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Abstract

Semantic understanding of multimedia content has be-
come a very popular research topic in recent years. Seman-
tic concept detection algorithms face many challenges such
as the semantic gap and imbalance data, among others. In
this paper, we propose a novel algorithm using multiple cor-
respondence analysis (MCA) to discover the correlation be-
tween features and classes to reduce the feature space and
to bridge the semantic gap. Moreover, the proposed algo-
rithm is able to explore the correlation between items (i.e.,
feature-value pairs generated for each of the features) and
classes which expands its ability to handle imbalance data
sets. To evaluate the proposed algorithm, we compare its
performance on semantic concept detection with several ex-
isting feature selection methods under various well-known
classifiers using some of the concepts and benchmark data
available from the TRECVID project. The results demon-
strate that our proposed algorithm achieves promising per-
formance, and it performs significantly better than those
feature selection methods in the comparison for the imbal-
anced data sets.

1. Introduction

Multimedia retrieval has a long history and many ap-
proaches have been developed to manage and query di-
verse data types in the computer systems [17]. Semantic
understanding of multimedia content is the final frontier in
multimedia information retrieval. One of the fundamental
challenges in semantic understanding of multimedia con-
tent is semantic concept detection. The desired concepts
to be detected could be the existence of an entity such as
faces, trees, etc, or of a more descriptive meaning such
as weather, sports, and more. Content-based concept de-
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tection applications use low-level features, such as visual
features, text-based features, audio features, motion fea-
tures, and other meta data to determine the semantic mean-
ing from the multimedia data. As previously mentioned,
two issues, namely semantic gap and imbalanced data, have
been identified as the main obstacles that any system faces
when attempting to understand the semantics of multime-
dia content. Recently many researchers have directed their
efforts towards the development of machine learning algo-
rithms that will have the capability to bridge the so-called
semantic gap. Schneiderman and Kanade [16] proposed a
system for component-based face detection using statistics
of parts. A framework for a multimodal video event de-
tection system which combined the analysis of both speech
recognition and video annotations was developed [3]. Chen
et al. [4] proposed a framework using both multimodal anal-
ysis and temporal analysis to offer strong generality and
extensibility with the capability of exploring representative
event patterns. In [5], the authors proposed a user-centered
semantic event retrieval framework which incorporated the
Hierarchical Markov Model Mediator mechanism.

In theory, any supervised learning algorithm could be
used for semantic concept detection. However, that is under
the assumption that the distribution of positive and nega-
tive data is balanced in the training data. In fact, this may
not always be true in real multimedia databases, which usu-
ally only include a small collection of positive instances for
some semantic concepts. When the data set is imbalanced,
many machine learning algorithms have problems, and the
prediction performance can significantly decrease [11]. The
two most common sampling schemes which are currently
used to adapt machine learning algorithms to imbalanced
data sets are called over-sampling and under-sampling. The
first adapts the algorithm to the imbalanced data by dupli-
cating the positive data and increasing the frequency of the
positive class in the training set; while the second scheme



does so by discarding some negative data and by that it bal-
ances the frequency of the positive and negative classes in
the training set. Some existing solutions which have been
proposed to handle the imbalanced data set problem are the
analysis of the relationships between the class distribution
of a fixed size training data [18], an approach combining
different expressions of the resampling method [8]. Finally,
in our previous work [13], we proposed a pre-filtering ar-
chitecture to prune the negative instances using association
rule mining.

Feature selection is one of the most frequently used tech-
nique in data pre-processing to remove redundant, irrele-
vant, and noisy data. By reducing the feature space, the ef-
ficiency, accuracy, and comprehensibility of the algorithm
could be improved. Ideally, using feature selection would
make it possible for the system to choose a feature subset
from the original feature set, which best represents the tar-
get semantic concepts. The performance of a feature sub-
set is measured by an evaluation criterion which is selected
based on the evaluation model that is used. The three main
evaluation models that are used for feature selection are the
filter model [9][22], the wrapper model [7][12], and the hy-
brid model [6][21]. The filter model uses the independent
evaluation functions, the wrapper model uses the perfor-
mance of one pre-determined algorithm as the dependent
evaluation criterion, and the hybrid model takes advantage
of the two models by using different evaluation criteria in
different search stages. Both supervised feature selection
algorithms (i.e., the feature selection used for classification
with labeled data) and the unsupervised feature selection al-
gorithms (i.e., the feature selection used for clustering with
unlabeled data) have been developed [14].

In this paper, we propose a novel feature selection algo-
rithm using Multiple Correspondence Analysis (MCA) [15]
to evaluate the extracted low-level features. Using the best
feature subset captured by MCA, we compare the perfor-
mance of the semantic concept detection between the pro-
posed framework with the performance of several other ex-
isting feature selection algorithms using some of the con-
cepts and benchmark data from TRECVID 2007 [1] under
various well-known classifiers, such as the Decision Tree
(C4.5), K-Nearest Neighbor (KNN), Support Vector Ma-
chine (SVM), Adaptive Boosting (AdaBoost), and Naive
Bayes (Bayes). Overall, the proposed framework performs
better than other feature selection methods over all five clas-
sifiers, and performs significantly better with imbalanced
data sets.

This paper is organized as follows. In Section 2, the
different technologies of filter model based feature selec-
tion and classification methods are introduced. Section 3
presents the details of the proposed feature selection algo-
rithm. Section 4 discusses our experimental results, and the
conclusion is provided in Section 5.

2 Relevant Technologies

In this section, we introduce those algorithms that we
used in the performance comparison. There are many
feature space reduction algorithms and classification algo-
rithms available in the literature. Here, several most popular
algorithms are selected.

2.1 Feature Space Reduction Algorithms

As previously mentioned, there are supervised and unsu-
pervised feature selection methods which are used to reduce
the high-dimensional data sets. For the supervised filter-
based feature selection algorithms, they can be separated
into several categories from the different points of views.
For the comparison purposes, we select the following algo-
rithms which are available in WEKA [2].

e Correlation-based Feature Selection (CFS): CFS
searches feature subsets according to the degree of re-
dundancy among the features. The evaluator aims to
find the subsets of features that are individually highly
correlated with the class but have low inter-correlation.
The subset evaluators use a numeric measure, such as
conditional entropy, to guide the search iteratively and
add features that have the highest correlation with the
class.

e Statistics-based Feature Selection: Information Gain
(IG) and Chi-Square measures are examples in this cat-
egory. The Information gain measure evaluates fea-
tures by computing their information gain with respect
to the class. The Chi-square measure evaluates fea-
tures by ranking the chi-square statistic of each feature
with respect to the class.

e Instance-based Feature Selection: Relief is an
instance-based method that evaluates each feature by
its ability to distinguish the neighboring instances. It
randomly samples the instances and checks the in-
stances of the same and different classes that are near
to each other. An exponential function governs how
rapidly the weights degrade with the distance.

e Transformation-based Feature Selection: Principal
Components Analysis (PCA), for example, transforms
the set of features to the eigenvectors space. Since each
eigenvalue gives the variance along its axis, we could
use such a special coordinate system that depends on
the cloud of points with a certain variance in each di-
rection. All the components could be used as new fea-
tures but the first few account for most of the variance
in the data set.



The details of these functions available in WEKA could
be found in [19]. An important step of using a feature selec-
tion method is to set up the stopping criterion, which deter-
mines when the feature selection algorithm stops and con-
cludes that the subset found at that point is the best feature
subset. Some of the stopping criteria adopted by the feature
selection methods in the literature are (i) complete search;
(i1) a threshold, such as minimum number of features; (iii)
subsequent addition, such as in CFS; and (iv) classification
error rate [14].

2.2 Classification Algorithms

There are several categories of classifiers. Some of
them are trees, functions, Bayesian classifiers, lazy clas-
sifiers, rules-based, and meta-learning algorithms [19].
The most popular classification algorithms in data mining
voted in [20] are C4.5 (trees), Support Vector Machine
(functions), Naive Bayesian (Bayesian), K-Nearest Neigh-
bor (lazy), Apriori (rules), and Adaptive Boosting (meta-
learning). Based on this fact, we chose to use the afore-
mentioned classification algorithms in our experiments with
the exception of the association rule-based classification, as
WEKA does not include an implementation for that clas-
sifier. The following are the definitions of those classifiers
that are used in our experiments taken from [10]:

e Decision Tree (C4.5).

C4.5 decision tree learner is a tree structure where
each non-leaf node represents a test on a feature, each
branch denotes an outcome of the test, and each leaf
node represents a class label. The Decision Tree clas-
sifier became popular due to the fact that the construc-
tion of a decision tree classifier does not require any
domain knowledge, and the acquired knowledge in a
tree form is easy to understand. In addition, the clas-
sification step of decision tree induction is simple and
fast. C4.5 uses the information gain ratio as its feature
selection measure. Besides the splitting criterion, an-
other interesting challenge of building a decision tree
is to overcome the over-fitting of the data. To achieve
that, C4.5 uses a method called pessimistic pruning.

e Support Vector Machine (SVM).

Support Vector Machine is built on the structural risk
minimization principle to seek a decision surface that
can separate the data points into two classes with a
maximal margin between them. The choice of the
proper kernel function is the main challenge when us-
ing a SVM. It could have different forms such as Ra-
dial Basis Function (RBF) kernel and polynomial ker-
nel. The advantage of the SVM is its capability of
learning in sparse, high-dimensional spaces with very

few training examples by minimizing a bound on the
empirical error and the complexity of the classifier at
the same time. WEKA uses the Sequential Minimal
Optimization (SMO) algorithm for SVM.

e Naive Bayesian (Bayes).

The Bayesian classifier is a statistical classifier, which
has the ability to predict the probability that a given
instance belongs to a particular class. The probabilis-
tic Naive Bayes classifier is based on Bayes’s rule and
assumes that given the class, features are independent,
which is called class conditional independence. In the-
ory, Bayesian classifiers have the minimum error rate
in comparison to all other classifiers. However, this
is not always the case in practice, because of the pre-
viously mentioned assumption. Even so, the Naive
Bayesian classifier has exhibited high accuracy and
high speed when applied to large databases.

e K-Nearest Neighbor (KNN).

The K-Nearest Neighbor algorithm is used under the
assumption that instances that are closer to each other
generally belong to the same class. Thus KNN is an
instance-based learner. The testing sample is labeled
according to the class of its first K nearest neighbors.
The weight is converted form the distance between the
test instance and its predictive neighbors in the train-
ing instances. As new training instances are added, the
oldest ones are removed to keep the number of training
instances at the size of K. The most common metric for
computing the distance is the Euclidean distance. For
nominal data, the distance between instances accord-
ing to a particular feature is O if their values are the
same and 1 otherwise.

e Adaptive Boosting (AdaBoost).

Boost is a general strategy to improve the accuracy of
the classifiers. In boosting, weights are assigned to the
training instances and a series of classifiers is itera-
tively learned. WEKA includes the Adaptive Boosting
M1 method. One advantage of the AdaBoost is that it
is fast. It can be accelerated by specifying a threshold
for weight pruning.

3 The Proposed Framework

The algorithm proposed in this paper achieves the goal
of reducing the feature space of a semantic concept detec-
tion system by applying Multiple Correspondence Analysis
(MCA) to multimedia feature data.



3.1 Multiple
(MCA)

Correspondence Analysis

Multiple correspondence analysis (MCA) extends the
standard Correspondence Analysis (CA) by providing the
ability to analyze tables containing some measure of cor-
respondence between the rows and columns with more
than two variables [15]. In its basic format, a multimedia
database stores features (attributes) and class labels for sev-
eral instances such as frames, shots, or scenes, for example.
If we consider the instances as the rows in the MCA table,
and the features (attributes) and class labels as the columns
of that table, we can see that when using MCA, the cor-
respondence between the features and the classes could be
captured, which could help us narrow the semantic gap be-
tween the low level features and the concepts (class labels)
in a multimedia database.

MCA is used to analyze a set of observations described
by a set of nominal variables, and each nominal variable
comprises several levels. In general, the features that are
extracted from multimedia streams are numerical in their
nature. Therefore, in order to be able to properly use MCA,
the extracted quantitative features should be quantized into
bins in some manner. Assuming that there are I rows and K
columns in the MCA table, the nominal features will have
Ji, levels, and the total number of items (bins) will be equal
to J. Therefore, if there are I data instances in a multime-
dia database, which are characterized by a set of low-level
features, after discretization (i.e., converting the numerical
features into nominal ones), there will be K nominal fea-
tures (including the classes), and each feature will have Jj,
items (feature-value pairs).

Next, MCA will scan the discretized data to generate the
indicator matrix. The indicator matrix is a binary represen-
tation of the different categorical values. Each column in
this matrix represents a level (item) generated during the
data discretization process, while each row represents an
instance. The indicator matrix will indicate the appearance
of items using the value 1. For a specific instance, only
one level (item) can be present for each feature, and there-
fore each feature can only have one value of 1 in the indi-
cator matrix for each instance. Standard CA analyzes the
indicator matrix; while MCA calculates the inner product
of the indicator matrix, which generates the Burt matrix
Y = XT X and uses it later for analysis. The size of the
indicator matrix is I x .J, and the size of the Burt matrix is
J x J.

Now, let the grand total of the Burt matrix be N and
the probability matrix be Z = Y/N. The vector of the
column totals of Z is a 1 x J mass matrix M, and D =
diag(M). Furthermore, let A be the diagonal matrix of
the singular values, the columns of P be the left singular
vectors (gene coefficient vectors), and the rows of Q7 be

the right singular vectors (expression level vectors) in the
singular value decomposition (SVD) theorem. MCA will
provide the principle components using SVD as follows.

D7 3(Z - MMT)(DT)"2 = PAQ". (1)

Finally, the multimedia data could be projected into a
new space by using the first and the second principle com-
ponents discovered using Equation 1. The weight of the cor-
relation between the different items and the different classes
can be used as an indication to the similarity between them.
Such similarity could be calculated as the inner product of
each item and each class, i.e., the cosine of the angle be-
tween each item and each class. Since the difference be-
tween an item and a class ranges from 0 to 180 degrees, and
the cosine function decreases from 1 to —1 for that range,
the higher correlated item and class would be the pairs that
project to the new space with a smaller angel between them.

3.2 MCA-based Feature Selection

The proposed framework consists of several stages as
can be seen in Figure 1.

Feature Extraction

numerical features
L 4

Normalization

normalized features

Discretization

nominal features

item-class correlation angles

Y

Feature Selection

best feature subset

) J

Classification

Figure 1. The Proposed Framework.

First, the audiovisual low-level features are extracted
from the data. A total of 28 different features, including



11 visual features, 16 audio features, and 1 feature that rep-
resents the length of the shot are extracted. The normal-
ization process is done right after the features have been
extracted. Next, we discretize the data in order to be able to
properly use MCA, since all the features are numerical and
MCA requires the input data to be nominal. We discretize
the training data set first, and then use the same partitions
for discretizing the testing data set. Each interval of the dis-
cretization is considered as an item.

Following that, MCA is applied to the discretized train-
ing data set and the angles between each item and each class
are computed. As mentioned before, the angle between an
item and a class has been observed to quantify the correla-
tion between them, and therefore, we have decided to use
the angle as our stopping criterion for the proposed fea-
ture selection algorithm. One possible threshold condition
could be those items whose angle values are smaller than
90 degrees, but it may not be a good choice. In order to
determine the proper angle threshold value, the angles gen-
erated by MCA for each concept are sorted in the ascending
order. We used the first big gap from the distribution of
the sorted angles before 90 degree as the lower boundary,
and used 90 degrees as the upper boundary. The average of
the angles falling into this range was used as our threshold
value. Based on this threshold value, the items which have
the corresponding angle values that were smaller than the
threshold value were kept. This automatic procedure facil-
itates our proposed framework the capability of identifying
different angle thresholds for positive and negative classes.
Therefore, we could always get enough best selected items
to identify the positive class from the data set.

After the different items generated by the discretization
stage are evaluated, the best features will be selected when
most of the items from a particular feature are kept. Fi-
nally, the classification for the selected semantic concepts
by using the aforementioned five well-known classifiers is
conducted.

4 Experiments and Results

To evaluate the proposed framework, we used the news
broadcast and movies provided by TRECVID [1]. Using
23 video data as our testbed, we have chosen five concepts,
namely vegetation, sky, outdoor, crowd, and face. These
concepts were taken from the list of concepts provided
for the TRECVID 2007 high level feature extraction task.
We chose these concepts because (i) there are sufficient
amounts of instances to build useful training and testing
data sets for these concepts, and (ii) these concepts repre-
sent both balanced and imbalanced data sets, which allows
us to demonstrate the robustness of our framework. The
concept names and their corresponding definitions from [1]
are discussed as follows. The ratio of the number of posi-

tive instances to the number of negative instances for each
concept is listed in Table 1.

e Vegetation: Shots depicting natural or artificial green-
ery, vegetation woods, etc.;

e Sky - Shots depicting sky;
e Crowd - Shots depicting a crowd;
e OQOutdoor - Shots of outdoor locations;

e Face: Shots depicting a face.

Concept Name | P/ N Ratio
Vegetation 0.12
Sky 0.14
Crowd 0.28
Outdoor 0.51
Face 0.96

Table 1. Positive (P) to Negative (N) instance
ratio per investigated concept.

We evaluated our system using the precision (Pre), recall
(Rec), and F1-score (F1) metrics under the 3-fold cross vali-
dation approach, i.e., three different random sets of training
and testing data sets were constructed for each concept. To
show the efficiency of our proposed framework, we com-
pared its performance to the performance of the four differ-
ent feature selection algorithms using five different classi-
fiers available in WEKA [2]. The average precision, recall,
and F1-score values of all the feature selection methods for
the aforementioned concepts are shown in Table 2 through
Table 6. These tables can be read as follows: columns 3 to 7
represent the different feature selection algorithms we have
used. These algorithms are: Correlation-based feature se-
lection (CFS), Information gain (IG), Relief (RE), Principal
components analysis (PCA), and Multiple correspondence
analysis (MCA). The rows represent the different classi-
fication algorithms used as follows: Decision tree (DT),
Support vector machine (SVM), Naive Bayesian (NB), K-
nearest neighbor (KNN), and Adaptive boosting (AB).

We observe that SVM always yields zero precision and
recall in those concepts with extremely imbalanced data,
namely vegetation (ratio=0.12) and sky (ratio=0.14). This
is because when the class distribution is too skewed, SVM
will generate a trivial model by predicting everything to the
majority class, i.e., the negative class. In the case of the
Information Gain, Relief, and PCA methods, WEKA pro-
duced a ranked list of the features without performing the
actual feature selection. Due to this fact, we had to se-
lect the best stopping criteria. After an extensive empiri-
cal study, we have set the stopping criteria for these three



CFS 1G RE | PCA | MCA

Pre | 0.00 | 0.00 | 0.00 | 0.00 | 0.17

DT Rec | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
F1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 CES 1G RE | PCA | MCA
Pre | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 Pre | 059 | 0.42 | 0.17 | 0.78 | 0.59
SVM | Rec | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 DT Rec | 0.06 | 0.04 | 0.03 | 0.05 | 0.08
F1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 Fl1 0.11 | 0.07 | 0.05 | 0.09 | 0.14
Pre | 0.00 | 0.35 | 0.28 | 0.13 | 0.38 Pre | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
NB Rec | 0.00 | 0.03 | 0.02 | 0.01 | 0.09 SVM | Rec | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
F1 | 0.00 | 0.05 | 0.04 | 0.01 | 0.14 F1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Pre | 0.00 | 0.50 | 0.35 | 0.19 | 0.37 Pre | 044 | 0.23 | 0.32 | 047 | 0.37
KNN | Rec | 0.00 | 0.05 | 0.04 | 0.06 | 0.11 NB Rec | 0.20 | 0.31 | 0.13 | 0.10 | 0.47
F1 | 0.00 | 0.09 | 0.06 | 0.09 | 0.16 F1 | 028 | 0.26 | 0.17 | 0.16 | 0.40
Pre | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 Pre | 0.51 | 0.50 | 0.41 | 0.36 | 0.47
AB Rec | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 KNN | Rec | 0.12 | 0.13 | 0.12 | 0.20 | 0.19
F1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 F1 | 0.19 | 0.20 | 0.17 | 0.25 | 0.27
Pre | 0.60 | 0.38 | 0.35 | 0.62 | 0.59
Table 2. Average precision (Pre), recall (Rec) AB Rec | 0.02 | 0.03 | 0.02 | 0.04 | 0.06
and F1-score (F1) for “vegetation” over five F1 | 004 | 0.06 | 0.04 | 0.08 | 0.12

classifiers

Table 3. Average precision (Pre), recall (Rec)
and F1-score (F1) for “sky” over five classi-

methods as follows. We have calculated the average score fiers

of each of the previously mentioned ranked lists and used
this average value as a threshold for selecting the features,
i.e., those features that had a higher score than the average
value were selected as the best subset of features produced
by these three methods.

As can be observed in Tables 2 through 6, our proposed
framework achieves promising results compared to all the

other feature selection methods over all classifiers, espe- CES | IG RE | PCA | MCA

Pre | 0.60 | 0.80 | 0.62 | 0.37 | 0.57
DT Rec | 0.19 | 0.10 | 0.19 | 0.16 | 0.23
F1 | 028 | 0.15 | 0.28 | 0.22 | 0.32

cially in the cases of the imbalanced data sets (i.e., vege-
tation, sky, and crowd concepts). We can further observe
that the recall values and the Fl-scores for the proposed

framework are always higher over all the classifiers. This Pre | 0.82°) 0.79 | 0.79 | 033 | 0.79

encouraging observation demonstrates the fact that the pro- SVM | Rec | 0.06 | 0.08 | 0.08 | 0.01 | 0.08

posed framework has the ability to help the classifiers to de- F1 | 0.11 ] 0.15 ] 0.15 | 0.02 | 0.15
tect more positive instances in the testing data set without Pre | 0.49 | 0.49 | 0.48 | 0.48 | 0.46
misclassifying too many negative instances by identifying NB Rec | 0.40 | 0.31 | 0.34 | 0.17 | 0.41
the best feature subset for each of the investigated concepts. F1 | 044 037039 ] 025 | 044

In addition, the proposed framework was able to reduce the Pre | 0.46 | 0.60 | 0.55 | 0.43 | 0.48
feature space by approximately 50% for all the investigated KNN | Rec | 0.29 | 020 | 0.23 | 0.35 | 0.31
concepts in the experiments, which is considered a signif- F1 1036 | 0.29 | 0.30 | 0.37 | 0.38
icant feature space reduction. This demonstrates that the Pre | 0.63 | 0.76 | 0.77 | 0.66 | 0.64
proposed framework can better represent the semantic con- AB Rec | 0.12 | 0.10 | 0.04 | 0.05 | 0.14
cepts using the reduced feature set. F1 | 0.19 | 0.16 | 0.07 | 0.09 | 0.22

Table 4. Average precision (Pre), recall (Rec)
and F1-score (F1) for “crowd” over five clas-
sifiers

5 Conclusions

In this paper, a correlation-based and transformation-
based feature selection framework using MCA is proposed
to handle multimedia semantic understanding related prob-
lems such as high-dimensionality, semantic gap, and the



CFS | IG | RE | PCA | MCA

Pre | 0.59 | 0.59 | 0.58 | 0.54 | 0.60
DT Rec | 0.47 | 0.41 | 0.41 | 0.44 | 0.48
FI | 052|048 | 0.48 | 049 | 0.53

Pre | 0.58 | 0.57 | 0.38 | 0.59 | 0.64
SVM | Rec | 0.34 | 0.32 | 0.22 | 0.33 | 0.42
FI | 043 | 041 | 0.28 | 0.42 | 0.50

Pre | 0.54 | 0.53 | 0.52 | 0.58 | 0.53
NB Rec | 0.51 | 0.51 | 0.44 | 0.39 | 0.54
FI | 053|052 | 046 | 047 | 0.54

Pre | 0.58 | 0.56 | 0.53 | 0.50 | 0.54
KNN | Rec | 0.50 | 0.45 | 0.49 | 0.50 | 0.57
FI | 0.53 | 0.50 | 0.50 | 0.50 | 0.56

Pre | 0.59 | 0.59 | 0.56 | 0.56 | 0.58
AB Rec | 0.32 | 0.35 | 0.21 | 0.29 | 0.39
F1 | 041|043 | 030 | 038 | 0.47

Table 5. Average precision (Pre), recall (Rec)
and F1-score (F1) for “outdoor” over five
classifiers

CFS | IG | RE | PCA | MCA

Pre | 0.65 | 0.65 | 0.66 | 0.68 | 0.65
DT Rec | 0.61 | 0.62 | 0.58 | 0.54 | 0.63
F1 | 0.63 | 0.63 | 0.62 | 0.61 | 0.64

Pre | 0.67 | 0.67 | 0.66 | 0.66 | 0.68
SVM | Rec | 0.63 | 0.63 | 0.63 | 0.62 | 0.64
FI | 0.65 | 0.65 | 0.64 | 0.64 | 0.66

Pre | 0.64 | 0.64 | 0.64 | 0.65 | 0.65
NB Rec | 0.65 | 0.65 | 0.64 | 0.59 | 0.66
FI | 0.65 | 0.65 | 0.64 | 0.60 | 0.65

Pre | 0.61 | 0.61 | 0.62 | 0.62 | 0.62
KNN | Rec | 0.71 | 0.67 | 0.67 | 0.65 | 0.73
FI | 0.66 | 0.64 | 0.64 | 0.64 | 0.67

Pre | 0.64 | 0.64 | 0.64 | 0.66 | 0.63
AB Rec | 0.63 | 0.65 | 0.64 | 0.54 | 0.68
FI | 0.64 | 0.64 | 0.64 | 0.69 | 0.65

Table 6. Average precision (Pre), recall (Rec)
and F1-score (F1) for “face” over five classi-
fiers

imbalance data in a multimedia database. The TRECVID
2007 benchmark data is used to evaluate the concept de-
tection performance of our proposed framework compared
with several widely used feature selection schemes under
several well-known classifiers. We utilize the functionality
of MCA to measure the correlation between extracted low-
level audiovisual features and classes to infer the high-level
concepts (semantics). The experimental results show that
our proposed framework performs well in improving the de-
tection of the high-level concepts, namely vegetation, out-
door, sky, crowd, and face. Furthermore, the results demon-
strate the superiority of the proposed framework over the
other feature selection methods used in the case of the im-
balanced data over all five classifiers. The proposed feature
selection framework proves to play a major role in assisting
semantic concept detection systems to better understand the
semantic meaning of multimedia data under real world con-
straints such as imbalanced data sets.
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