
 
 

  

Abstract—This paper addresses the learning of 
search-control knowledge expressed in semi-structured natural 
language. That knowledge is mined from semi-structured 
databases and applied to search the same. As is the case with 
most self-referential systems, this process necessarily addresses 
the issues of randomization, representation, machine learning, 
and evolutionary programming. Machine learning becomes 
pervasive at all levels of representation. That is, the 
randomization of knowledge necessarily includes that of its 
representation. Application to the search and retrieval of 
multimedia databases is suggested. 

I. INTRODUCTION 
EPRESENTATION is key to the learning process of 
humans (e.g., visual, auditory, kinesthetic – i.e., 

multimedia). It is likewise central to the learning process of 
computational machines [1]. This paper presents a new 
science for the computational evolution of semantics through 
the use of an unstructured natural language; the structured 
generalization of semantics, as well as the analogous 
construction of semantics through the use of a production 
system using a most-specific inference engine. In theory, the 
capability for the semantic translation of natural language 
allows for the bootstrapping of knowledge bases of 
ever-higher levels of generality, where the 
information-theoretic density of knowledge cannot be 
bounded above. 

A fundamental component of ISR technologies pertains to 
all levels of data fusion and extrapolation [2]. The greater 
need here is for methods that can parse natural language 
queries, map them to their semantic normalization, and 
retrieve information associatively tagged with the 
normalization in a seamless heterogeneous architecture. 
Retrieved information can be passive in the sense that it is 
limited to the data level or active in the sense that it may be a 
method for computing the desired information. The scientific 
goal here is to make literal and latent information alike, which 
may be imbued in a semi-structured database, available for 
reuse and subsequent integration. While this is a 
computationally intensive process, it has the advantage of 
being maximally amenable to execution on fine-grained 
 

Manuscript received February 26, 2007. This work was supported in part 
by the U.S. Office of Naval Research (ONR) under an ILIR Grant and in part 
by NSF EIA-0220562, NSF HRD-0317692, and by a Florida Hurricane 
Alliance Research Program sponsored by the National Oceanic and 
Atmospheric Administration. 

S. H. Rubin is with SPAWAR Systems Center,  San Diego, CA USA 
(Phone: 619-553-3554; fax: 619-553-1130; e-mail: stuart.rubin@navy.mil).  

Shu-Ching Chen is with the Florida International University, School of 
Computing and Information Sciences, Miami, FL 33199 USA (Phone: 
305-348-3480; fax: 305-348-3549; e-mail: chens@cs.fiu.edu). 

 

processors. Unlike the case for neural network applications, a 
consequence of semantic retrieval is that resulting knowledge 
can be explained to the user by way of metaphor. Moreover, 
the KASER, (U.S. Patent No. 7,047,226) can generate 
analogous features from a feature set [3]. Given that the 
proposed semantic retrieval methodology can automatically 
learn to extract relevant phrases (i.e., features) and their 
sequence from a supplied query, the system will converge on 
ever-better sets of features and heterogeneous rules expressed 
in terms of those features for purposes of fusion and 
prediction. Features are evolved along geodesic lines to 
minimize evolutionary time, but are necessarily annealed to 
insure diversity [4]. 

II. NEED AND BACKGROUND 
The product of Dr. Rubin’s 2004 ONR-funded research 

effort – the semantic normalizer can be easily trained by a 
bilingual and otherwise ordinary user to translate natural 
languages (e.g., to backend COTS Arabic to English 
translators). This project also resulted in a novel learning 
algorithm for message summarization for use by various 
naval reporting agencies. This effort led to an algorithm for 
effective metaphorical learning and a novel algorithm for 
mining data to be tested for efficacy against a COTS neural 
network program (results forthcoming). It was also 
ascertained that potential transitional customers for the 
semantic normalizer wanted a product that they did not have 
to train. As a result, we embarked upon developing a 
hardwired natural language interface for a relational database 
query language (SQL). Then, as a result of related-thinking 
on how best to apply our developing product to IED 
detection, a novel data mining capability was discovered, 
which is currently being built/tested and which serves as the 
starting point for this paper. 

Application domains such as battle management, logistics, 
signal analysis, targeting and tracking, counter-insurgency, as 
well as the development of intelligent auto pilots for UAV 
(swarms), among others, can, it is claimed, be better 
addressed by the methodologies purported in this paper than 
by any combination of conventional methodologies (e.g., 
case-based reasoning, expert systems, genetic algorithms, 
neural networks, support-vector machines, et al.) [2]. 

III. APPROACH 

The semantic search and retrieval of semi-structured 
database information (including multimedia objects and 
events) can perhaps best be introduced by way of example. 
That is, suppose that one entered the natural language query, 
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“Where is the nearest place for treating victims of gas 
explosions?” We want our information systems to be capable 
of replying with say, “I have three hospitals in New Orleans 
with burn units in order from nearest to furthest.” Of course, 
we also want it to be able to further query the user to 
recursively disambiguate the last query, as necessary. For 
example, the system might query, “What are victims of gas 
explosions?” The user could reply, “They are burned, in 
shock, and/or not breathing.” The system would learn this 
association and not repeat it twice in the same context. 
Observe that the mapping from “victims of gas explosions” to 
“burn units” in this case is strictly semantic, where the 
semantic association is acquired through the disambiguation 
of context. A methodology for machine learning, as applied to 
contextual disambiguation, serves as the focus for the 
scientific research overviewed in this paper. 

Context-sensitive learning has been used by the KASER 
for the generation and necessarily limited checking of 
metaphorical knowledge [3]. The approach, to be defined 
below, is predicated on randomization theory [5], [6], [7], 
which allows it to be coordinated for execution on massively 
concurrent distributed processors, which is of course 
necessary for scalable realization. That is, the process of 
semantic association and normalization provide for 
information reuse, which allows for an exponential reduction 
in the search space. Now the process for performing semantic 
association and normalization requires domain-specific 
knowledge and the evolutionary acquisition of such 
knowledge will be discussed below. 

Here, we will generalize that process and consider the 
triangle inequality for evolutionary functional instantiation. 
Let, if  represent an arbitrary total computable program 
having m articulation points (i.e., formal parameters). Let us 
state, without loss of generality that each articulation point 
has on average n values (i.e., value parameters) that it can 
assume. The task then is to find a mapping for each 
articulation point such that the mapping 

 

0 0 1 1 1 1
(( , ), ( , ), ..., ( , ), ( , ))

i p p p p
f In Out In Out In Out In Out

− −
   (1) 

 
is satisfied. That is, 

i
f  must simultaneously map p I/O 

pairings. Fuzzy mapping is not enjoined and in any case the 
complexity of conducting a random search here is ( )mO n . We 
note that a consequence of randomization theory is that the 
minimal value for p cannot be proven in the general case [5], 
[6], [7]. Nevertheless, random testing theory provides us with 
a mechanics for comparing the efficacy of two alternative test 
sequences [4]. For example, when testing a simple sort 
routine, (((1 2 3) (1 2 3)) ((3 2 1) (1 2 3)) ((3 1 2) (1 2 3)) ((0) 
(0))) will do a better job, on average, of covering the 
execution paths of the sort routine than will the test of the 
same magnitude, (((1) (1)) ((2 1) (1 2)) ((3 2 1) (1 2 3)) ((4 3 2 
1) (1 2 3 4))). The reason here is that the latter can be 
randomized into a theory; namely, ((n, n-1, …2, 1) (1, 2, …, 
n-1, n)), which the former test sequence cannot (i.e., it is more 
or less of a fixed point). Ideally, test sequences are random, 
which is defined by the point at which the size of the test 

sequence in bits approximates the size of the minimal 
program (i.e., theory) that captures it [6]. Next, consider 
breaking 

i
f  into q schemas - 

j
f , 

k
f , …, 

u
f  such that each 

total computable function has approximately m´ = m
q

 
   

articulation points. Moreover, a reduction in the number of 
articulation points implies that n´ << n because there will be 
less formal parameters that one needs to provide a range for. 
The complexity of conducting a random search here and in 

general is ( ' )
m

qO n
   . Clearly, this is an exponential reduction 

in the search space as a function of q, as claimed. What we see 
here is that a little knowledge, represented as a schema as 
opposed to rules, frames, cases, etc. [1] can have an enormous 
impact on that which is tractably computable. This means that 
the process of semantic association and normalization has the 
potential to “exponentially” improve the quality and quantity 
of reuse in any pattern-matching search and retrieval system. 
Again, this is consistent with our scientific purpose here. 

A change in the representation of knowledge can have a 
critical impact on that which is and is not solvable [1]. 
Humans tend to excel at finding better and better 
representations for knowledge. On the other hand, computers 
tend to far exceed human capabilities for number crunching. 
What is needed is a symbiosis of the two paradigms – ideally 
the human will do what (s)he does best and the computer will 
follow suite. Given this, we will incorporate a form of 
Evolutionary Programming (EP) to find sentential features, 
where we will determine the best learning algorithm and let 
the computer crunch it. 

Compare and contrast this with genetic algorithms or 
neural networks that are NP-hard [8] in their learning and are 
thus theoretically reducible to bit-level representations. One 
way to avoid such intractability, in practice, is to encode 
high-level static feature representations into the domain. We 
can do much better though through the proper evolution and 
inclusion of domain-specific features. The geodesic principle 
implies that all subsystems are mutually dependent. Thus, the 
computationally costly evolution of the best feature sets 
benefits from the co-evolution of its guiding heuristics and 
vice versa as will be seen below. 

A. Heuristic Evolutionary Feature Decomposition 
The evolution of parsing (i.e., breakpoint) knowledge is 

based on the concept of contextual reduction. Again, consider 
our example query, “Where is the nearest place for treating 
victims of gas explosions?” It follows from the triangle 
inequality for evolutionary functional instantiation that the 
query needs to be reduced to its most basic set of features in 
order to minimize the computational complexity of 
normalization. For example, such a set is properly defined by, 
((where is the) (nearest place for) (treating victims of) (gas 
explosions)). At first glance, it might appear that one can 
further simplify these parenthesized features by removing 
prepositions such as, “the”, “A”, etc. However, this 
deceptively simple approach might for example also 
transform (Vitamin A) into (Vitamin). Rubin et al. have 
proposed a field-effect approach to natural language semantic 
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mapping that is based on the iterative randomization of 
sentential semantics [9]. In this paper, a domain-specific 
algebra is introduced for acquiring sentential knowledge that 
is capable of transforming such features as, (the man bit the 
dog) into semantically equivalent, but syntactically simplified 
ones, such as (man bit dog). 

Using a set-based methodology, our example query would 
be further randomized to become ((where) (nearest place) 
(treating victims) (gas explosions)). (This methodology can 
be rewritten and adapted to the context of the current problem 
domain.) Features can be thus normalized in linear time on a 
concurrent architecture, or in quadratic time as a function of 
sentential length on a serial processor. Features are then 
associatively hashed using a symbol table. Of course, the rate 
of growth in the symbol table decreases exponentially with 
scale. Again, this is in keeping with a scalable design. The 
initial query has been reduced to a set of integer tokens and 
that set is then mapped to the user-defined proper response – 
be that a machine-generated query to elicit further details for 
purposes of disambiguation, an effective procedure for 
generating a reply, and/or as defined above, the literal, “I have 
three hospitals in New Orleans with burn units in order from 
nearest to furthest.” Notice that while the semantic mapping 
here is one to one, syntactic mapping will be many to one. 
Note too that effective procedures for generating replies can 
execute queries formulated in local languages for the retrieval 
of semi-structured database information. 

Having detailed the refinement and semantic mapping of 
features above, the question remains as to how one can best 
determine initial feature breakpoints. That issue will be 
addressed next and is resolvable through the use of 
randomness and symmetry [6]. More formally, given a fixed 
sequence of words, 

0 1 2
, , , ..., ,

n
w w w w  we want to identify that 

set of up to n+1 features, which are defined by, , ...,
i j

w w , 
i j≤ , such that the feature set is properly mapped to its 
semantic association. Then, breakpoints are defined by a set 
of up to n+1 ordered pairs that consist of, (

i
w  and whether it’s 

the start, inclusion, and/or end of a feature). Thus, there are 
14n+  possible breakpoints (i.e., start; inclusion; end; start and 

end). That would be several million breakpoints for a typical 
query. It follows that a form of Evolutionary Programming 
(EP) is properly applied to the approximation of the best loci 
for the breakpoints. 

At the outset, breakpoints are evolved through the use of 
pure chance. Subsequently, known features are iteratively 
applied to reduce the complexity of search. This is the 
symmetric step and while it never completely precludes the 
random step (i.e., for purposes of annealing), it should be 
noted that the computational complexity of solving for the 
(near) best breakpoints, on average, greatly decreases with 
scale until it becomes linear. There is a well-known need to 
order the training instances that stems from Winston’s work 
on the conceptual definition of an arch in Blocks World [10] 
and Mitchell’s work on Version Spaces [11]. The results of 

this early work allow us to “kick-start” the 
random-symmetric learning mechanism much in the same 
manner as a child acquires a facility with a natural language 
by bootstrapping from simple to complex constructs. 

For example, if say we have previously acquired two 
normalized features, (where) and (gas explosions), then the 
exponent in the number of possible breakpoints has been 
reduced by precisely this factor. If nothing else, this alone 
would allow EP to do a better job of optimization with the 
incursion of far less complexity. However, features may be 
embedded in other features; although, this allowance is 
precluded by our algorithm. An example of embedding is 
provided by the feature, (natural (gas explosions)). 
Symmetric reduction here would preclude the discovery of 
the best feature, (natural gas explosions). In view of this 
constraint and in keeping with Rubin’s previous work on 
randomization [7], it is necessary that random search and 
symmetric reduction proceed concomitantly on separate 
threads. Theoretically speaking, that is to say that the 
effective discovery of the (near) best breakpoints for feature 
discovery is recursively enumerable, but not recursive [12]. 
The balance of computer resources to be dedicated to random 
vs. symmetric discovery at any given time is, as it turns out, 
not that difficult a problem. One simply sets up a feedback 
loop that measures the degree of success in feature 
randomization as a function of the degree of randomness and 
symmetry and applies evolutionary search to optimize the 
mixture for successful randomization over the time march. 
One theoretical result here is that in any non-trivial (i.e., 
scaled) system, random and symmetric discovery must both 
be present [4]. 

The remaining question, in the present context, pertains of 
course to how one puts such feedback on a metric basis. Were 
the discovery process strictly symmetric, then feedback 
would consist of matching rule antecedents stored in a 
knowledge base against the context consisting of the 
symmetrically-reduced features. Then, a count of rules that 
would be properly fired vs. improperly fired would yield the 
desired metric for comparison purposes. However, as we 
have just witnessed, the discovery process is inherently 
random too. This means that many unknown features will be 
created – features that can have no match among the existing 
base of rule antecedents at the time of creation (i.e., via 
diagonalization arguments). The solution is to delay feedback 
until such time as the random features sufficiently populate 
the base of rule antecedents to themselves become more or 
less transformed into symmetric features. An ever 
higher-quality rule base is evolved by expunging those rules 
and their associated features (i.e., over the entire rule base) 
having minimal metrics. While this no doubt sounds 
complicated, it does reduce to a simple solution as follows. 

Rules are moved to the logical head of the base when fired 
and correct (see below). A rule is said to be properly matched 
if the case antecedent, which is associated with the rule is 
deemed by the user to cover the semantics of the rule 
antecedent. Whenever domain feedback leads to the 
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contradiction of a properly matched given fired rule, that rule 
and its associated case are expunged without any deletions 
being made to the symmetric lookup table; and, a new case 
will be acquired. Otherwise, the improperly matched rule is 
not expunged; but, any features that co-occur in this rule and 
are present in the context are expunged from the symmetric 
lookup table. (The fact that good features may be eliminated 
because they occur in the context of bad ones also has a 
positive side, where “single words” will be disassociated 
from the feature space to enable the formation of longer 
features. Cases associated with erroneous rules are not saved 
because new cases may have new features and because when 
space is at a premium, these cases have been shown to induce 
rules that are least reliable for the current context.) All other 
rules in the base, which contain these expunged features are 
“re-expanded” about these features and subsequently 
re-reduced using the updated symmetric lookup table. 
Remaining word sequences, if any, may become 
maximal-length features after normalization. Using our 
previous example, if ((where) (nearest place) (treating 
victims) (gas explosions)) were improperly triggered by the 
context about (treating victims) and (gas explosions), then 
assuming that (victims gas) were known by the symmetric 
lookup table, the updated result would be ((where) (nearest 
place) (treating) (victims gas) (explosions)). Note that 
(treating) and (explosions) have been subsequently 
normalized with possible removal as a consequence. In this 
manner, reductions, over time, are limited to those that prove 
themselves to be truly symmetric. Relatively 
infrequently-fired rules will eventually “fall off the bottom” 
and be replaced by ones containing genuine symmetric 
features. This statistical mechanical approach insures that on 
average, random features will not survive to become 
persistent symmetric ones. There need be a statistical 
correlation between features, or sets of features, and proper 
actions (i.e., rule consequents). 

The context must be reduced in order of non-increasing 
size of the reduction entries in the symmetric lookup table 
(i.e., reducing the most-specific features first). Using an 
associative or hashing mechanism to parse the word sequence 
of length n, we find that there are at most 

1
2 (2 )1

n n n

r
O

n

r
=

= =−
 
 
 

∑  hashes to be made, which occurs 

where the symmetric lookup table is either empty or 
inapplicable. This shows that the associative parsing 
mechanism is quite tractable for the typical query length of 
say ten words or so (i.e., even with subsequent 
normalization). Actually, since features may not embed other 
features, the complexity of associatively parsing 
symmetrically reduced queries, which is the general case, is 

actually much less, or (2 )
n k

cO
−

, where c is the number of such 
reductions and k is their average length. 

B. Case-Based Feature Discovery and Fusion System 
Having completed our discussion of heuristic evolutionary 

feature decomposition above, there remains the need to 
reduce an arbitrary feature space to a more (most) salient 
feature space. Simply put, the less the inclusion of extraneous 
features, the better the pattern matcher can do in finding 
proper antecedents for matching the supplied context. In this 
section, we present an outline as to how to best accomplish 
this using a dynamic weight vector approach. In Section D 
below, an improved algorithm is presented, which replaces 
the dynamic weight vector approach with one for 
randomizing the feature sets themselves. 

Here, a supplied context is compared to get a metric match 
for each case in the base. Expunged features have their 
associated case-column set to “—” in preparation for 
reassignment. 
 

Example 1: 
feature: f0 f1 f2 f3      (the four features having the 

   greatest weights) 
context: 1  1  1  1 
    case: 1  0  1  0  A 
  match: 1 -1  1 -1    1 = match; -1 = not match; 
       W0: .25 .25 .25 .25 score = .25(1) + .25(-1) + 

.25(1) + .25(-1) = 0; 
W1: .20 .20 .40 .20 score = .2(1) + .2(-1) + .4(1) + 

.2(-1) = 0.2 (better); 
 

Example 2: 
feature: f0 f1 f2 f3 f4 
context: 1  1  1  1  1 

case: 1  0  1  0  --  A   (Cases may be lacking one 
or more features) 

  match: 1 -1  1 -1  0    1 = match; -1 = not match; 
0 = omitted; 

        W0: .20 .20 .20 .20 .20 score = .2(1) + .2(-1) + 
           .2(1) +.2(-1) + .2(0) = 0; 
          W1: .17 .17 .33 .17 .17 score = .17(1) + .17(-1) + 

.33(1) + .17(-1) + .17(0) = 
0.167 (better); 

 
When evaluating a Wi, each row in the range, where there 

must be at least two rows in the range having the same 
consequent, will in turn have its antecedent, ai,j, serve as a 
context, cj. This context will be compared against every row 
excepting that from which it was derived. The score of the ith 

row is given by 
,1

( )
j i j

n

jj
c aw

=
−∑ , where | 0

j j
w∀ ≥  and 

1
j

w =∑ . In the case of Boolean functions, define 
,

( )
j i j

c a−  

= 

,

,

1,  ;

1,  ;

0,  .

i j j

i j j

a c

a c

otherwise

+ =

− =

 
 
 
 
 

. Here, if the row having the maximum 

score has the correct consequent, award +1; otherwise, -1. In 
the case of real-valued functions, define 

,
( )

j i j
c a−  = 

,
|

j i j
c a− , which is always defined. Here, if the row having 

the minimum score has the correct consequent, award +1; 
otherwise, -1. Thus, the higher the score, the better the Wi, 

3399



 
 

where a perfect score is defined to be the number of rows in 
the range – the number of singleton classes there. 

Example 2 is reworked below for the situation where there 
is continuous variation ( ∆ ). By design, there will never be 
any omitted features here. 
 

Example 2': 
feature: f0 f1 f2 f3 f4 
context: 1  1  2  4  1   (can be phrases, rays, track 

prediction, etc.) 
    case: 3  1  3  3  1  A 

∆ : 2  0  1  1  0      perfect match = 0; 
W0: .33 .17 .17 .17 .17 score = .33(2) + .17(0) 

               + .17(1) + .17(1) + .17(0) 
= 1.0 (can be larger); 

W1: .20 .20 .20 .20 .20 score = .2(2) + .2(0) + 
               .2(1) + .2(1) + .2(0) 

= 0.8 (better); 
 

The advantage provided by such a weighted vector 
approach is that it allows one to hill-climb an optimal solution 
using sigmoid functions. However, as will be seen in Section 
D below, hill-climbing can take the form of iterative symbolic 
improvement as well. The relative advantage here is best 
made clear by way of example. The inherent problem with the 
sigmoid approach is that one can map say cases to chess 
boards, but unless an exact match is to be had, there is almost 
nothing to be gained by finding that the current board is 
almost the same as the saved board. This is because, in chess 
and many other domains of practical import, variation in a 
single degree of freedom (e.g., the color of the square a piece 
sits on) makes all the difference. This argument naturally 
extends to procedural consequents as well. This will not be a 
problem using the approach presented in Section D because 
that approach seeks to symbolically and iteratively remove 
extraneous features. It then climbs from working rule sets to 
more general rule sets that remain relatively valid. That is 
principally why this second approach is to be preferred over 
this “neural” one. Indeed, Rubin [13] and Zadeh [14] provide 
compelling evidence that when the numerical basis for a 
fuzzy logic is relaxed, one can attain a capability to compute 
with words using self-referential symbolic transformations 
[13], or protoform schemas [14]. 

C. On Randomization and Discovery 
In his theoretical paper, Rubin [4] proves the Semantic 

Randomization Theorem (SRT) (i.e., 

| 0,  = ( )= ( ), | | | ( ||  ) |
t c t k

l l r u vrk c k l lϕϕ ϕ ϕ ϕ ϕ+ +

∃ ∀ ≥ > < ). First 
however, he proves that in general, randomization is 
inherently a heuristic process. Indeed, the salient arguments 

presented by Rubin [13] and Zadeh [14] are captured by the 
Unsolvability of the Randomization Problem [4]. This 
theorem serves to vindicate the inherent need for heuristics in 
symbolic randomization. 
 
Theorem (unsolvability of the randomization problem): There 
is no algorithm, which when presented with indices i and j of 
arbitrary computable functions :

i
N Nϕ →  and :

j
N Nϕ →  can 

decide whether 
i

ϕ  is a randomization of 
j

ϕ . Thus, there is no 
algorithm, which when presented with the index j of an 
arbitrary computable function :

j
N Nϕ → , j N∈ , can 

randomize that function (i.e., transform it into 
i

ϕ , where i 
indexes an arbitrary randomized, or random, function). 

It follows as a consequence of the SRT [4] that the 
complexity (density) of knowledge is unbounded in the limit. 
While intelligence is in every case constrained by the operant 
laws of space and time, every non-trivial (i.e., self-referential) 
finite realization of intelligence involving randomization is 
necessarily domain specific and not recursively enumerable 
(i.e., inherently heuristic) as a consequence of this theory [4]. 
The methodology used to prove the SRT allows us to define a 
heuristic mechanics in the novel algorithm for randomizing 
feature sets for use in the geodesic search and retrieval of 
semi-structured databases. 

D. Geodesic Randomization-Based Feature Discovery and 
Fusion System 

An improved innovative algorithm for iteratively 
generalizing the feature space is depicted in Fig. 1. Our 
previous example, as currently written, has: 
 
((where) (nearest place) (treating victims) (gas explosions)) 

 “I have three hospitals in New Orleans with burn units in 
order from nearest to furthest.”           (2) 
 
One candidate randomized rule would be: 
 
((where) (treating victims) (gas explosions))  “I have three 
hospitals in New Orleans with burn units in order from 
nearest to furthest.”                                                                          (3) 
 

A geodesic randomization is defined over the entire rule 
base, since each randomization can potentially affect that 
which can be randomized (i.e., because of the introduction of 
contradictions). In other words, the randomization space is 
co-dependent. An overview of geodesic randomization 
follows in Fig. 1. 
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Fig. 1. An overview of geodesic search and retrieval of semi-structured data or multimedia 
 

IV. CONCLUSION 
Evolutionary programming, randomization, machine 

learning, and their associated representations are endemic to 
the search and retrieval of large databases. Furthermore, the 
acquisition of knowledge facilitates the further acquisition of 
search-control knowledge, which after all defines 
randomization [6]. Application to the search and retrieval of 
multimedia databases, in particular, will be examined in our 
next paper. 
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