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Abstract - While much research has been devoted to 
learning and machine intelligence, the field is still in its 
infancy. In particular, a technology that will allow for 
heuristic exploitation of information domain regularities 
to reduce the time required for knowledge acquisition 
while concomitantly resulting in an increase in the 
reliability of the acquired knowledge is still lacking. 
Unfortunately, contemporary learning mechanisms such 
as neural network architectures are inherently incapable 
of such performance. The objective of this paper is to 
present a new way of looking at learning and machine 
intelligence which has applicability in many fields such 
as in robotics, intelligent agents, data fusion, and 
cooperative sensing. In particular, we propose to 
construct a new architecture, that is, a transformational 
architecture for learning, intelligent fusion and 
transference of knowledge. A System of Systems (SoS) 
approach is used to realize machine intelligence. 
Random differences are learned by the system, 
generalized, and made available for subsequent replay in 
design transformations. Cross-domain symmetries can 
play a major role in design generation in particular and 
in the design of SoSs in general. The fundamental theory 
of randomization is the science, which underpins the 
practice. This strategy is employed in the design of the 
Knowledge Amplification by Structural Expert 
Randomization or KASER system. 
 
Keywords: intelligent learning systems, KASER, soft 
expert system 
 
1 Introduction 
 

Intelligence usually implies the capability of a system 
to adapt to changes and uncertainties and the ability to 
gather information in order to perform certain tasks. 
However, the development of learning algorithms for 
machine intelligence that increase the reliability of the 
induced    knowledge   while   simultaneously    reducing  
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acquisition   time  is   still  a  challenging  problem.   The  
Incompleteness Theorem and Randomization Problem 
dictate a need for such a new approach to information 
fusion, the backbone for machine intelligence. It follows 
from the Unsolvability of the Randomization Problem [1] 
that a capability for learning must be included if the 
system is to scale. Randomization, first coined by 
Gregory C. Chaitin in 1975 [1], infers that the computer 
does what it does best (serves as the search engine) while 
the user does that which he or she does best (serves as 
the ‘conceptual engineer’).  Such a human-machine 
symbiosis lies at the cutting edge of software 
engineering.  

The opposite of randomness, in Chaitin’s sense of the 
word, is symmetry.  That is, if a pair of objects is not 
mutually random, then they are mutually symmetric.  For 
example, two fruits such as an apple and an orange are 
mutually symmetric whereas, a fruit and a rock are 
mutually random in most contexts. 

A network architecture can be employed to mine 
knowledge from information.  Such knowledge can even 
be applied to the construction of extensible intelligent 
search engines, which further serve to put all this new 
knowledge at ones fingertips.   

For example, consider the neural network.  Feed-
forward nets have been studied since the early days of 
the perceptron [2].  However, closed-loop nets, which 
emulate neural engrams, have not been studied as 
thoroughly as should be [3].  Such nets cannot be 
mathematically studied in detail as a consequence of the 
Incompleteness Theorem.  Yet, even here there is 
randomization at work.  Each neuron temporally and 
spacially sums thousands of inputs to yield one output 
signal, which is either excitatory or inhibitory.  This 
many-to-one mapping defines a randomization, which 
necessarily occurs in a system of randomizations driven 
by feedback.  Experiments have shown that such systems 
converge. One can thus compose an ensemble of 
networks where the conventional neural network weights 
are replaced by a symbolic set using a domain-specific 
modeling language. 



2 Randomization as a measure of 
intelligence 
 

An intelligent software system interacts with the user 
in two principal ways.  First, it requests random 
knowledge be supplied where necessary.  Second, it asks 
the user (knowledge engineer) to confirm symmetric 
knowledge, where presented.  Note that supplying a 
selection from a pull-down menu is partially random and 
partially symmetric in its component tasks. 

Clearly, if a user can supply the requested random or 
symmetric knowledge, then it is through the application 
of acquired knowledge.  It follows that if that knowledge 
can be captured in a knowledge-based system, then the 
requested tasks can be automated. What is being claimed 
here is that a network of cooperating grammar-based 
systems requests knowledge that is random in proportion 
to the size of its collective randomized knowledge bases. 

As more and more knowledge bases are linked in a 
network, then the knowledge needed becomes more and 
more random.  A consequence of Gödel’s 
Incompleteness Theorem is that countably infinite truths 
are recursively enumerable, but not recursive [1].   

Of course, the world is neither totally random, nor 
totally symmetric.  Indeed, this follows from Gödel’s 
Incompleteness Theorem.  The degree of symmetry 
increases with scale.  Were this not the case, then the 
universe would be random in the limit.   

In other words, the degree of randomization possible 
is in proportion to the magnitude of the information, 
where there is no upper bound.  Also, the processor time 
required to randomize such information is unbounded.  
Such absolute minimal entropy can of course never be 
achieved, for it would violate the Incompleteness 
Theorem.  However, there is nothing to preclude the 
construction of randomizing systems of any desired level 
of utility. For the KASER, the utility of randomization is 
integral in learning to abstract design principles for a 
Systems of Systems (SoS). 

 
3 Evolutionary transformation 
 

The question as to which is better, or which came 
first, component randomization, or knowledge-based 
compilation is equivalent to the question: which is better 
bottom-up randomization or top-down randomization?  It 
is clear that component randomization came first because 
just as was the case in evolution, there was no higher-
level knowledge bootstrap initially available.  Then, it 
follows that knowledge-based randomization evolved 
from component randomization.  This means that 
components evolved in two simultaneous directions.  
First, they continued to evolve as domain-specific 
components (horizontal randomization).  Second, some 

components mutated into transformative software 
(vertical randomization).  Transformative software 
evolved just as enzymes evolved in the course of 
biological evolution.  Such software can indeed be 
captured by the grammar.  However, when active it acts 
like a rule or knowledge-base segment and applies 
domain-specific knowledge to further randomize the 
grammar.   

This means that context-sensitive transformations of 
components can be made through spatial and/or temporal 
optimizations.  Transformative components are saved in 
the single grammar in the form of rules, which are even 
capable of randomizing each other, just as they 
randomize their containing grammar!  That is, the 
answer, which is sought is that the grammar must 
randomize components, some of which become active in 
the form of transformation rules -- again in the same 
grammar.  These rules effect transformations on 
themselves.  It follows that the Incompleteness Theorem 
applies, which implies that a countably infinite number 
of novel suggestions can be made by the grammar, which 
while ultimately true cannot be proven.  Such a 
technique has promise from an engineering perspective. 

 
4 Transformative components 
 

Transformational components need to be represented 
in a context-free grammar in such a manner as to be 
context sensitive in their use.  For example, one software 
design may require a quicksort component because it 
involves a large data set, while another may require an 
insertion sort because it does not.  Clearly, the suggested 
component can never converge in the absence of context.  
Furthermore, it is only appropriate to substitute one 
component for its siblings when that component is 
provably better.  Such is the case when, for example, one 
component has been run through an optimizing compiler 
and the other has not.   

The user can mark components with far less effort 
than is required to program code.  Such components then 
serve as foci for randomization.  Interaction with the user 
can serve to further randomize this model.  
Randomization involves the substitution of existing 
component definitions into grammar strings.  Clearly, 
this technique involves a heuristic search because the 
order of substitutions is critical. 

 
5 The Inference Engine 
 

Expert systems, and in particular blackboard 
architectures, provide a proven pragmatic framework for 
the capture and exercise of domain-specific knowledge.  

Here, knowledge is captured by the rule base in the 
form of situation →  action rules. The agenda 



mechanism determines which rule to fire when. 
Typically, a “most-specific” first ordering is applied. In 
this manner, a more-specific rule can be acquired, which 
will override any more general rule – while the more 
general rule will remain to be fired where appropriate. 
This defines the inference engine. The inference engine 
typically runs in interpreted mode, or applies the Rete 
Algorithm where the rule base is relatively static. 
However, the rule base will not be static for the purpose 
investigated here.  

The purpose of the inference engine is to select the 
next rule to be fired, if any, and update the blackboard, if 
applicable.  Here is a high-level view of the applicable 
algorithm is as follows: 

1)  A most-specific match is sought for the 
context.  Initially, this is done for the lowest subclass 
(i.e., the primitives).  The most-specific question (i.e., if 
any), along with its previous response, is always first to 
be presented upon a match.  The user or knowledge 
engineer may subsequently generalize this as necessary. 

2) If no specific match can be found, then 
superclass (i.e., generalize) the instance.  One can 
generalize the context from the right to the left; that is, 
from the most recent predicate to the least-recent 
predicate.  Scan the entire grammar for a match before 
generalizing the next predicate.  Again, seek a most 
specific match (i.e., longest predicate sequence). 

3) Subclasses serve to delimit the search for a 
predicate when manually browsed.  When automatically 
matching the context, they serve to delimit and otherwise 
order the space of functions that need be tested.  Such 
processes could not be practically threaded in the 
absence of such constraints. 

4) A special symbol(s) exists at the top of each 
generalization hierarchy, which provides the user or 
knowledge engineer with a means to insert knowledge 
(i.e., a new class or superclass) if nothing relevant is 
known.  It is analogous in function to the idle process of 
an operating system. 

 
6 Transformational grammars 
 

The concept of randomization has previously been 
shown to reduce the effort required to write software (or 
generate high-level designs), while concomitantly 
improving the quality of the resulting code.  Context-free 
grammars are inherently capable of randomizing, but 
only within the confines of a certain logical regimen.  To 
achieve a greater degree of randomization, one must step 
outside of those confines.  It is clear that when one 'steps 
outside' of these confines, one is dealing with 
randomizing the representational formalism itself -- not 
merely what is represented in that formalism.   

If a component is capable of transforming other 
components, it is said to be active.  The same component 

can be passive in one situation and active in another.  
Active components can also transform each other and 
even themselves.  In fact, two interesting observations 
can be made at this point.  In the case of biologically-
based organisms, the definition of life is one such 
property.  It used to be held that something was alive if it 
was capable of reproduction.        

Grammars that consist entirely of passive 
components allow for the design of relatively inefficient 
components.  This follows because the user may select a 
locally correct component definition in a pull-down 
menu; but doing so, the user is unaware that the resulting 
global design will be inefficient if that component is used 
in the local context.  The inclusion of active components 
provides for the capture and reuse of the users expressed 
knowledge of optimization.  Such optimizations can be 
applied to active components -- including, at least in 
theory, self-referential optimization.  Thus, there need be 
no attendant inefficiency of scale if the grammar 
includes active components. 

Clearly, randomization is ubiquitous.  It must then be 
the case that the proper space-time tradeoff is defined by 
the domain to which the system is to be applied.  Again, 
such systems are necessarily domain-specific in keeping 
with the dictates of the halting problem in computability 
theory.  For example, a web address repeater should be 
composed entirely of passive components.  On the other 
hand, a search for the deepest most random knowledge 
must be conducted by pure chance, strange though as it 
must sound.  The great majority of other systems fall 
between these extremes. 

 

7 Implementation of the KASER 
 

To test the approach presented in this paper for 
machine learning, a KASER architecture was developed 
(see Figure 1) and is currently being implemented. 
“KASER” stands for “Knowledge Amplification by 
Structural Expert Randomization”. A KASER facilitates 
reasoning using domain specific expert and 
commonsense knowledge. It accomplishes this through 
object-classed predicates and an associated novel 
inference engine. It addresses the high cost associated 
with the knowledge acquisition bottleneck. It also 
enables the entry of a basis of rules and provides for the 
automatic extension of that basis through domain 
symmetries.  

KASER systems can be classified as Type I and Type 
II, depending on their characteristics. In a Type I 
KASER, words and phrases are entered through the pull-
down menus. The user is not allowed to enter new words 
or phrases if an equivalent semantics already exists in the 
menu. In a Type II KASER, distinct syntax may be 
equated to yield the equivalent normalized semantics. 
The idea in a Type II KASER is to ameliorate the 



inconvenience of using a data entry menu with scale. In a 
Type II KASER, selection lists are replaced with 
semantic equations from which the list problem is 
automatically solved.  

 
 

 
 

Figure 1: The KASER Architecture 
 
An example of the need for KASERs in feature 

synthesis via feedback will serve to clarify their role. 
First, why the need for features? The answer is not that 
they help the system to perform better; rather, a 
mining/fusion system can not even begin to perform in 
the absence of features. Consider for example the mining 
of a chess game. If all that is recorded are the positions 
of the pieces on the board (i.e., a feature-less system), 
then any mined rule will necessarily be so specific (i.e., 
literal) that it will almost always fail to be matched or be 
replayed. However, if we mine features that suggest, say, 
the value of moving one’s king to the center of the board, 
using depth-first search (DFS), or breadth-first search 
(BFS) as feature-based search paradigms to determine a 
proper move (i.e., to be contrasted with the literal replay 
of a saved move), then clearly the applicability problem 
will have been largely abated. It is empirically 
established that the need for a feature-based 
representation is essential [9].  

Next, as one might imagine, it is not computationally 
easy to find effective features. There are just too many 
candidates and even supercomputers cannot possibly 
search through all combinations. Deduction fails too 
because it presumes that one has the most general feature 
set to begin with, which clearly is not the case. That 
leaves us with computational analogy. Domain-specific 
features such as this one are found through a 
combination of select domain representation [9] and 
domain-specific knowledge. Often the latter must evolve 
and the requirements for this evolution vary with the 
domain. 

Observe though that a KASER can take a known 
domain-specific feature and suggest computationally 
similar features. These candidate features are then fed 
into the mining system to see if they are good predictors 
(i.e., in combination with other known or predicted 
features). A complex evolutionary loop can then be set 
up that can predict future events with ever-increasing 
(but never absolute) accuracy. The results can far 
outperform neural networks, genetic algorithms, case-
based reasoners, and the like. Actual measurements of a 
KASER’s capability for creating analogous knowledge 
(via the transformation of experiential knowledge) are 
given in Figure 2 for automotive diagnosis and are based  
on   about  140  trials   per   vehicle  –  proceeding 
temporally in training from left to right [7]. 

 
 

 
 

Figure 2: Knowledge Transference and Supra-Linear 
Learning in a KASER Applied to an Automotive 
Diagnostic Domain. 

 
The observed “dip” is due to the fact that the 1983 
Plymouth Voyager is diagnostically random to a relative 
degree (i.e., when first encountered) in comparison with 
its two predecessors. Note that the 70 percent asymptote 
seen here is domain dependent. 

One of the major problems with other approaches to 
achieving the aforementioned goals is simply that they 
cannot be coordinated for execution on massively 
concurrent distributed processors. Our approach is 
predicated on randomization theory ([1] and [6], for 
example) and thus need not suffer this fate. Knowledge 
discovery and control algorithms that can fully utilize 
over a million concurrent processors have unrealized 
potential that far exceeds those that can at best run on 
super VonNeuman architectures.  

Another major problem with other approaches is that 
they take the ill-fated General Problem-Solver (GPS) 
approach because they cannot effectively bring domain-
specific knowledge to bear on the problem. Our system’s  
approach has the human-in-the-loop who, at any time, 
can insert domain knowledge into the KASER for replay 
in the context of discovering analogical knowledge (i.e.,  



knowledge that is open under deduction). As a practical 
matter, it is much easier and faster for the user to insert 
domain knowledge into a KASER than it is to 
reconfigure the afferent representations and necessarily 
retrain neural network models as an evolutionary 
paradigm. Again, knowledge, in part, takes the form of 
features and makes for strong learning by our large 
information system. The only way to avoid such 
intractability, in practice, is to encode high-level feature 
representations into the domain. Such techniques are 
closely aligned with evolutionary programming (EP). We 
can do much better, though, through proper evolution 
and inclusion of domain-specific features. 

The complexity of searches in a KASER can be 
delimited through the use of squelches. The classical 
data-mining problem of over-fitting the data is greatly 
ameliorated through the mining of feature-based 
representations because spurious relations are not 
captured by the features. The greater the use of features, 
the less the possibility of over-fitting the data. In other 
words, the claimed superior predictive capability of our 
information systems is upheld. 

Agents can perform automated data conditioning that 
humans find boring or inefficient, and tasks of vigilance 
that humans do not do very well. They are not subjected 
to human conditions, such as boredom or fatigue. In 
mixed-initiative systems, the operator/analyst can 
suggest features that either must occur simultaneously or 
concurrently. Agents can be deployed through the user-
friendly interface to look for features using, say,  a 
network-centric Single Integrated Picture (SIP) and 
report back when certain pre-specified criteria have been 
met. Over time, the operator/analyst with the help of 
agents can increase the content and accuracy of the 
knowledge base. 

The results can provide automated alerts and operator 
oversight; data mining algorithms can automatically 
extract features from message-level databases that 
contain refined sensor and track data as well as various 
features from existing systems. These features sets may 
contain many dimensions – both physical and 
procedural, such as space, time, frequency, and 
constraints, together can constitute patterns of behavior. 
Patterns can be saved in a part of the KASER knowledge 
base designed especially to preserve salient features 
associated with situations of interest or threats. The 
operator/analyst can query the KASER regarding the 
relationships between features, their dependencies and 
constraints. The operator/analyst also can provide 
feedback and additional data to refine the knowledge 
base. Moreover, the operator/analyst can have control of 
the mining algorithms through a user-friendly interface. 
 
 
 

8  Conclusions 
 
The goal of machine learning is to tractably and reliably 
acquire specific situational and commonsense knowledge 
for use in problem-solving systems. KASER 
architectures can replace the conventional learning 
systems with a symbolic model using a domain-specific 
modeling language. The model captures features, which 
provide for accelerated learning, improved predictive 
accuracy,  and   explanative  potential.   The  architecture 
has    many   advantages   over   conventional     learning 
mechanisms – including the characteristics that it is self-
organizing, is far less sensitive to noise and missing 
information, and computation is not serially 
bottlenecked. knowledge can be effectively transferred 
from one domain to another. The transference process 
will necessarily involve machine learning because it is 
inherently incomplete. However, simple learning on a 
case-by-case basis will make for an intractable learning 
system with scale (e.g., SoS). That is why it is necessary 
to introduce symmetry into the learning process – 
reflecting on previous design knowledge. That 
randomness and symmetry are both necessary was made 
clear by the above example and follows from the theory 
of randomization, which was first exemplified by the 
KASER [7]. Moreover, this paper should also make it 
clear that the issue of representation permeates any 
system design [9].  

Randomization and symmetry are core AI concepts. 
Other papers have shown that they serve as a basis for 
much of machine learning [5]-[7]. In this paper, we have 
seen that machine learning, which is predicated on 
randomness and symmetry can serve well in the design 
of SoSs. 

This paper provides the development of a 
computational intelligent architecture using 
randomization. It is well-known that the information 
revolution is destined to become a knowledge revolution, 
which in turn is pre-ordained to become a never-ending 
search for randomizations in the sense made clear herein.  
A metaphorical information-theoretic black hole is the 
ultimate result in keeping with the dictates of the 
Incompleteness Theorem.  Given this, there is an 
inescapable conclusion, namely, the development of a 
computational intelligence is inevitable and has just 
barely begun. A transformational knowledge architecture 
may provide the characteristics needed for this 
development. 
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