thumbs up feedback) or decrease 1

(for thumbs down feedback). Then the image list is re-ranked for each report.

6.3.4.3 Feedback for Image-Image

The processing for related images feedback is based on the simplified MMM mecha-

nism [141], which is used to model the searching and retrieval process for content-based

image retrieval. It is different from the common image retrieval methods in that the MMM

model carries out the searching and similarity computing process dynamically, taking into

consideration not only the image content features but also other characteristics of images,

such as their access frequencies and access patterns.

6.3.4.4 Markov Model Mediator (MMM)

MMM is a probability-based mechanism that adopts the Markov model framework and

the mediator concept. The MMM mechanism models an image database by a 5-tuple

λ = (S,F,A,B,π), where S is a set of images called states; F is a set of distinct features of

the images; A denotes the states transition probability distribution, where each entry (i, j)

indicates the relationship between image i and j captured through the off-line training

procedure; B is the feature matrix of all images; and π is the initial state probability

distribution.

All the disaster images and their relationships in our system are modeled by an MMM,

where S represents the whole image set. F is a set of distinct features of the images,

i.e., 12-dimension color descriptor and 9-dimension location descriptor in the MADIS. A

describes the relationships among all the images in the database based on user’s feedback.
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B consists of the 21-dimension feature vectors for all the images. π indicates how likely

an image would be accessed with any prior knowledge of user preference.

The training of MMM basically involves the construction of the two statistical ma-

trices, A and π . A sequence of user feedback characterizing access patterns and access

frequencies is used to train the model parameters. Suppose R = {R1,R2, ...,RT} is a col-

lection of user feedback during a period of time, where each Rt (t = 1...T ) is a list of

user feedback for an anchor image. Let Pm,t denote the feedback pattern of image m with

respect to collection item Rt per time period, where the value of Pm,t is 1 when m appears

in Rt and zero otherwise. The value of ACt denotes the access frequency of Rt per time

period. The pairs of user feedback pattern Pm,t and access frequency ACt provides the

capability of capturing user preference. Specifically, the training of the two parameters,

A and π , are described as follows:

• Matrix A: Intuitively, the more frequently two images are accessed together, the

more closely related they are. In order to capture the relative affinity measurements

among all the images, a matrix AF is constructed with each element a fm,n denoting

the relative affinity relationship between two images m and n:

a fm,n =
T

∑
t=1

Pm,t×Pn,t×ACt . (6.17)

Each entry in the state transition probability distribution matrix (A) is obtained by

normalizing AF per row as in

am,n =
a fm,n

∑n∈d a fm,n
. (6.18)

• Matrix π: The preference of the initial states for user feedback can be obtained

from the training data set. For any image m, the initial state probability is defined

as the fraction of the number of occurrences of image m with respect to the total

number of occurrences for all the images in the image database D from the training
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data set.

πm =
∑

T
t=1 Pm,t

∑
N
l=1 ∑

T
t=1 Pl,t

, (6.19)

where N is the total number of images in database.

6.3.4.5 Off-line Training Based on User Feedback

Since the related image retrieval is within a specific subject which utilizes the classi-

fication results and implies the cooperation of domain knowledge, the MMM model is

refined to keep just the affinity matrix to describe the relationship between image pairs.

The challenge then becomes how to update the affinity matrix based on different types

of user feedback. In this work, we propose to process positive feedback (thumbs up)

and negative feedback (thumbs down) separately. Specifically, two affinity matrices are

created for positive and negative feedback respectively, and they are summed up and nor-

malized to form the final affinity matrix. A brief description of the whole process is shown

in Figure 6.22.

Figure 6.22: Image-Image feedback processing.
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6.3.5 System Evaluation

The evaluation of the proposed system was carried out from two perspectives. First,

experiments are conducted to validate the effectiveness of the proposed dynamic hierar-

chical classification framework. Second, an evaluation activity is initiated at Miami-Dade

Emergency Management (MDEM) department, where the personnel are asked to perform

a list of tasks using the developed application and then answer a series of questions based

on their experience.

6.3.5.1 Algorithm Evaluation

In this section, two sets of experiments are designed for demonstrating the effectiveness

of the dynamic weighting scheme and the MCA-based hierarchical classification model

respectively.

6.3.5.1.1 Real World Dataset

Our experiments are based on a collection of 61,036 disaster images with text downloaded

form Flickr website. A subset of the data collection covering six disaster-related subjects,

as shown in the hierarchical topology example (Figure 6.4), is selected for experimental

analysis. The six subjects includes: (1) Building collapse; (2) Flooding; (3) Human Re-

lief; (4) Earthquake damage; (5) Damage to sea grass; (6) Death of animals. Figure 6.23

shows the examples of image-text pairs for each subject.

6.3.5.1.2 Dynamic Weighting Scheme Evaluation

To demonstrate the effectiveness of the dynamic weighting scheme for fusing the visual

and text features, the performance of different models is compared, i.e., visual model, text

model, and visual-text model. The precision, recall, F1, and accuracy [227] are calcu-

lated as the measurements of performance using 3-fold cross validation. As can be seen
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Figure 6.23: Image with text examples.

from Tables 6.10 through 6.12, the average F1 score of the whole classification frame-

work is 83.9%, which is about 13% and 6% more than the visual model and text model

respectively; in addition, compared with the single-course model, the overall accuracy of

visual-text model has also improved by 9% and 7% respectively. The promising results

verify the significance of the proposed dynamic weighting algorithm, which effectively

integrates different sources of information and enhances the performance of the whole

framework.

6.3.5.1.3 MCA Model Evaluation

On the other hand, to illustrate the efficacy of the hierarchical MCA Modeling mecha-

nism, we first implement the above 3 classification models by LibSVM [228], one of the

most popular classification tools, and then compare their classification performance with
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Table 6.10: Performance of visual-based model.

Subjects Precision Recall F1 Accuracy
(1) 74.9% 67.9% 71.1% 71.2%
(1) 68.0% 62.2% 63.9% 74.8%
(3) 81.0% 81.0% 81.0% 77.4%
(4) 70.2% 64.5% 65.0% 75.7%
(5) 79.5% 70.8% 72.4% 77.8%
(6) 84.2% 63.4% 71.3% 72.6%

Average 76.3% 68.3% 70.8% 74.9%

Table 6.11: Performance of text-based model.

Subjects Precision Recall F1 Accuracy
(1) 79.8% 93.8% 86.1% 84.0%
(2) 67.9% 88.8% 74.3% 75.3%
(3) 60.8% 92.7% 73.4% 60.2%
(4) 43.5% 58.1% 49.7% 56.7%
(5) 94.5% 85.9% 90.0% 91.7%
(6) 92.9% 93.5% 93.2% 92.3%

Average 73.2% 85.5% 77.8% 76.7%

those of the MCA model, as shown in Figure 6.24. From the results, we have the following

observations: (1) compared with the single text model and visual model, the classifica-

tion results are improved using the dynamic visual-text information fusion method, which

demonstrates the effectiveness of our proposed approach; (2) compared with the classifi-

cation performance of LibSVM, our proposed MCA model outperforms the other on each

type of features. The reason for the overall performance of the MCA model is better than

that of the LibSVM is that the MCA model could effectively integrate textual and visual

features by the dynamic weighting schema and the hierarchical structure, consequently

achieving better classification results.

6.3.5.2 Application Evaluation

To validate the usability and performance of the proposed system, the EM personnel

at MDEM department are requested to perform the following tasks and answer twelve
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Table 6.12: Performance of visual-text Model.

Subjects Precision Recall F1 Accuracy
(1) 83.6% 94.9% 88.9% 87.5%
(2) 81.8% 86.8% 83.6% 87.5%
(3) 69.5% 95.0% 80.0% 71.4%
(4) 60.4% 75.1% 66.1% 71.0%
(5) 97.1% 86.7% 91.6% 93.1%
(6) 94.9% 91.5% 93.0% 92.4%

Average 81.2% 88.3% 83.9% 83.8%
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Figure 6.24: Comparison between MCA and LibSVM.

questions, where ten of them are multiple choice questions with a 5-level agreement scale

(Strongly Agree, Agree, Not Sure, Disagree, and Strongly Disagree) and the other two

are open-ended questions.

The set of tasks include (1) finding hurricane Katrina situation report; (2) reviewing

associated images and select thumbs up/down or flag as needed; (3) filtering the images

based on one of the locations/subjects; (4) viewing the description and timeline of one se-

lected image; and (5) browsing the related images and select thumbs up/down or flagging

as needed. Some of the multiple choice questions are as follows: (1) I was able to locate
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the situation report I was interested in; (2) I found that the images are correctly associated

with the report; (3) I was able to give feedback (thumbs up/down, flag) to the associated

images; (4) I was able to filter the images based on location/subject; and (5) I found that

the system useful in enhancing the situation report for emergency management.

Several personnel at the MDEM department participated in the evaluation. It is worth

noting that all the participants were new to the application and there was no training pro-

cess involved. The evaluation results indicate that most of the personnel are satisfied with

the performance of the system. Specifically, eight out of ten questions receive “Strongly

Agree” or “Agree” from all of the participants, which implies a high level of satisfaction

with the system performance.

Other feedbacks collected from the opening questions are summarized as follows, and

some of them suggests our potential future work.

• Positive feedbacks: (1) the concept is extremely helpful and will prone very useful

for emergency managers; (2) the system is very friendly and easy to use; and (3)

the abilities provided by the system is impressive, such as filtering by location and

subject, association of reports with images, image timeline, pre-classification of

images, and so on.

• Suggestions: (1) the disaster ontology could be extended for categorizing images;

(2) extra functionalities such as group selection and de-selection of images are wel-

comed; and (3) labor intervene should be reduced to enhance automated function.

6.3.5.3 System Operation and Conclusion

Florida International University (FIU) has spent over $170K in the development and

maintenance of the system, which is managed in a version control system and run through

a test suite that validates key functionalities, such as report list control, image filtering,

feedback processing, and so on. By interacting with MDEM personnel through evaluation
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and exercise activities, the system has constantly been being updated by improving the

user interface experience and back-end support techniques.

Feedback from our collaborative partners at MDEM and the potential users suggests

that our system will be very useful for emergency managers to gain insight of the situation

at the actual disaster scene and make a quick response. We are encouraged to further

develop the system into an operational pilot and promote the commercialization of the

system for benefitting the whole EM community.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this dissertation, a multimedia big data analysis framework for semantic information

management and retrieval is presented. It contains three coherent components, namely

multimedia semantic representation, multimedia temporal semantics analysis and en-

semble learning, and multimedia concept classification and summarization. These three

components are seamlessly integrated and act as a coherent entity to provide essential

functionalities in the proposed information management and retrieval framework. More

specifically:

• A novel correlation-based feature analysis method is presented to derive HCFGs

for multimedia semantic retrieval. The proposed framework explores the mutual

information from multiple modalities by performing correlation analysis for each

feature pair and separating the original feature set into different HCFGs by using

the affinity propagation algorithm at the feature level. Then, a novel fusion scheme

is proposed to fuse the testing scores from selected HCFGs to obtain optimal per-

formance. Finally, an iPad application is developed based on our proposed system

with a user-feedback mechanism to refine the retrieval results.

• An integrated IF-TMCA framework is presented for effective and efficient video

event detection, which includes two major steps, i.e., the IF-MCA modeling and

the TMCA re-ranking. Specifically, the IF-MCA approach is inspired by the HCFG

and HIGA for the IF generation, then the derived IFs are integrated into the orig-

inal MCA for basic score generation. Finally, the TMCA algorithm is applied for

re-ranking the results by incorporating temporal semantics using a novel indica-

156



tor weighting scheme based on MCA. Moreover, to overcome the class imbalance

problem, a sampling-based ensemble method is proposed to learn from imbalanced

datasets for improving video event detection results.

• A multi-layered disaster image filtering and summarization method is presented,

where the AP algorithm was first applied to build the initial clusters for each disas-

ter topic, and then both the visual and textual similarities were utilized in the second

layer to identify the positive clusters and filter out irrelevant images. Next, a hierar-

chical disaster image classification scheme based on textual and visual information

fusion is proposed for enhancing disaster situation reports with relevant multime-

dia data and consequently improving the decision-making process in disaster situ-

ations. Furthermore, the MADIS is developed based on the extended framework

using a dynamic weighting schema for feature fusion.

7.2 Future Work

As mentioned in chapter 2, video event detection meets users’ preference on semantic

concept retrieval while efficient and robust indexing is critical to support retrieval in a

large-scale database. Some initial efforts have been dedicated to these two directions,

however, more work has to be done to improve and evaluate the proposed solutions.

7.2.1 Large Scale Video Database Indexing and Retrieval

Multimedia indexing, especially for images/videos, has been an active research field in

recent years thanks to the various high-tech devices, such as smart-phones, webcams,

digital cameras, as well as to the networks that allow the data to be widely shared, with

data acquisition and memory no longer being a problem. The question we want to an-
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swer here is, “How can I retrieve the image/video I want efficiently and effectively from a

large-scale collection?” To solve this problem, we propose a clustered inverted file index-

ing framework based on video fingerprints. By first classifying all the fingerprints into a

limited number of clusters, and then searching within an inverted file indexing table for

a specific cluster, the proposed indexing schema proves to be robust and effective against

various datasets. To conclude, in this project, we target at building an auxiliary indexing

data structure for the collection such that, based on the premise of ensuring the correct-

ness, (1) exactly one or top k similar fingerprints can be retrieved as quickly as possible,

and (2) the auxiliary data should be as little as possible. In other words, it’s all about (1)

time complexity and (2) space complexity.

7.2.1.1 Problem Description

Given a dataset D with |D| videos, let Vi, i ∈ [1, |D|], be the number of fingerprints in

the ith video. We target at building an auxiliary indexing data structure for the dataset

such that, based on the premise of ensuring the correctness, (1) exactly one or top k

similar fingerprints can be retrieved as quickly as possible, and (2) the auxiliary data

should be as little as possible. More specifically, it’s about (1) time complexity and (2)

space complexity. To solve this problem, we first identify the time and space consuming

components for this problem.

The time complexity comes from the query; therefore, we need to understand what

exactly happens behind the scene when retrieval is requested. Like any other database

system, when a query is issued: (a) search in the index first. If an exact match was found,

searching is done and exit, otherwise go to (b); (b) if there still exits a candidate set for

the query after indexing, a linear scan through the candidate set must be done. The space

complexity consists of two parts as well: (a) the auxiliary indexing data structure, as well

as how many cells (different hash values) are in the data structure; (b) the references
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from the auxiliary indexing data structure back to real data items in the database. Based

on above time and space complexities analysis, we can formulate our problem as the

following objective function in the optimization from:

Minimize α ·ξ (·)+β ·ϕ(·)+ γ ·η(·). (7.1)

where α , β , and γ are user-specified weight parameters to indicate how important each

component is in the system; ξ (·) is a function given the auxiliary indexing data structure,

how many hits are expected to perform inside the auxiliary data structure (universal hash-

ing only needs one hit for any hash key O(1), tree indexing takes O(log n)); ϕ(·) is a

function of how many items are in the candidate set after an indexing search. As a linear

scan is needed in the database rather than in the auxiliary indexing data structure, the time

cost per item should be much more than that of ξ (·); η(·) is a function that returns the

space needed for an auxiliary indexing, where both (2.a) and (2.b) are included. There

are some other requirements (constrains) as follows:

• Fewer hits (time efficiency)

• Compact auxiliary structure (space efficiency)

• Accuracy (basic requirement)

• Incrementally (dynamic database)

• Top k retrial (fuzzy retrial)

• Feature independent (model robust)

7.2.1.2 Problem Formulation

One solution for the problem described in section 1 is based on inverted file indexing.

As shown in Figure 1, a fingerprint is divided into n words with possible overlapping.

Suppose the word length for each word is m, then there are 2m possible values, obtaining

a table with size 2m · n. For each entry (i, j) of the table, a list of fingerprint indices are
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stored whose jth word is word i. Given the video database, apparently the cost of video

retrieval is a tradeoff between the word length and the number of words, which can be

eventually expressed as the function of word length (ω) and the overlap step (ε). To be

more specific, the inverted file based solution is defined as:

Ω
∗(ω,ε) = argmin

ω,ε
{α ·ξ (ω,ε)+β ·ϕ(ω,ε)+ γ ·η(ω,ε)} . (7.2)

Sub ject to :


ξ (ω,ε) =

⌊
Nτ

ω·(1−ε)

⌋
,

ϕ(ω,ε) = (∑
|D|
l=1Vl)e−λξ (ω,ε),

η(ω,ε) =

⌊
2ω

ω(1−ε) +
δN(∑

|D|
l=1 Vl)

ω(1−ε)

⌋ (7.3)

where η(ω,ε) is the total space requirement, which is determined by the database size D

and the auxiliary data structure (ω,ε); ξ (ω,ε) and ϕ(ω,ε) are the time cost components

and also depend on the auxiliary data structure (ω,ε). Therefore, we target to solve the

Equation 7.2 by finding the best (ω,ε) to minimize the objective function in Equation

7.1.

7.2.1.3 Theoretical Analysis

Lemma 1: given the fingerprint length N, the length of word ω , and the overlap ratio ε .

The number of words per fingerprint is n =
⌊

N
ω·(1−ε)

⌋
.

Proof: Fingerprints A and B in the following figure illustrate the situation without

(ε = 0) and with (ε > 0) overlap respectively. As can be seen from B, the overlapped

fingerprint segment is ω ·ε , thus the non-overlapped portion is ω ′= ω−ω ·ε = ω(1−ε),

which makes the number of words equal to n =
⌊

N
ω·(1−ε)

⌋
. If considering padding at the

end, the number would be n =
⌈

N
ω·(1−ε)

⌉
.

Lemma 2: Each column in the indexing table contains 2m cells, and any fingerprint in D

has a reference in one and only one of the 2m cells.

Proof: Omitted.

160



Figure 7.1: Lemma1 illustration.

Lemma 3: Any fingerprint in D has n references in the indexing table, and one per

column.

Proof: Easy to prove based on Lemma 1 and Lemma 2. Omitted.

Based on above lemmas, we have following theorems:

Theorem 1: The range of the function ξ (·) is [1,n].

Proof: The original fingerprint is divided into n words. Therefore, for a particular

fingerprint, it only has n references in the indexing table (Lemma 3). So, the retrial for

that fingerprint can be done by doing t ∈ [1,n] indexing table retrial and intersecting the

results to generate the candidate set, and then performing a linear scan. Therefore, the

range of the function ξ (·) is [1,n].

Theorem 2: The ϕ(·) function is a monotonically decreasing function along with the

increasing of the ξ (·) function.

Proof: The retrial for a fingerprint is done by doing k = ξ (·) ∈ [1,n] indexing table

retrial and intersecting the results to generate the candidate set S, and then doing a linear

scan. Assume that all cells in the indexing table are uniformly distributed. Then, the

intersection operation will decrease the number of candidates in S. Let Ws (|Ws| = k) be

the k words searched in the indexing table, and Sw be the candidate set that come from

the index cell of the word w. Then, the candidate set S remained after the indexing table

search can be written as S =
⋂
∀w∈Ws

Sw. Obviously, S decreases with the increase of
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k. Therefore, the ϕ(·) function is a monotonically decreasing function along with the

increasing of the ξ (·) function.

Theorem 3: The η(·) function is a monotonically increasing function along with the

increasing number of words n.

Proof: η(ω,ε) =

⌊
2ω

ω(1−ε) +
δN(∑

|D|
l=1 Vl)

ω(1−ε)

⌋
, the first component represents the space

cost of the auxiliary indexing data structure, and the second component represents the

space cost of the references from the indexing table to the physical database. Obviously,

the second component is far larger than the first component. As mentioned in Lemma 3,

each fingerprint in the database has n references in the indexing table; therefore, with one

more word added, the references of the whole database need to be added into the indexing

table. Therefore, the η(·) function is a monotonically increasing function along with the

increasing number of words n.

7.2.1.4 Clustering Based Inverted File Indexing

Based on a reasonable assumption that resembling videos should have similar fingerprints,

we could classify all the fingerprints into a limited number of clusters. Then an inverted

file-indexing table will be built for each cluster as shown in Figure 7.2. The assignment of

each fingerprint to one of the clusters is a simple procedure of the majority vote for each

one of the m segments corresponding to one bit in the cluster head. We argue that given

a robust fingerprinting schema, the targeted fingerprint or the top k fingerprints should be

within the first few closest clusters, which will greatly reduce time complexity; however

extra auxiliary storage is needed.

7.2.1.5 Initial Experimental Results

Figure 7.4 and 7.3 show the retrieval performance in terms of time complexity with and

without clustering respectively. From the experimental results, we have two observations.
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Figure 7.2: Clustering based inverted file indexing.

First, the retrieval time is monotonically decreasing with the number of intersected words

increasing, which is consistent with our theoretical analysis. Second, the retrieval per-

formance of the clustering-based solution is better than the one with just inverted file

indexing, which proves the effectiveness of clustering process. Furthermore, we verify

the effect of word gap on retrieval performance, and the results are shown in Figures 7.5

and 7.6. As can be seen from the figures, the gap parameter does not have much effect on

the retrieval performance in both with and without clustering situations. Finally, Figure

7.7 illustrates the retrieval performance of intersected words vs word length. We can infer

from the figure that the retrieval time is decreasing with the number of intersected words

and length of words increasing.

7.2.2 Other Future Work

In spite of the enormous efforts put on the various tasks of multimedia semantic informa-

tion management and retrieval, there is still much work to do on improving the current

framework. Specifically,
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Figure 7.3: Retrieval performance of inverted file indexing.

Figure 7.4: Retrieval performance of clustering based inverted file indexing.

• As stated earlier, one of the big issues not well addressed in this multimedia big data

analysis framework is the scalability and distributed processing capability. Our pre-

vious work provides an advanced solution for multimedia semantic classification

164



Figure 7.5: Retrieval performance of inverted file indexing with gap.

Figure 7.6: Retrieval performance of clustering based inverted file indexing with gap.

and indexing via the MapReduce technique [59]. However, how to effectively inte-

grate and utilize this large-scale data processing solution requires special attention

and further efforts.
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Figure 7.7: Retrieval performance of intersected words vs word length.

• Both the indicator weight and the MCA weight described in section 5.1 try to cap-

ture the correlation between feature items and class labels, but from different lev-

els. While the indicator weight keeps all the original information and carry more

semantics, the MCA weight provides more detailed analysis within each feature

item. It is promising to effectively integrate these two types of weights for various

semantic analysis tasks. Furthermore, since the processing of each feature attribute

is independent, it is feasible and desirable to parallel the calculation by introducing

the MapReduce framework on the Hadoop platform for distributed computing. It

will greatly accommodate the big data requirement, considering the ever-increasing

amount of multimedia data. Finally, the temporal information is loosely incorpo-

rated into our framework, and therefore, it is another potential direction for better

utilizing the embedded temporal characteristics.

• In the future, more datasets and measurement should be applied to further evaluate

the proposed ensemble learning framework discussed in section 5.2. Moreover, the

within-class distribution should also be explored to develop better sampling mech-
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anisms. For example, the unsupervised HCFGs analysis method could be adjusted

for identifying sample clusters. In addition, it has great significance to study opti-

mization strategies for critical parameter estimation. Finally, it becomes gradually

important to introduce big data analytics and technologies to accommodate ever-

growing datasets.

167



BIBLIOGRAPHY

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks and Appli-
cations, vol. 19, no. 2, pp. 171–209, 2014.

[2] T. Fawcett and F. Provost, “Adaptive fraud detection,” Data Mining and Knowledge
Discovery, vol. 1, no. 3, pp. 291–316, 1997.

[3] T. Meng, A. T. Soliman, M.-L. Shyu, Y. Yang, S.-C. Chen, S. Iyengar, J. S. Yordy,
and P. Iyengar, “Wavelet analysis in current cancer genome research: A survey,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 10,
no. 6, pp. 1442–14359, 2013.

[4] M.-L. Shyu, T. Quirino, Z. Xie, S.-C. Chen, and L. Chang, “Network intrusion
detection through adaptive sub-eigenspace modeling in multiagent systems,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 2, no. 3, p. 9,
2007.

[5] L. Peng, Y. Yang, X. Qi, and H. Wang, “Highly accurate video object identifica-
tion utilizing hint information,” in IEEE International Conference on Computing,
Networking and Communications (ICNC), pp. 317–321, 2014.

[6] C. Chen, Q. Zhu, L. Lin, and M.-L. Shyu, “Web media semantic concept retrieval
via tag removal and model fusion,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 4, no. 4, p. 61, 2013.

[7] Y. Yang, H.-Y. Ha, F. C. Fleites, and S.-C. Chen, “A multimedia semantic retrieval
mobile system based on HCFGs,” IEEE MultiMedia, vol. 21, no. 1, pp. 36–46,
2014.

[8] Y. Yang, S.-C. Chen, and M.-L. Shyu, “Temporal multiple correspondence analysis
for big data mining in soccer videos,” in The First IEEE International Conference
on Multimedia Big Data (BigMM), pp. 64–71, 2015.

[9] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[10] S.-C. Chen, “Multimedia databases and data management: a survey,” Methods and
Innovations for Multimedia Database Content Management, p. 1, 2012.

168



[11] Q. Zhu, L. Lin, M.-L. Shyu, and S.-C. Chen, “Feature selection using correlation
and reliability based scoring metric for video semantic detection,” in IEEE Inter-
national Conference on Semantic Computing (ICSC), pp. 462–469, 2010.

[12] Q. Zhu, L. Lin, M.-L. Shyu, and S.-C. Chen, “Effective supervised discretization
for classification based on correlation maximization,” in IEEE International Con-
ference on Information Reuse and Integration (IRI), pp. 390–395, 2011.

[13] L. Lin, M.-L. Shyu, and S.-C. Chen, “Enhancing concept detection by pruning
data with MCA-based transaction weights,” in IEEE International Symposium on
Multimedia (ISM), pp. 304–311, 2009.

[14] Y. Yang, H.-Y. Ha, F. Fleites, S.-C. Chen, and S. Luis, “Hierarchical disaster image
classification for situation report enhancement,” in IEEE International Conference
on Information Reuse and Integration (IRI), pp. 181–186, 2011.

[15] M.-L. Shyu, Z. Xie, M. Chen, and S.-C. Chen, “Video semantic event/concept de-
tection using a subspace-based multimedia data mining framework,” IEEE Trans-
actions on Multimedia, vol. 10, no. 2, pp. 252–259, 2008.

[16] J. Yu and Q. Tian, “Learning image manifolds by semantic subspace projection,”
in Proceedings of the 14th annual ACM international conference on Multimedia,
pp. 297–306, 2006.

[17] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, “Image indexing using
color correlograms,” in IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 762–768, 1997.

[18] P. Smaragdis and M. Casey, “Audio/visual independent components,” in Proc. ICA,
pp. 709–714, 2003.

[19] A. V. Nefian, L. Liang, X. Pi, X. Liu, and K. Murphy, “Dynamic bayesian networks
for audio-visual speech recognition,” EURASIP Journal on Advances in Signal
Processing, vol. 1900, no. 11, pp. 1274–1288, 2002.

[20] D. Liu, S. Hua, Z. Ou, and J. Zhang, “Ir and visible-light face recognition using
canonical correlation analysis,” Journal of Computational Information Systems,
vol. 5, no. 1, pp. 291–297, 2009.

[21] H.-Y. Ha, S.-C. Chen, and C. Min, “FC-MST: Feature correlation maximum span-
ning tree for multimedia concept classification,” IEEE International Conference on
Semantic Computing (ICSC), 2015.

169



[22] Z. Ji, J. Wang, Y. Su, Z. Song, and S. Xing, “Balance between object and back-
ground: object enhanced features for scene image classification,” Neurocomputing,
2013.

[23] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories,” in IEEE International Confer-
ence on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2169–2178,
2006.

[24] S. Zhang, Q. Tian, G. Hua, Q. Huang, and S. Li, “Descriptive visual words and vi-
sual phrases for image applications,” in Proceedings of the 17th ACM international
conference on Multimedia, pp. 75–84, 2009.

[25] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear
coding for image classification,” in IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3360–3367, 2010.

[26] C. Fredembach, M. Schroder, and S. Susstrunk, “Eigenregions for image classifi-
cation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 12, pp. 1645–1649, 2004.

[27] H. Cheng and R. Wang, “Semantic modeling of natural scenes based on contextual
bayesian networks,” Pattern Recognition, vol. 43, no. 12, pp. 4042–4054, 2010.

[28] P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli, “Multimodal
fusion for multimedia analysis: a survey,” Multimedia systems, vol. 16, no. 6,
pp. 345–379, 2010.

[29] P. Gehler and S. Nowozin, “On feature combination for multiclass object classifica-
tion,” in IEEE International Conference on Computer Vision (ICCV), pp. 221–228,
2009.

[30] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels for ob-
ject detection,” in IEEE International Conference on Computer Vision (ICCV),
pp. 606–613, 2009.

[31] H.-Y. Ha, F. C. Fleites, and S.-C. Chen, “Building multi-model collaboration in
detecting multimedia semantic concepts,” in IEEE International Conference Con-
ference onCollaborative Computing: Networking, Applications and Worksharing
(Collaboratecom), pp. 205–212, 2013.

170



[32] H.-Y. Ha, F. C. Fleites, S.-C. Chen, and M. Chen, “Correlation-based re-ranking
for semantic concept detection,” in IEEE International Conference on Information
Reuse and Integration (IRI), pp. 765–770, 2014.

[33] H.-Y. Ha, S.-C. Chen, and M.-L. Shyu, “Utilizing indirect associations in multime-
dia semantic retrieval,” in The First IEEE International Conference on Multimedia
Big Data (BigMM), pp. 72–79, 2015.

[34] T. Westerveld, A. P. De Vries, A. Van Ballegooij, F. de Jong, and D. Hiemstra, “A
probabilistic multimedia retrieval model and its evaluation,” EURASIP Journal on
Applied Signal Processing, vol. 2003, pp. 186–198, 2003.

[35] C. Chen, Q. Zhu, L. Lin, and M.-L. Shyu, “Web media semantic concept retrieval
via tag removal and model fusion,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 4, no. 4, p. 61, 2013.

[36] Q. Zhu and M.-L. Shyu, “Sparse linear integration of content and context modal-
ities for semantic concept retrieval,” IEEE Transactions on Emerging Topics in
Computing, vol. PP, pp. 1–1, December 2014.

[37] Q. Zhu, Z. Li, H. Wang, Y. Yang, and M.-L. Shyu, “Multimodal sparse linear
integration for content-based item recommendation,” in Proceedings of the 2013
IEEE International Symposium on Multimedia, pp. 187–194, 2013.

[38] Q. Zhu, M.-L. Shyu, and H. Wang, “Videotopic: Content-based video recommen-
dation using a topic model,” in Proceedings of the 2013 IEEE International Sym-
posium on Multimedia, pp. 219–222, 2013.

[39] Q. Zhu, M.-L. Shyu, and H. Wang, “Videotopic: Modeling user interests for
content-based video recommendation,” International Journal of Multimedia Data
Engineering and Management (IJMDEM), vol. 5, pp. 1–21, October 2014.

[40] D. Liu, M.-L. Shyu, Q. Zhu, and S.-C. Chen, “Moving object detection under
object occlusion situations in video sequences,” in IEEE International Symposium
on Multimedia (ISM), pp. 271–278, 2011.

[41] D. Liu and M.-L. Shyu, “Effective moving object detection and retrieval via inte-
grating spatial-temporal multimedia information,” in IEEE International Sympo-
sium on Multimedia (ISM), pp. 364–371, 2012.

[42] D. Liu, M.-L. Shyu, and G. Zhao, “Spatial-temporal motion information integra-
tion for action detection and recognition in non-static background,” in IEEE In-

171



ternational Conference on Information Reuse and Integration (IRI), pp. 626–633,
2013.

[43] D. Liu, Y. Yan, M.-L. Shyu, G. Zhao, and M. Chen, “Spatio-temporal analysis
for human action detection and recognition in uncontrolled environments,” Inter-
national Journal of Multimedia Data Engineering and Management (IJMDEM),
vol. 6, no. 1, pp. 1–18, 2015.

[44] D. Liu and M.-L. Shyu, “Semantic motion concept retrieval in non-static back-
ground utilizing spatial-temporal visual information,” International Journal of Se-
mantic Computing, vol. 7, no. 01, pp. 43–67, 2013.

[45] D. Liu and M.-L. Shyu, “Semantic retrieval for videos in non-static background
using motion saliency and global features,” in IEEE Seventh International Confer-
ence on Semantic Computing (ICSC), pp. 294–301, 2013.

[46] A. Bendjebbour, Y. Delignon, L. Fouque, V. Samson, and W. Pieczynski, “Multi-
sensor image segmentation using dempster-shafer fusion in markov fields context,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 8, pp. 1789–
1798, 2001.

[47] M. E. Sargin, Y. Yemez, E. Erzin, and A. M. Tekalp, “Audiovisual synchronization
and fusion using canonical correlation analysis,” IEEE Transactions on Multime-
dia, vol. 9, no. 7, pp. 1396–1403, 2007.

[48] J. Fan, H. Luo, J. Xiao, and L. Wu, “Semantic video classification and feature
subset selection under context and concept uncertainty,” in Joint ACM/IEEE Con-
ference on Digital Libraries, pp. 192–201, 2004.

[49] X.-W. Chen and M. Wasikowski, “Fast: a roc-based feature selection metric for
small samples and imbalanced data classification problems,” ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pp. 124–132,
2008.

[50] M. Khaing and N. S. M. Kham, “Modified-MCA based feature selection model
for preprocessing step of classification,” International Journal of Information and
Education Technology, vol. 1, no. 5, pp. 392–397, 2011.

[51] J. Tang, X.-S. Hua, Y. Song, T. Mei, and X. Wu, “Optimizing training set construc-
tion for video semantic classification,” EURASIP Journal on Advances in Signal
Processing, vol. 1, no. 12, pp. 1–10, 2008.

172



[52] J. Yang, R. Yan, and A. G. Hauptmann, “Cross-domain video concept detection
using adaptive svms,” in ACM Multimedia, pp. 188–197, 2007.

[53] D. Liu, Y. Yan, M.-L. Shyu, G. Zhao, and M. Chen, “Spatio-temporal analysis for
human action detection and recognition in uncontrolled environments,” Interna-
tional Journal of Multimedia Data Engineering and Management, vol. 6, no. 1,
pp. 1–18, 2015.

[54] Q. Zhu, L. Lin, M.-L. Shyu, and S.-C. Chen, “Feature selection using correlation
and reliability based scoring metric for video semantic detection,” in IEEE Inter-
national Conference on Semantic Computing (ICSC), pp. 462–469, 2010.

[55] M. A. Hall, “Correlation-based feature selection for discrete and numeric class
machine learning,” in International Conference on Machine Learning, pp. 359–
366, 2000.

[56] L. Wang, Y. Lei, Y. Zeng, L. Tong, and B. Yan, “Principal feature analysis: A mul-
tivariate feature selection method for fmri data,” Computational and Mathematical
Methods in Medicine, vol. 2013, no. 645921, 2013.

[57] C. Lai, M. J. Reinders, L. J. v. Veer, and L. F. Wessels, “A comparison of univariate
and multivariate gene selection techniques for classification of cancer datasets,”
BMC Bioinformatics, vol. 7, no. 235, 2006.

[58] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, “Planet: Massively parallel
learning of tree ensembles with mapreduce,” Proceedings of the VLDB Endow-
ment, vol. 2, no. 2, pp. 1426–1437, 2009.

[59] F. Fleites, H. Ha, Y. Yang, and S. Chen, “Large-scale correlation-based semantic
classification using mapreduce,” Cloud Computing and Digital Media: Fundamen-
tals, Techniques, and Applications, 2014.

[60] J. D. Basilico, A. M. Munson, T. G. Kolda, K. R. Dixon, and P. W. Kegelmeyer,
“Comet: A recipe for learning and using large ensembles on massive data,” in IEEE
International Conference on Data Mining, pp. 41–50, 2011.

[61] J. Zhao, Z. Liang, and Y. Yang, “Parallelized incremental support vector machines
based on mapreduce and bagging technique,” in IEEE International Conference on
Information Science and Technology, pp. 297–301, 2012.

173



[62] Y. Yang, F. C. Fleites, H. Wang, and S.-C. Chen, “An automatic object retrieval
framework for complex background,” in IEEE International Symposium on Multi-
media (ISM), pp. 374–377, 2013.
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