

Modeling Human Cognition

Using a Transformational Knowledge Architecture

Stuart H. Rubin1, Gordon Lee2, Witold Pedrycz3, and Shu-Ching Chen4

1SPAWAR -
Systems Center
53560 Hull Street
San Diego, CA 92152

2Dept. of Electrical and
 Computer Engineering
San Diego State University
5500 Campanile Drive
San Diego, CA 92182

3Dept of Electrical and
 Computer Engineering
University of Alberta
Edmonton, Alberta,
Canada T6G 2R3

4School of Computing and
Information Sciences
Florida Int’l University
11200 SW 8th St, ECS 362
Miami, FL 33199

Abstract - While much research has been devoted to
learning and machine intelligence, the field is still in its
infancy. In particular, a technology that will allow for
heuristic exploitation of information domain regularities
to reduce the time required for knowledge acquisition
while concomitantly resulting in an increase in the
reliability of the acquired knowledge is still lacking.
Unfortunately, contemporary learning mechanisms such
as neural network architectures are inherently incapable
of such performance. The objective of this paper is to
present a new way of looking at learning and machine
intelligence which has applicability in many fields such
as in robotics, intelligent agents, data fusion, and
cooperative sensing. In particular, we propose to
construct a new architecture, that is, a transformational
architecture for learning, intelligent fusion and
transference of knowledge. A System of Systems (SoS)
approach is used to realize machine intelligence.
Random differences are learned by the system,
generalized, and made available for subsequent replay in
design transformations. Cross-domain symmetries can
play a major role in design generation in particular and
in the design of SoSs in general. The fundamental theory
of randomization is the science, which underpins the
practice. This strategy is employed in the design of the
Knowledge Amplification by Structural Expert
Randomization or KASER system.

Keywords: intelligent learning systems, KASER, soft
expert system

1 Introduction

Intelligence usually implies the capability of a system
to adapt to changes and uncertainties and the ability to
gather information in order to perform certain tasks.
However, the development of learning algorithms for
machine intelligence that increase the reliability of the
induced knowledge while simultaneously reducing

978-1-4244-2173-2/08/$25.00 ©2008 IEEE

acquisition time is still a challenging problem. The
Incompleteness Theorem and Randomization Problem
dictate a need for such a new approach to information
fusion, the backbone for machine intelligence. It follows
from the Unsolvability of the Randomization Problem [1]
that a capability for learning must be included if the
system is to scale. Randomization, first coined by
Gregory C. Chaitin in 1975 [1], infers that the computer
does what it does best (serves as the search engine) while
the user does that which he or she does best (serves as
the ‘conceptual engineer’). Such a human-machine
symbiosis lies at the cutting edge of software
engineering.

The opposite of randomness, in Chaitin’s sense of the
word, is symmetry. That is, if a pair of objects is not
mutually random, then they are mutually symmetric. For
example, two fruits such as an apple and an orange are
mutually symmetric whereas, a fruit and a rock are
mutually random in most contexts.

A network architecture can be employed to mine
knowledge from information. Such knowledge can even
be applied to the construction of extensible intelligent
search engines, which further serve to put all this new
knowledge at ones fingertips.

For example, consider the neural network. Feed-
forward nets have been studied since the early days of
the perceptron [2]. However, closed-loop nets, which
emulate neural engrams, have not been studied as
thoroughly as should be [3]. Such nets cannot be
mathematically studied in detail as a consequence of the
Incompleteness Theorem. Yet, even here there is
randomization at work. Each neuron temporally and
spacially sums thousands of inputs to yield one output
signal, which is either excitatory or inhibitory. This
many-to-one mapping defines a randomization, which
necessarily occurs in a system of randomizations driven
by feedback. Experiments have shown that such systems
converge. One can thus compose an ensemble of
networks where the conventional neural network weights
are replaced by a symbolic set using a domain-specific
modeling language.

2 Randomization as a measure of
intelligence

An intelligent software system interacts with the user
in two principal ways. First, it requests random
knowledge be supplied where necessary. Second, it asks
the user (knowledge engineer) to confirm symmetric
knowledge, where presented. Note that supplying a
selection from a pull-down menu is partially random and
partially symmetric in its component tasks.

Clearly, if a user can supply the requested random or
symmetric knowledge, then it is through the application
of acquired knowledge. It follows that if that knowledge
can be captured in a knowledge-based system, then the
requested tasks can be automated. What is being claimed
here is that a network of cooperating grammar-based
systems requests knowledge that is random in proportion
to the size of its collective randomized knowledge bases.

As more and more knowledge bases are linked in a
network, then the knowledge needed becomes more and
more random. A consequence of Gödel’s
Incompleteness Theorem is that countably infinite truths
are recursively enumerable, but not recursive [1].

Of course, the world is neither totally random, nor
totally symmetric. Indeed, this follows from Gödel’s
Incompleteness Theorem. The degree of symmetry
increases with scale. Were this not the case, then the
universe would be random in the limit.

In other words, the degree of randomization possible
is in proportion to the magnitude of the information,
where there is no upper bound. Also, the processor time
required to randomize such information is unbounded.
Such absolute minimal entropy can of course never be
achieved, for it would violate the Incompleteness
Theorem. However, there is nothing to preclude the
construction of randomizing systems of any desired level
of utility. For the KASER, the utility of randomization is
integral in learning to abstract design principles for a
Systems of Systems (SoS).

3 Evolutionary transformation

The question as to which is better, or which came
first, component randomization, or knowledge-based
compilation is equivalent to the question: which is better
bottom-up randomization or top-down randomization? It
is clear that component randomization came first because
just as was the case in evolution, there was no higher-
level knowledge bootstrap initially available. Then, it
follows that knowledge-based randomization evolved
from component randomization. This means that
components evolved in two simultaneous directions.
First, they continued to evolve as domain-specific
components (horizontal randomization). Second, some

components mutated into transformative software
(vertical randomization). Transformative software
evolved just as enzymes evolved in the course of
biological evolution. Such software can indeed be
captured by the grammar. However, when active it acts
like a rule or knowledge-base segment and applies
domain-specific knowledge to further randomize the
grammar.

This means that context-sensitive transformations of
components can be made through spatial and/or temporal
optimizations. Transformative components are saved in
the single grammar in the form of rules, which are even
capable of randomizing each other, just as they
randomize their containing grammar! That is, the
answer, which is sought is that the grammar must
randomize components, some of which become active in
the form of transformation rules -- again in the same
grammar. These rules effect transformations on
themselves. It follows that the Incompleteness Theorem
applies, which implies that a countably infinite number
of novel suggestions can be made by the grammar, which
while ultimately true cannot be proven. Such a
technique has promise from an engineering perspective.

4 Transformative components

Transformational components need to be represented
in a context-free grammar in such a manner as to be
context sensitive in their use. For example, one software
design may require a quicksort component because it
involves a large data set, while another may require an
insertion sort because it does not. Clearly, the suggested
component can never converge in the absence of context.
Furthermore, it is only appropriate to substitute one
component for its siblings when that component is
provably better. Such is the case when, for example, one
component has been run through an optimizing compiler
and the other has not.

The user can mark components with far less effort
than is required to program code. Such components then
serve as foci for randomization. Interaction with the user
can serve to further randomize this model.
Randomization involves the substitution of existing
component definitions into grammar strings. Clearly,
this technique involves a heuristic search because the
order of substitutions is critical.

5 The Inference Engine

Expert systems, and in particular blackboard
architectures, provide a proven pragmatic framework for
the capture and exercise of domain-specific knowledge.

Here, knowledge is captured by the rule base in the
form of situation → action rules. The agenda

mechanism determines which rule to fire when.
Typically, a “most-specific” first ordering is applied. In
this manner, a more-specific rule can be acquired, which
will override any more general rule – while the more
general rule will remain to be fired where appropriate.
This defines the inference engine. The inference engine
typically runs in interpreted mode, or applies the Rete
Algorithm where the rule base is relatively static.
However, the rule base will not be static for the purpose
investigated here.

The purpose of the inference engine is to select the
next rule to be fired, if any, and update the blackboard, if
applicable. Here is a high-level view of the applicable
algorithm is as follows:

1) A most-specific match is sought for the
context. Initially, this is done for the lowest subclass
(i.e., the primitives). The most-specific question (i.e., if
any), along with its previous response, is always first to
be presented upon a match. The user or knowledge
engineer may subsequently generalize this as necessary.

2) If no specific match can be found, then
superclass (i.e., generalize) the instance. One can
generalize the context from the right to the left; that is,
from the most recent predicate to the least-recent
predicate. Scan the entire grammar for a match before
generalizing the next predicate. Again, seek a most
specific match (i.e., longest predicate sequence).

3) Subclasses serve to delimit the search for a
predicate when manually browsed. When automatically
matching the context, they serve to delimit and otherwise
order the space of functions that need be tested. Such
processes could not be practically threaded in the
absence of such constraints.

4) A special symbol(s) exists at the top of each
generalization hierarchy, which provides the user or
knowledge engineer with a means to insert knowledge
(i.e., a new class or superclass) if nothing relevant is
known. It is analogous in function to the idle process of
an operating system.

6 Transformational grammars

The concept of randomization has previously been
shown to reduce the effort required to write software (or
generate high-level designs), while concomitantly
improving the quality of the resulting code. Context-free
grammars are inherently capable of randomizing, but
only within the confines of a certain logical regimen. To
achieve a greater degree of randomization, one must step
outside of those confines. It is clear that when one 'steps
outside' of these confines, one is dealing with
randomizing the representational formalism itself -- not
merely what is represented in that formalism.

If a component is capable of transforming other
components, it is said to be active. The same component

can be passive in one situation and active in another.
Active components can also transform each other and
even themselves. In fact, two interesting observations
can be made at this point. In the case of biologically-
based organisms, the definition of life is one such
property. It used to be held that something was alive if it
was capable of reproduction.

Grammars that consist entirely of passive
components allow for the design of relatively inefficient
components. This follows because the user may select a
locally correct component definition in a pull-down
menu; but doing so, the user is unaware that the resulting
global design will be inefficient if that component is used
in the local context. The inclusion of active components
provides for the capture and reuse of the users expressed
knowledge of optimization. Such optimizations can be
applied to active components -- including, at least in
theory, self-referential optimization. Thus, there need be
no attendant inefficiency of scale if the grammar
includes active components.

Clearly, randomization is ubiquitous. It must then be
the case that the proper space-time tradeoff is defined by
the domain to which the system is to be applied. Again,
such systems are necessarily domain-specific in keeping
with the dictates of the halting problem in computability
theory. For example, a web address repeater should be
composed entirely of passive components. On the other
hand, a search for the deepest most random knowledge
must be conducted by pure chance, strange though as it
must sound. The great majority of other systems fall
between these extremes.

7 Implementation of the KASER

To test the approach presented in this paper for
machine learning, a KASER architecture was developed
(see Figure 1) and is currently being implemented.
“KASER” stands for “Knowledge Amplification by
Structural Expert Randomization”. A KASER facilitates
reasoning using domain specific expert and
commonsense knowledge. It accomplishes this through
object-classed predicates and an associated novel
inference engine. It addresses the high cost associated
with the knowledge acquisition bottleneck. It also
enables the entry of a basis of rules and provides for the
automatic extension of that basis through domain
symmetries.

KASER systems can be classified as Type I and Type
II, depending on their characteristics. In a Type I
KASER, words and phrases are entered through the pull-
down menus. The user is not allowed to enter new words
or phrases if an equivalent semantics already exists in the
menu. In a Type II KASER, distinct syntax may be
equated to yield the equivalent normalized semantics.
The idea in a Type II KASER is to ameliorate the

inconvenience of using a data entry menu with scale. In a
Type II KASER, selection lists are replaced with
semantic equations from which the list problem is
automatically solved.

Figure 1: The KASER Architecture

An example of the need for KASERs in feature

synthesis via feedback will serve to clarify their role.
First, why the need for features? The answer is not that
they help the system to perform better; rather, a
mining/fusion system can not even begin to perform in
the absence of features. Consider for example the mining
of a chess game. If all that is recorded are the positions
of the pieces on the board (i.e., a feature-less system),
then any mined rule will necessarily be so specific (i.e.,
literal) that it will almost always fail to be matched or be
replayed. However, if we mine features that suggest, say,
the value of moving one’s king to the center of the board,
using depth-first search (DFS), or breadth-first search
(BFS) as feature-based search paradigms to determine a
proper move (i.e., to be contrasted with the literal replay
of a saved move), then clearly the applicability problem
will have been largely abated. It is empirically
established that the need for a feature-based
representation is essential [9].

Next, as one might imagine, it is not computationally
easy to find effective features. There are just too many
candidates and even supercomputers cannot possibly
search through all combinations. Deduction fails too
because it presumes that one has the most general feature
set to begin with, which clearly is not the case. That
leaves us with computational analogy. Domain-specific
features such as this one are found through a
combination of select domain representation [9] and
domain-specific knowledge. Often the latter must evolve
and the requirements for this evolution vary with the
domain.

Observe though that a KASER can take a known
domain-specific feature and suggest computationally
similar features. These candidate features are then fed
into the mining system to see if they are good predictors
(i.e., in combination with other known or predicted
features). A complex evolutionary loop can then be set
up that can predict future events with ever-increasing
(but never absolute) accuracy. The results can far
outperform neural networks, genetic algorithms, case-
based reasoners, and the like. Actual measurements of a
KASER’s capability for creating analogous knowledge
(via the transformation of experiential knowledge) are
given in Figure 2 for automotive diagnosis and are based
on about 140 trials per vehicle – proceeding
temporally in training from left to right [7].

Figure 2: Knowledge Transference and Supra-Linear
Learning in a KASER Applied to an Automotive
Diagnostic Domain.

The observed “dip” is due to the fact that the 1983
Plymouth Voyager is diagnostically random to a relative
degree (i.e., when first encountered) in comparison with
its two predecessors. Note that the 70 percent asymptote
seen here is domain dependent.

One of the major problems with other approaches to
achieving the aforementioned goals is simply that they
cannot be coordinated for execution on massively
concurrent distributed processors. Our approach is
predicated on randomization theory ([1] and [6], for
example) and thus need not suffer this fate. Knowledge
discovery and control algorithms that can fully utilize
over a million concurrent processors have unrealized
potential that far exceeds those that can at best run on
super VonNeuman architectures.

Another major problem with other approaches is that
they take the ill-fated General Problem-Solver (GPS)
approach because they cannot effectively bring domain-
specific knowledge to bear on the problem. Our system’s
approach has the human-in-the-loop who, at any time,
can insert domain knowledge into the KASER for replay
in the context of discovering analogical knowledge (i.e.,

knowledge that is open under deduction). As a practical
matter, it is much easier and faster for the user to insert
domain knowledge into a KASER than it is to
reconfigure the afferent representations and necessarily
retrain neural network models as an evolutionary
paradigm. Again, knowledge, in part, takes the form of
features and makes for strong learning by our large
information system. The only way to avoid such
intractability, in practice, is to encode high-level feature
representations into the domain. Such techniques are
closely aligned with evolutionary programming (EP). We
can do much better, though, through proper evolution
and inclusion of domain-specific features.

The complexity of searches in a KASER can be
delimited through the use of squelches. The classical
data-mining problem of over-fitting the data is greatly
ameliorated through the mining of feature-based
representations because spurious relations are not
captured by the features. The greater the use of features,
the less the possibility of over-fitting the data. In other
words, the claimed superior predictive capability of our
information systems is upheld.

Agents can perform automated data conditioning that
humans find boring or inefficient, and tasks of vigilance
that humans do not do very well. They are not subjected
to human conditions, such as boredom or fatigue. In
mixed-initiative systems, the operator/analyst can
suggest features that either must occur simultaneously or
concurrently. Agents can be deployed through the user-
friendly interface to look for features using, say, a
network-centric Single Integrated Picture (SIP) and
report back when certain pre-specified criteria have been
met. Over time, the operator/analyst with the help of
agents can increase the content and accuracy of the
knowledge base.

The results can provide automated alerts and operator
oversight; data mining algorithms can automatically
extract features from message-level databases that
contain refined sensor and track data as well as various
features from existing systems. These features sets may
contain many dimensions – both physical and
procedural, such as space, time, frequency, and
constraints, together can constitute patterns of behavior.
Patterns can be saved in a part of the KASER knowledge
base designed especially to preserve salient features
associated with situations of interest or threats. The
operator/analyst can query the KASER regarding the
relationships between features, their dependencies and
constraints. The operator/analyst also can provide
feedback and additional data to refine the knowledge
base. Moreover, the operator/analyst can have control of
the mining algorithms through a user-friendly interface.

8 Conclusions

The goal of machine learning is to tractably and reliably
acquire specific situational and commonsense knowledge
for use in problem-solving systems. KASER
architectures can replace the conventional learning
systems with a symbolic model using a domain-specific
modeling language. The model captures features, which
provide for accelerated learning, improved predictive
accuracy, and explanative potential. The architecture
has many advantages over conventional learning
mechanisms – including the characteristics that it is self-
organizing, is far less sensitive to noise and missing
information, and computation is not serially
bottlenecked. knowledge can be effectively transferred
from one domain to another. The transference process
will necessarily involve machine learning because it is
inherently incomplete. However, simple learning on a
case-by-case basis will make for an intractable learning
system with scale (e.g., SoS). That is why it is necessary
to introduce symmetry into the learning process –
reflecting on previous design knowledge. That
randomness and symmetry are both necessary was made
clear by the above example and follows from the theory
of randomization, which was first exemplified by the
KASER [7]. Moreover, this paper should also make it
clear that the issue of representation permeates any
system design [9].

Randomization and symmetry are core AI concepts.
Other papers have shown that they serve as a basis for
much of machine learning [5]-[7]. In this paper, we have
seen that machine learning, which is predicated on
randomness and symmetry can serve well in the design
of SoSs.

This paper provides the development of a
computational intelligent architecture using
randomization. It is well-known that the information
revolution is destined to become a knowledge revolution,
which in turn is pre-ordained to become a never-ending
search for randomizations in the sense made clear herein.
A metaphorical information-theoretic black hole is the
ultimate result in keeping with the dictates of the
Incompleteness Theorem. Given this, there is an
inescapable conclusion, namely, the development of a
computational intelligence is inevitable and has just
barely begun. A transformational knowledge architecture
may provide the characteristics needed for this
development.

9 References

[1] G.J. Chaitin, “Randomness and Mathematical
Proof,” Scientific American, Vol. 232, 1975, pp. 47-52.

[2] R.L. Harvey, Neural Network Principles, NJ:
Prentice-Hall Inc., 1994.

[3] J. Murthy and S.H. Rubin, “Multi-Sensor
Fusion for Photonic Realization,” to appear in the Proc.
1st Ann. Infor. Integration and Reuse Conf., Atlanta, GA,
1999.

[4] S.H. Rubin, “A Typogenetic Application of
Random Seeded Crystal Learning,” Proc. IEEE Int.
Conf. Syst., Man, Cybern., Chicago, IL, 1992, pp. 283-
289.

[5] S.H. Rubin, “A Heuristic Logic for
Randomization in Fuzzy Mining,” J. Control and
Intelligent Systems, vol. 27, no. 1, pp. 26-39, 1999.

[6] S.H. Rubin, “On the Auto-Randomization of
Knowledge,” Proc. IEEE Int. Conf. Info. Reuse and
Integration, Las Vegas, NV, pp. 308-313, 2004.

[7] S.H. Rubin, S.N.J. Murthy, M.H. Smith, and L.
Trajkovic, “KASER: Knowledge Amplification by
Structured Expert Randomization,” IEEE Transactions
on Systems, Man, and Cybernetics – Part B: Cybernetics,
vol. 34, no. 6, pp. 2317-2329, December 2004.

[8] Rubin, S. and Lee, G. “On the Use of
Randomization for System of Systems (SoS) Design of
Intelligent Machines”, Proc. of the World Automation
Congress, ISSCI, Budapest, 2006.

[9] S. Amarel, “On Representations of Problems of
Reasoning about Actions,” Mach. Intelligence, vol. 3, pp.
131-171, 1968.

	Main Menu
	Authors List
	Browse Papers

