

Directing Web Search Engines using a Knowledge Amplification

by Structured Expert Randomization Architecture

S.H. Rubin1, Isaí Michel Lombera2, Michael Armella3, Jeremy Conn3, S.C. Chen3 and G. Lee2

1SPAWAR -
Systems Center
53560 Hull Street
San Diego, CA
92152-5001

2Dept. of Electrical and
Computer Engineering

 San Diego State Univ.
 San Diego, CA 92182

3School of Computing
and Information Science
Florida Int’l University
ECS 362
Miami, FL 33199

Abstract. The capability to dynamically retrieve detailed
multimedia which may come from knowledge bases as
well as sensor information in response to specific user
queries offers the potential to create decision support
systems of unprecedented utility. Such systems can learn
from user feedback; by minimizing the system training
required of the knowledge engineer, we can more
effectively process vast free-text databases of knowledge
for minimal development cost. Furthermore, these bases
may be concurrently created and maintained and search
algorithms can run on parallel processors connected in
heterogeneous distributed networks. This paper presents
an approach to web searching using knowledge
amplification by structured expert randomization
platform. Creativity, training, and decision support via
just-in-time knowledge are fused in a system that provides
the intelligence analyst with critical information where
and when it is needed and in a user-friendly format. In
this paper, national security examples are selected;
extension to a plethora of other domains for decision
support and training is inevitable.

1 Web Search Engines

The World Wide Web continues to play an
important role in storing and retrieving informational
databases for many applications in the civilian,
commercial and military environments. Search engines
for the general web typically do not really search the
World Wide Web directly. Each one may search a
database of the full text of web pages automatically
harvested from the billions of web pages residing on
servers. When one searches the web using a search
engine, one may be searching a somewhat stale copy of
the real web page. When one clicks on links provided in a
search engine's search results, usually one retrieves the
current version of the page from the server.

As is well-known, search engine databases are
selected and built by computer programs denoted as
spiders. These programs "crawl" through the web, finding
pages for potential inclusion by following the links in the
pages they already have in their databases (i.e., already
"known about"). The programs can do not “think” or use

judgment to "decide to go look something up and see
what's on the web about it”.

After spiders find pages, they pass them on to
another computer program for "indexing". This program
identifies the text, links, and other content in the page and
stores it in the search engine database's files so that the
database can be searched by keyword and whatever more
advanced approaches are offered, and the page will be
found if the search matches its content.

There is a need to provide intelligence in web
searching. Note that web searching can be used to poll
sensor network information whereby sensor data can be
fed to the user through a web interface. In order for the
search engine as well as the user to learn as one searches
the web for information, a knowledge amplification
architecture is suggested to accelerate the learning process
thereby improving the efficiency of the search. This
synergy between user and the knowledge base with the
knowledge amplifier as the conduit accelerates the
learning process. The knowledge amplifier is now
discussed.

2 An Introduction to the KASER Algorithm

The KASER is a knowledge amplifier (the acronym
stands for Knowledge Amplification by Structural Expert
Randomization) based on the principle of randomization.
This principle refers to the use of fundamental knowledge
in the capture and reduction of a larger, dependent space
of knowledge (not excluding self-reference). In a KASER
system, the user supplies declarative knowledge in the
form of a semantic tree using single inheritance. Unlike
conventional intelligent systems, however, KASERs are
capable of accelerated learning in symmetric domains [1-
2].

Conventional expert systems generate cost curves
below the breakeven line. In conventional expert systems,
cost increases with scale and the increase is never better
than linear. In the case of KASER systems, the cost
decreases with scale and is always better than linear,
unless the domain is asymmetric (random). Perfectly
(asymmetric) random domains are trivial constructs and

are not encountered in the construction of practical
applications [3].

Conversely, perfectly symmetric (non-random)
domains are also trivial and are also not found in practice
[3]. In other words, a perfectly random domain would
have no embedded patterns (true random numbers), while
a perfectly symmetric domain would be infinitely
compressible (free of information content). Clearly, such
constructs are strictly artificial. The more symmetric is
the operational domain, the less the cost of knowledge
acquisition.

As a synopsis of the KASER, a production rule is
defined to be an ordered pair whose first member is a set
of antecedent predicates and whose second member is an
ordered list of consequent predicates. Predicates can be
numbers or words [4-5]. The linking of the two members
forms rules or courses of action.

KASER systems can be classified as Type I and
Type II, depending on their characteristics. In a Type I
KASER, words and phrases are entered through the pull-
down menus. The user is not allowed to enter new words
or phrases if an equivalent semantics already exists in the
menu. In a Type II KASER, distinct syntax may be
equated to yield the equivalent normalized semantics. The
idea in a Type II KASER is to ameliorate the
inconvenience of using a data entry menu with scale. In a
Type II KASER, selection lists are replaced with semantic
equations from which the list problem is automatically
solved.

Thus a KASER system can amplify a knowledge
base. It represents an advance in the design of intelligent
systems because of its capability for symbolic learning
and qualitative fuzziness. In a conventional expert system,
the context may cover the candidate rule antecedent, in
which case an agenda mechanism is used to decide which
matched rule to fire (most-specific match, first to match,
chance match.). The KASER system follows the same
rule-firing principle – only the pattern-matching algorithm
is necessarily more complex and embeds the conventional
approach as its degenerate case.

In order to transmit and receive information back
and forth between the user, the web and the KASER
system in a symbiotic manner, a novel graphics-user-
interface has been designed. We note that the GUI plays
an important role in supporting learning for the KASER
through the user. In fact, this relationship accelerates
learning through visualization.

3 The Web Searching Design: The Multimedia
Component and Integration with the KASER

Consider the case when multiple sensors acquire
information that needs to be fused in some synergistic
manner. In this paper, we consider the web as a feasible
method to acquire and fuse such information. Further, this
information can be prioritized, based upon how the user
values the data acquired. The applications are many as

one could also apply the architecture for web browsing to
gather information from databases attached to the internet
through web links. To interface the KASER with the user,
with the intent of performing web searches, a multimedia
architecture is envisioned (see Figure 1). Multimedia
objects are defined to be text blocks, video snippets, slide
shows, and/or sound bytes. Databases may also come
from sensors such as images, acoustic detectors, or
infrared devices which need to be integrated in a web
based format. The shorter these objects, the more reusable
generally. Thus, videos will be of a pedagogical nature
and average about 15 seconds to one minute in length. For
example, a video might explain complex chemical
procedures for the identification of chemical-biological
threats to the water supply (e.g., Keith [6]).

First, the user supplies a query. The query is
automatically supplied to the Web Search box (i.e., as
determined by a checkbox on the user settings page) to
search for all of the most relevant instructional/decision
support materials. Meta-search engines are no longer
recommended. Web search engines will effectively filter
out, or take into account, such words as “how”, “can”,
“I”, “the”, “against”, “a”, etc. from the initial query. We
note here that web search engines are sequence sensitive.
‘OR’ searches are used for variants (e.g., airline OR
plane). Capitalization does not matter – excepting in the
specification of the disjunct, ‘OR’.

In addition to query spell checking (or auto-
correction as one types/speaks), queries will be
dynamically maintained in an auto-associative list. Then,
the system will offer to extrapolate the user’s prefix upon
its recognition. This capability for auto-completion will
also serve to improve the utility of a speech-recognition
system front end.

The initial query will delimit the returned results
from no data found to many pieces of data found. Pages
may embed multimedia links, contain pdfs, Word, Excel,
PowerPoint, and/or sensor data formats. A checkbox on
the user-settings page will be used to determine which
formats to pull the textual content off of or ignore (e.g.,
scan all .pdf files or ignore all .avi files). If too few or
irrelevant pages (i.e., based on a defined threshold on the
user-settings page) are returned, as gathered from the
counter on the source page for the search engine(s), then
the user may rephrase the query and/or modify the content
of the S textboxes. In addition, if too many pages are
returned by the query, then the user may scan only the
first m websites and/or fill the first n pages with filtered
text and/or stop upon timeout – as defined on the user-
settings page.

Embedded links to multimedia will be shown in
thumbnail form at the four corners of the screen. In
addition, the user may define templates or schema (along
with simple algorithms that select which schema to apply
when) to use for this or similar displays, which may be
accessed through the user-settings page.

A textbox will allow for the inclusion of embedded
Web text and/or media links or sensor data. Multimedia
can otherwise be sorted for relevancy and presented in
sequence. It can be gathered from all relevant web
pages/paragraphs having the highest possibilities.

Fig. 1. GIU Diagram of the KASER-based
Web Search System

The KASER is designed to return a sequence of

paragraphs, which are literally retrieved from the first m
websites (or sensor nodes which interface to the internet),
produced in response to the initial query. In this initial
work, we concentrate on web pages and text. The web
pages are normalized by removing html format
instructions so that each page will be presented using a
uniform simple textual format. Each paragraph is tagged
with a numeric possibility and (categorically by website)
returned in non-increasing order of this relevancy statistic.
The user sets a squelch through the user-settings page,
which filters out paragraphs (websites) that have a
possibility below threshold, which is zero by default. This
squelch can be set to return some percentage of the best of
the remainder, or alternatively up to some fixed number
of paragraphs and/or pages – again through the use of
parameters set on the user-settings page. Duplicate
websites/paragraphs are checked for and are never
written.

In addition to an interactive query textbox by way of
a user-defined avatar, there are two additional textboxes:
The S+ textbox allows the user to enter descriptive
sentences pertaining to what they are looking for and may
be arbitrarily long. The S- textbox allows the user to enter
descriptive sentences pertaining to what they do not want
to retrieve. The use of these positive and negative
textboxes, respectively, is optional and if left blank, the
system will function much as does the underpinning web
search engine(s).

Again, all communications between the user and the
web-search engine(s) are performed by way of a user-
defined avatar. Speech synthesis may be incorporated in

the future for interacting with an avatar and/or for reading
text (e.g., for the visually impaired) as set by a parameter
on the user-settings page. The system will be able to work
with speech synthesizers and avatars, but will be
constructed using high-quality commercial products
(COTS) as appropriate. Ideally, but not necessarily, the
user will be able to switch between “freeware” and COTS
through the user-settings page. Moreover, the eventual
availability of quality affordable speech recognition
software will allow queries (and their replies) to be ported
to any number of handheld devices (e.g., cell phones).

Let, S+ be the sequence of words found in the
positive textbox and let S- be the sequence of words
found in the negative textbox, where S denotes both
generically. It is further required that S+ ∩ S- be the
empty set. For example, the word, “the” (and others) are
removed from S because they are common to both S+ and
S- and thus cannot be used to discriminate the positive
from the negative content. These words are not deleted
from S+ or S-. Rather, if hashing a word or sequence of
words for placement in one hash table finds it to be
already present in the inverse hash table, then rather than
place the word or sequence, it is expunged from the hash
table where it was found.

A hash dictionary may be incorporated to normalize
all words – excepting the query box, but including S and
the web text to be crawled. For example, “crawled” is
replaced by “crawl” for prefix-based pattern-matching
purposes (i.e., “crawl” then matches “crawled”,
“crawling”, but not “crawler”). Similarly, “commonly” is
replaced by “common”; “statistics” is replaced by
“statistic”, and so on. However, words such as “heater”
may not be replaced by “heat” though “laser” may be
replaced by “lase”, but “ruler” not by “rule”. The rules for
grammatical randomization may thus be manually defined
by linguistics professionals in a spiral development. Note
that the user is never shown the transformed web text –
only the text as it was prior to any transformations. The
transformed web text is only used for pattern-matching
purposes.

Moreover, carefully selected synonyms will also be
normalized, such as ship {boat, vessel}. The words in
the set on the right must be in normalized form, as
previously described (e.g., vessel vessels). Thus, two
successive hashes are required using two distinct hash
tables (i.e., the first for the normalization of words, if any,
and the second for the reduction of synonyms, if any).
Care is exercised so that cyclic reductions (infinite loops)
do not occur.

The solution to normalized pattern-matching applies
the fact that more text is statistically more likely to
embody more synonyms than is less text. This in turn
implies that S be written very comprehensively.
Moreover, a feature allowing the user to iteratively reduce
the text returned (i.e., after user review) through the
specification and extension of S would serve to guide the

user in iteratively writing an ever-more comprehensive S
– allowing for user-deletions from S too. It is possible to
associate the additional text with its parent (i.e., machine
learning). However, this is not done because the space of
possible queries is so large relative to the number of
training instances here.

Two separate additional hash tables are created, H+
and H-, for S+ and S-, respectively, and they are
populated with normalized words and phrases (not to
extend across sentence boundaries) found in the
normalized positive and negative textboxes. The design is
to crawl through each returned web page (up to the
number of pages retrieved or produced as constrained by
the user-settings page). Sentences or phrases are delimited
by colons, semicolons, dashes, and periods followed by a
space. In this manner, such words as pre-cognate or
3.1415926 do not act as delimiters.

In order of non-decreasing length, we set the
frequency count for all sequences in H, for which there
exists an embedded subsequence having a frequency
count of zero, to zero. The system eliminates all
sequences from H for which the frequency count is zero.
This methodology allows for the rapid elimination of
sequences that have no chance of finding a match in the
normalized web text.

Here, the frequency count for each entry in H
reflects the number of distinct paragraphs that the
normalized word, phrase, or statement (referred to as a
sequence) occurs in and is termed, the entries actual
frequency count (AFC). That is, two or more occurrences
in the same paragraph are only counted once. This is
because subject declarations are qualitative – not
quantitative.

Next, the system computes the possibility for each
paragraph as follows. We check each member of H for
occurrence in the current normalized and period-delimited
paragraph and obtain its AFC from H to associate with the
current paragraph. Again, we do not count the same
subsequence twice for the same paragraph – even should
it occur more than once.

If the user-settings page specifies a pedagogical
presentation, then each candidate webpage will have the
possibilities for each of its constituent paragraphs
summed and divided by its total number of paragraphs.
This ranks each candidate web site – each of which (along
with its contents) is presented contiguously for the user in
order of non-increasing average possibility for the website
(e.g., for many types of pedagogical presentations).

Similarly, if the user-settings page specifies a
decision support presentation and the possibility for a
paragraph is below the user-set threshold, or negative by
default, then the paragraph is removed from the reply.
Only paragraphs that are above threshold are presented in
non-increasing order of their possibility without regard
for the website, from which they were taken (e.g., for
many specific decision support tasks).

The normalized websites above a threshold are
saved on the client for post-processing to further constrain
them prior to presenting to the user for adjudication. Only
normalized keywords (typically nouns) and not longer
sequences are considered here because the user cannot
afford the time to manually review the less important
sequences. Here, word frequencies are computed over the
remaining filtered websites just as was previously done
for S+ and S- (e.g., counting a word at most once per
occurrence per paragraph) as follows to arrive at a new
H'. The maximum number of such presentations is
determined on the user-settings page. These keywords are
presented to (and enunciated for) the user in order of non-
decreasing frequency of occurrence up to some user-
defined count and/or threshold frequency as determined
on the user-settings page. Pre-processing using S has
previously delimited the user task, while using H' here
provides additional focus for the user (e.g., in rating the
utility of the returned material). The user then says, clicks,
and/or touches, using checkboxes, whether the presented
word is a positive instance, a negative instance, or
neither/both (by default). The possibility for each
paragraph is computed as before and is presented to the
user in stable (i.e., preserving the previous ordering where
possible) rank order in accordance with the presentation
options found on the user settings page.

Each paragraph (i.e., never by website) returned and
rank ordered by this process is tagged with a radio button
set to a third-choice default of “DK”, which can otherwise
be set to “Useful” or “Not Useful” to provide the KASER
with simple, but valuable feedback. When a user reads a
paragraph produced in response to their query, they
optionally rate it. This informative feedback is used to
support depth and creativity in queries as follows.

Paragraphs that were rated by the user as “Useful”
are taken in union in their presented sequence as are those
that were rated as “Not Useful”. Both groups are cached
on the client – up to the content limits, if any, found on
the user-settings page. Members of the former group
(having the most positive possibility) serve as the new S+
and the latter (having the most negative possibility) as the
new S-. Members having a zero possibility have no bias
and are thus not included. The process may be iterated
indefinitely (at user definition), or until a fixed point is
detected, for each new set of websites so found. This
serves to inject creativity into the process of knowledge
discovery for training and/or decision support.

The KASER makes better use of existing
knowledge/data bases and the human in the loop. For
example, in the domain of chess, the query as to whether
or not to exchange a knight for a rook, where the knight
simultaneously attacks the queen, might produce a
paragraph (with supporting multimedia), pertaining to the
principle of forking in chess. The user would then be
empowered with just-in-time knowledge that is symmetric
with previously acquired and understood knowledge (i.e.,

otherwise the user would not be able to apply it) for real-
world applications, where the actual cost of knowledge
acquisition has thus been minimized – keeping the user in
the loop. However in web searching, the user is always in
the loop, providing additional priorities and relevance
feedback as part of the learning process.

4 Results to Date

The web-based search engine to interface the
KASER with a user is currently being implemented. After
considering several client side and server side
technologies, it seems that a server side approach based
on a web server browser client model is the best solution.
Although several scripting languages are possible to use,
PERL so far seems to be the best solution because of its
text parsing abilities and existing set of APIs.

The KASER, as an information provider, is also a
learning environment. Recent investigation into learning
environments and learning dynamics suggests that avatars
may be used to create an "engaging, immersive
environment". Work in cognitive science has confirmed
that receiving information along multiple channels
improves understanding and retention. Avatars inject
characters into an otherwise stale environment of
information-presentation. They, like classroom teachers,
aid learners' focus by directing attention to themselves. A
good avatar is able to provide a "face" to an application as
well as improve information transmission.

The KASER has a Custodian avatar to inject a
multimedia experience into the user interface. The avatar,
which has been designed, acts as the narrator of the text
that is returned by the search engine for the query
submitted by the user. The KASER Multimedia System
GUI has been modified to support Pedagogical Mode with
the addition of a JPanel near the bottom of the window, as
can be seen in Figure 2. This JPanel contains a group of
radio buttons that allow the user to rate the usefulness of
the information returned by the search query. As an
example, the user may evaluate text information as (i)
useful, if the text is relevant and informative; (ii) not
useful, if the text was not relevant or not informative; or
(iii) unclear, if the usefulness of the text is unclear. When
the user clicks on the Evaluate Text button, the selection
will be returned to the KASER, which uses this
information to further train the system on which pages it
should display in the future.

As can be seen in Figure 2, the text box, which
displays information has been expanded and blended into
the background of the GUI window to allow for easier
reading of the presented text. The GUI window has also
been modified to allow the user to resize or maximize the
window. As the user changes the size of the GUI window,
the textbox and the thumbnail images will grow and
shrink to remain in proper proportion and location.

The current plan will have the Custodian avatar
displayed in the top center of the window (Figure 3). It

will be animated through five or more states: one to
represent the Custodian in its dormant state with darker
colors; and four or more others to be cycled through while
the returned text is being read by the synthesizer and
cycling coloration through the suggested inlaid
“gemstones”.

Fig. 2. Initial Implementation of the
GUI Web Search Engine

An evaluation selection panel has been added to

allow the user to train the model during pedagogical
mode. The evaluation selection panel will only appear
while the system is in pedagogical mode and will
disappear when the system is switched to decision support
mode. When the user clicks on the Evaluate Text button,
the system will store information about the current text to
allow the system to more accurately display text in the
future.

The required static IP to all web clients has been
implemented to connect and search without special setup
(thus bypassing writing a specific client plug-in). Further,
a hashing implementation has been extended to uniquely
identify and prioritize search results; this will enable cross
web search engine capabilities such as allowing Yahoo ©
and Google © search results to be presented on the same
page. Additionally, the required database tables were
created to allow for this stateless comparison between
pages.

Future work for the avatar includes making the
avatar more interactive and thereby forms a stronger
connection with the user of the KASER Multimedia
System interface. We will also explore methods for being
able to more closely manipulate the various phases of the
Custodian’s animation so as to have a more interactive
relationship between the Custodian and the speech
synthesizer. One technique that has been implemented in
other search applications is the highlighting of keywords
in the text. This allows the user to visually scan the page

and find what he is looking for faster and more
efficiently. What was implemented in the system is very
similar to this. Its function is to select the keywords in the
text that closely relate to the keywords found on the web
pages the images have been extracted from; highlighting
each keyword in a different color, as can be seen in Figure
3. Since the system refreshes the results every time the
user scrolls through the page, the highlighted words
function will update synchronous with it and will erase
any highlights from previous searches.

Fig. 3. Version 2 of the GUI Web Search Engine

The KASER’s capability to leverage textual

databases as well as other types of data such as sensor
information provides the user with information where it is
needed, when it is needed, and to whom it is needed. It
will operate in one of two modes as determined by the
user; namely, training mode or decision support mode.
These modes automatically assemble instructional
material from a very large database of textual
information. The user is empowered because he/she does
not have to spend anywhere near the time in assimilating
otherwise crude records, which are not necessarily
directed to their information needs.

5 Concluding Remarks

Currently, searching the web for information,
including information generated from sensor networks, is
a time-consuming process because the computational
system offers the user little if any assistance in processing
the more or less relevant websites returned. The potential
gains in efficiency are enormous because not only can the
system automatically scan and extract salient information,
while excluding stated irrelevant information, from say
hundreds of thousands of websites (many of which will
have redundant information), but the speedup does not
adequately reflect the automatic incorporation or

exclusion of information that would not be practical for
the user to do manually.

The KASER described in this paper is the first step
in automatically answering the questions posed by users
posed against a free-form text base. The use of positive
and negative instances of what to search for supports a
computing with words [4]. Therein lies an opportunity to
advance the KASER. The further capability required here
is to be able to map constraints using analogy. For
example, if in searching for information on say lasers, one
states that sailboats are a negative instance, one would
like the system to understand on the basis of analogical
knowledge that motorboats, toy sailboats, etc. are also
negative instances. As another example, a commander
may be monitoring the battlespace and needs to search the
various sensor nodes to acquire information on the status
of the battle in different locations. The best way to
accomplish this is to employ advanced KASERs,
currently under development, that learn such
commonsense knowledge from the user and expand it
through application.

While such paradigms for computing with words
will no doubt advance, the KASER discussed here is the
first system of its kind to offer the user capabilities to
reduce search time and improve upon the quality of the
information returned when searching the web. The gods
did not make the heavens overnight. We feel it to be
extremely important that such search advancements be
disseminated and advanced inasmuch as “knowledge is
power”.

References
1. Rubin, S. and Lee, G., “Learning Using an Information
Fusion Approach”, Proc. of the ISCA Int’l Conference on
Intelligent and Adaptive Systems, Nice (2004)
2. Rubin, S. and Lee, G. “On the Use of Randomization for
System of Systems (SoS) Design of Intelligent Machines”, Proc.
of the World Automation Congress, ISSCI, Budapest (2006)
3. Chaitin, G.J. , “Randomness and Mathematical Proof,” Sci.
Amer., vol. 232, no. 5, pp. 47--52 (1975)
4. Zadeh, L.A., “From Computing with Numbers to Computing
with Words – From Manipulation of Measurements to
Manipulation of Perceptions,” IEEE Trans. Circuits and
Systems, vol. 45, no. 1, pp. 105—119 (1999)
5. Rubin, S.H., Rush, Jr., R.J., Boerke, J. and Trajkovic, Lj.,
“On the Role of Informed Search in Veristic Computing,” Proc.
2001 IEEE Int. Conf. Syst., Man, Cybern., pp. 2301--2308
(2001)
6. http://www.emma-expertsystem.com/38160S.html

ACKNOWLEDGMENTS
This research was supported, in part by DTRA contract number
BA08MSB008. The statements, findings, conclusions, and
recommendations are those of the author(s) and do not necessarily
reflect the views of the sponsoring agency. This work was produced, in
part, by a U.S. government employee as part of his official duties and no
copyright subsists therein. It is approved for public release with an
unlimited distribution.

