

Abstract—This paper addresses the learning of
search-control knowledge expressed in semi-structured natural
language. That knowledge is mined from semi-structured
databases and applied to search the same. As is the case with
most self-referential systems, this process necessarily addresses
the issues of randomization, representation, machine learning,
and evolutionary programming. Machine learning becomes
pervasive at all levels of representation. That is, the
randomization of knowledge necessarily includes that of its
representation. Application to the search and retrieval of
multimedia databases is suggested.

I. INTRODUCTION
EPRESENTATION is key to the learning process of
humans (e.g., visual, auditory, kinesthetic – i.e.,

multimedia). It is likewise central to the learning process of
computational machines [1]. This paper presents a new
science for the computational evolution of semantics through
the use of an unstructured natural language; the structured
generalization of semantics, as well as the analogous
construction of semantics through the use of a production
system using a most-specific inference engine. In theory, the
capability for the semantic translation of natural language
allows for the bootstrapping of knowledge bases of
ever-higher levels of generality, where the
information-theoretic density of knowledge cannot be
bounded above.

A fundamental component of ISR technologies pertains to
all levels of data fusion and extrapolation [2]. The greater
need here is for methods that can parse natural language
queries, map them to their semantic normalization, and
retrieve information associatively tagged with the
normalization in a seamless heterogeneous architecture.
Retrieved information can be passive in the sense that it is
limited to the data level or active in the sense that it may be a
method for computing the desired information. The scientific
goal here is to make literal and latent information alike, which
may be imbued in a semi-structured database, available for
reuse and subsequent integration. While this is a
computationally intensive process, it has the advantage of
being maximally amenable to execution on fine-grained

Manuscript received February 26, 2007. This work was supported in part
by the U.S. Office of Naval Research (ONR) under an ILIR Grant and in part
by NSF EIA-0220562, NSF HRD-0317692, and by a Florida Hurricane
Alliance Research Program sponsored by the National Oceanic and
Atmospheric Administration.

S. H. Rubin is with SPAWAR Systems Center, San Diego, CA USA
(Phone: 619-553-3554; fax: 619-553-1130; e-mail: stuart.rubin@navy.mil).

Shu-Ching Chen is with the Florida International University, School of
Computing and Information Sciences, Miami, FL 33199 USA (Phone:
305-348-3480; fax: 305-348-3549; e-mail: chens@cs.fiu.edu).

processors. Unlike the case for neural network applications, a
consequence of semantic retrieval is that resulting knowledge
can be explained to the user by way of metaphor. Moreover,
the KASER, (U.S. Patent No. 7,047,226) can generate
analogous features from a feature set [3]. Given that the
proposed semantic retrieval methodology can automatically
learn to extract relevant phrases (i.e., features) and their
sequence from a supplied query, the system will converge on
ever-better sets of features and heterogeneous rules expressed
in terms of those features for purposes of fusion and
prediction. Features are evolved along geodesic lines to
minimize evolutionary time, but are necessarily annealed to
insure diversity [4].

II. NEED AND BACKGROUND
The product of Dr. Rubin’s 2004 ONR-funded research

effort – the semantic normalizer can be easily trained by a
bilingual and otherwise ordinary user to translate natural
languages (e.g., to backend COTS Arabic to English
translators). This project also resulted in a novel learning
algorithm for message summarization for use by various
naval reporting agencies. This effort led to an algorithm for
effective metaphorical learning and a novel algorithm for
mining data to be tested for efficacy against a COTS neural
network program (results forthcoming). It was also
ascertained that potential transitional customers for the
semantic normalizer wanted a product that they did not have
to train. As a result, we embarked upon developing a
hardwired natural language interface for a relational database
query language (SQL). Then, as a result of related-thinking
on how best to apply our developing product to IED
detection, a novel data mining capability was discovered,
which is currently being built/tested and which serves as the
starting point for this paper.

Application domains such as battle management, logistics,
signal analysis, targeting and tracking, counter-insurgency, as
well as the development of intelligent auto pilots for UAV
(swarms), among others, can, it is claimed, be better
addressed by the methodologies purported in this paper than
by any combination of conventional methodologies (e.g.,
case-based reasoning, expert systems, genetic algorithms,
neural networks, support-vector machines, et al.) [2].

III. APPROACH

The semantic search and retrieval of semi-structured
database information (including multimedia objects and
events) can perhaps best be introduced by way of example.
That is, suppose that one entered the natural language query,

Geodesic Search and Retrieval of Semi-Structured Databases
Stuart H. Rubin and Shu-Ching Chen, Senior Members, IEEE

R

33961-4244-0991-8/07/$25.00/©2007 IEEE

“Where is the nearest place for treating victims of gas
explosions?” We want our information systems to be capable
of replying with say, “I have three hospitals in New Orleans
with burn units in order from nearest to furthest.” Of course,
we also want it to be able to further query the user to
recursively disambiguate the last query, as necessary. For
example, the system might query, “What are victims of gas
explosions?” The user could reply, “They are burned, in
shock, and/or not breathing.” The system would learn this
association and not repeat it twice in the same context.
Observe that the mapping from “victims of gas explosions” to
“burn units” in this case is strictly semantic, where the
semantic association is acquired through the disambiguation
of context. A methodology for machine learning, as applied to
contextual disambiguation, serves as the focus for the
scientific research overviewed in this paper.

Context-sensitive learning has been used by the KASER
for the generation and necessarily limited checking of
metaphorical knowledge [3]. The approach, to be defined
below, is predicated on randomization theory [5], [6], [7],
which allows it to be coordinated for execution on massively
concurrent distributed processors, which is of course
necessary for scalable realization. That is, the process of
semantic association and normalization provide for
information reuse, which allows for an exponential reduction
in the search space. Now the process for performing semantic
association and normalization requires domain-specific
knowledge and the evolutionary acquisition of such
knowledge will be discussed below.

Here, we will generalize that process and consider the
triangle inequality for evolutionary functional instantiation.
Let, if represent an arbitrary total computable program
having m articulation points (i.e., formal parameters). Let us
state, without loss of generality that each articulation point
has on average n values (i.e., value parameters) that it can
assume. The task then is to find a mapping for each
articulation point such that the mapping

0 0 1 1 1 1
((,), (,), ..., (,), (,))

i p p p p
f In Out In Out In Out In Out

− −
 (1)

is satisfied. That is,

i
f must simultaneously map p I/O

pairings. Fuzzy mapping is not enjoined and in any case the
complexity of conducting a random search here is ()mO n . We
note that a consequence of randomization theory is that the
minimal value for p cannot be proven in the general case [5],
[6], [7]. Nevertheless, random testing theory provides us with
a mechanics for comparing the efficacy of two alternative test
sequences [4]. For example, when testing a simple sort
routine, (((1 2 3) (1 2 3)) ((3 2 1) (1 2 3)) ((3 1 2) (1 2 3)) ((0)
(0))) will do a better job, on average, of covering the
execution paths of the sort routine than will the test of the
same magnitude, (((1) (1)) ((2 1) (1 2)) ((3 2 1) (1 2 3)) ((4 3 2
1) (1 2 3 4))). The reason here is that the latter can be
randomized into a theory; namely, ((n, n-1, …2, 1) (1, 2, …,
n-1, n)), which the former test sequence cannot (i.e., it is more
or less of a fixed point). Ideally, test sequences are random,
which is defined by the point at which the size of the test

sequence in bits approximates the size of the minimal
program (i.e., theory) that captures it [6]. Next, consider
breaking

i
f into q schemas -

j
f ,

k
f , …,

u
f such that each

total computable function has approximately m´ = m
q

articulation points. Moreover, a reduction in the number of
articulation points implies that n´ << n because there will be
less formal parameters that one needs to provide a range for.
The complexity of conducting a random search here and in

general is (')
m

qO n
 . Clearly, this is an exponential reduction

in the search space as a function of q, as claimed. What we see
here is that a little knowledge, represented as a schema as
opposed to rules, frames, cases, etc. [1] can have an enormous
impact on that which is tractably computable. This means that
the process of semantic association and normalization has the
potential to “exponentially” improve the quality and quantity
of reuse in any pattern-matching search and retrieval system.
Again, this is consistent with our scientific purpose here.

A change in the representation of knowledge can have a
critical impact on that which is and is not solvable [1].
Humans tend to excel at finding better and better
representations for knowledge. On the other hand, computers
tend to far exceed human capabilities for number crunching.
What is needed is a symbiosis of the two paradigms – ideally
the human will do what (s)he does best and the computer will
follow suite. Given this, we will incorporate a form of
Evolutionary Programming (EP) to find sentential features,
where we will determine the best learning algorithm and let
the computer crunch it.

Compare and contrast this with genetic algorithms or
neural networks that are NP-hard [8] in their learning and are
thus theoretically reducible to bit-level representations. One
way to avoid such intractability, in practice, is to encode
high-level static feature representations into the domain. We
can do much better though through the proper evolution and
inclusion of domain-specific features. The geodesic principle
implies that all subsystems are mutually dependent. Thus, the
computationally costly evolution of the best feature sets
benefits from the co-evolution of its guiding heuristics and
vice versa as will be seen below.

A. Heuristic Evolutionary Feature Decomposition
The evolution of parsing (i.e., breakpoint) knowledge is

based on the concept of contextual reduction. Again, consider
our example query, “Where is the nearest place for treating
victims of gas explosions?” It follows from the triangle
inequality for evolutionary functional instantiation that the
query needs to be reduced to its most basic set of features in
order to minimize the computational complexity of
normalization. For example, such a set is properly defined by,
((where is the) (nearest place for) (treating victims of) (gas
explosions)). At first glance, it might appear that one can
further simplify these parenthesized features by removing
prepositions such as, “the”, “A”, etc. However, this
deceptively simple approach might for example also
transform (Vitamin A) into (Vitamin). Rubin et al. have
proposed a field-effect approach to natural language semantic

3397

mapping that is based on the iterative randomization of
sentential semantics [9]. In this paper, a domain-specific
algebra is introduced for acquiring sentential knowledge that
is capable of transforming such features as, (the man bit the
dog) into semantically equivalent, but syntactically simplified
ones, such as (man bit dog).

Using a set-based methodology, our example query would
be further randomized to become ((where) (nearest place)
(treating victims) (gas explosions)). (This methodology can
be rewritten and adapted to the context of the current problem
domain.) Features can be thus normalized in linear time on a
concurrent architecture, or in quadratic time as a function of
sentential length on a serial processor. Features are then
associatively hashed using a symbol table. Of course, the rate
of growth in the symbol table decreases exponentially with
scale. Again, this is in keeping with a scalable design. The
initial query has been reduced to a set of integer tokens and
that set is then mapped to the user-defined proper response –
be that a machine-generated query to elicit further details for
purposes of disambiguation, an effective procedure for
generating a reply, and/or as defined above, the literal, “I have
three hospitals in New Orleans with burn units in order from
nearest to furthest.” Notice that while the semantic mapping
here is one to one, syntactic mapping will be many to one.
Note too that effective procedures for generating replies can
execute queries formulated in local languages for the retrieval
of semi-structured database information.

Having detailed the refinement and semantic mapping of
features above, the question remains as to how one can best
determine initial feature breakpoints. That issue will be
addressed next and is resolvable through the use of
randomness and symmetry [6]. More formally, given a fixed
sequence of words,

0 1 2
, , , ..., ,

n
w w w w we want to identify that

set of up to n+1 features, which are defined by, , ...,
i j

w w ,
i j≤ , such that the feature set is properly mapped to its
semantic association. Then, breakpoints are defined by a set
of up to n+1 ordered pairs that consist of, (

i
w and whether it’s

the start, inclusion, and/or end of a feature). Thus, there are
14n+ possible breakpoints (i.e., start; inclusion; end; start and

end). That would be several million breakpoints for a typical
query. It follows that a form of Evolutionary Programming
(EP) is properly applied to the approximation of the best loci
for the breakpoints.

At the outset, breakpoints are evolved through the use of
pure chance. Subsequently, known features are iteratively
applied to reduce the complexity of search. This is the
symmetric step and while it never completely precludes the
random step (i.e., for purposes of annealing), it should be
noted that the computational complexity of solving for the
(near) best breakpoints, on average, greatly decreases with
scale until it becomes linear. There is a well-known need to
order the training instances that stems from Winston’s work
on the conceptual definition of an arch in Blocks World [10]
and Mitchell’s work on Version Spaces [11]. The results of

this early work allow us to “kick-start” the
random-symmetric learning mechanism much in the same
manner as a child acquires a facility with a natural language
by bootstrapping from simple to complex constructs.

For example, if say we have previously acquired two
normalized features, (where) and (gas explosions), then the
exponent in the number of possible breakpoints has been
reduced by precisely this factor. If nothing else, this alone
would allow EP to do a better job of optimization with the
incursion of far less complexity. However, features may be
embedded in other features; although, this allowance is
precluded by our algorithm. An example of embedding is
provided by the feature, (natural (gas explosions)).
Symmetric reduction here would preclude the discovery of
the best feature, (natural gas explosions). In view of this
constraint and in keeping with Rubin’s previous work on
randomization [7], it is necessary that random search and
symmetric reduction proceed concomitantly on separate
threads. Theoretically speaking, that is to say that the
effective discovery of the (near) best breakpoints for feature
discovery is recursively enumerable, but not recursive [12].
The balance of computer resources to be dedicated to random
vs. symmetric discovery at any given time is, as it turns out,
not that difficult a problem. One simply sets up a feedback
loop that measures the degree of success in feature
randomization as a function of the degree of randomness and
symmetry and applies evolutionary search to optimize the
mixture for successful randomization over the time march.
One theoretical result here is that in any non-trivial (i.e.,
scaled) system, random and symmetric discovery must both
be present [4].

The remaining question, in the present context, pertains of
course to how one puts such feedback on a metric basis. Were
the discovery process strictly symmetric, then feedback
would consist of matching rule antecedents stored in a
knowledge base against the context consisting of the
symmetrically-reduced features. Then, a count of rules that
would be properly fired vs. improperly fired would yield the
desired metric for comparison purposes. However, as we
have just witnessed, the discovery process is inherently
random too. This means that many unknown features will be
created – features that can have no match among the existing
base of rule antecedents at the time of creation (i.e., via
diagonalization arguments). The solution is to delay feedback
until such time as the random features sufficiently populate
the base of rule antecedents to themselves become more or
less transformed into symmetric features. An ever
higher-quality rule base is evolved by expunging those rules
and their associated features (i.e., over the entire rule base)
having minimal metrics. While this no doubt sounds
complicated, it does reduce to a simple solution as follows.

Rules are moved to the logical head of the base when fired
and correct (see below). A rule is said to be properly matched
if the case antecedent, which is associated with the rule is
deemed by the user to cover the semantics of the rule
antecedent. Whenever domain feedback leads to the

3398

contradiction of a properly matched given fired rule, that rule
and its associated case are expunged without any deletions
being made to the symmetric lookup table; and, a new case
will be acquired. Otherwise, the improperly matched rule is
not expunged; but, any features that co-occur in this rule and
are present in the context are expunged from the symmetric
lookup table. (The fact that good features may be eliminated
because they occur in the context of bad ones also has a
positive side, where “single words” will be disassociated
from the feature space to enable the formation of longer
features. Cases associated with erroneous rules are not saved
because new cases may have new features and because when
space is at a premium, these cases have been shown to induce
rules that are least reliable for the current context.) All other
rules in the base, which contain these expunged features are
“re-expanded” about these features and subsequently
re-reduced using the updated symmetric lookup table.
Remaining word sequences, if any, may become
maximal-length features after normalization. Using our
previous example, if ((where) (nearest place) (treating
victims) (gas explosions)) were improperly triggered by the
context about (treating victims) and (gas explosions), then
assuming that (victims gas) were known by the symmetric
lookup table, the updated result would be ((where) (nearest
place) (treating) (victims gas) (explosions)). Note that
(treating) and (explosions) have been subsequently
normalized with possible removal as a consequence. In this
manner, reductions, over time, are limited to those that prove
themselves to be truly symmetric. Relatively
infrequently-fired rules will eventually “fall off the bottom”
and be replaced by ones containing genuine symmetric
features. This statistical mechanical approach insures that on
average, random features will not survive to become
persistent symmetric ones. There need be a statistical
correlation between features, or sets of features, and proper
actions (i.e., rule consequents).

The context must be reduced in order of non-increasing
size of the reduction entries in the symmetric lookup table
(i.e., reducing the most-specific features first). Using an
associative or hashing mechanism to parse the word sequence
of length n, we find that there are at most

1
2 (2)1

n n n

r
O

n

r
=

= =−

∑ hashes to be made, which occurs

where the symmetric lookup table is either empty or
inapplicable. This shows that the associative parsing
mechanism is quite tractable for the typical query length of
say ten words or so (i.e., even with subsequent
normalization). Actually, since features may not embed other
features, the complexity of associatively parsing
symmetrically reduced queries, which is the general case, is

actually much less, or (2)
n k

cO
−

, where c is the number of such
reductions and k is their average length.

B. Case-Based Feature Discovery and Fusion System
Having completed our discussion of heuristic evolutionary

feature decomposition above, there remains the need to
reduce an arbitrary feature space to a more (most) salient
feature space. Simply put, the less the inclusion of extraneous
features, the better the pattern matcher can do in finding
proper antecedents for matching the supplied context. In this
section, we present an outline as to how to best accomplish
this using a dynamic weight vector approach. In Section D
below, an improved algorithm is presented, which replaces
the dynamic weight vector approach with one for
randomizing the feature sets themselves.

Here, a supplied context is compared to get a metric match
for each case in the base. Expunged features have their
associated case-column set to “—” in preparation for
reassignment.

Example 1:
feature: f0 f1 f2 f3 (the four features having the

 greatest weights)
context: 1 1 1 1
 case: 1 0 1 0 A
 match: 1 -1 1 -1 1 = match; -1 = not match;
 W0: .25 .25 .25 .25 score = .25(1) + .25(-1) +

.25(1) + .25(-1) = 0;
W1: .20 .20 .40 .20 score = .2(1) + .2(-1) + .4(1) +

.2(-1) = 0.2 (better);

Example 2:
feature: f0 f1 f2 f3 f4
context: 1 1 1 1 1

case: 1 0 1 0 -- A (Cases may be lacking one
or more features)

 match: 1 -1 1 -1 0 1 = match; -1 = not match;
0 = omitted;

 W0: .20 .20 .20 .20 .20 score = .2(1) + .2(-1) +
 .2(1) +.2(-1) + .2(0) = 0;
 W1: .17 .17 .33 .17 .17 score = .17(1) + .17(-1) +

.33(1) + .17(-1) + .17(0) =
0.167 (better);

When evaluating a Wi, each row in the range, where there

must be at least two rows in the range having the same
consequent, will in turn have its antecedent, ai,j, serve as a
context, cj. This context will be compared against every row
excepting that from which it was derived. The score of the ith

row is given by
,1

()
j i j

n

jj
c aw

=
−∑ , where | 0

j j
w∀ ≥ and

1
j

w =∑ . In the case of Boolean functions, define
,

()
j i j

c a−

=

,

,

1, ;

1, ;

0, .

i j j

i j j

a c

a c

otherwise

+ =

− =

. Here, if the row having the maximum

score has the correct consequent, award +1; otherwise, -1. In
the case of real-valued functions, define

,
()

j i j
c a− =

,
|

j i j
c a− , which is always defined. Here, if the row having

the minimum score has the correct consequent, award +1;
otherwise, -1. Thus, the higher the score, the better the Wi,

3399

where a perfect score is defined to be the number of rows in
the range – the number of singleton classes there.

Example 2 is reworked below for the situation where there
is continuous variation (∆). By design, there will never be
any omitted features here.

Example 2':
feature: f0 f1 f2 f3 f4
context: 1 1 2 4 1 (can be phrases, rays, track

prediction, etc.)
 case: 3 1 3 3 1 A

∆ : 2 0 1 1 0 perfect match = 0;
W0: .33 .17 .17 .17 .17 score = .33(2) + .17(0)

 + .17(1) + .17(1) + .17(0)
= 1.0 (can be larger);

W1: .20 .20 .20 .20 .20 score = .2(2) + .2(0) +
 .2(1) + .2(1) + .2(0)

= 0.8 (better);

The advantage provided by such a weighted vector
approach is that it allows one to hill-climb an optimal solution
using sigmoid functions. However, as will be seen in Section
D below, hill-climbing can take the form of iterative symbolic
improvement as well. The relative advantage here is best
made clear by way of example. The inherent problem with the
sigmoid approach is that one can map say cases to chess
boards, but unless an exact match is to be had, there is almost
nothing to be gained by finding that the current board is
almost the same as the saved board. This is because, in chess
and many other domains of practical import, variation in a
single degree of freedom (e.g., the color of the square a piece
sits on) makes all the difference. This argument naturally
extends to procedural consequents as well. This will not be a
problem using the approach presented in Section D because
that approach seeks to symbolically and iteratively remove
extraneous features. It then climbs from working rule sets to
more general rule sets that remain relatively valid. That is
principally why this second approach is to be preferred over
this “neural” one. Indeed, Rubin [13] and Zadeh [14] provide
compelling evidence that when the numerical basis for a
fuzzy logic is relaxed, one can attain a capability to compute
with words using self-referential symbolic transformations
[13], or protoform schemas [14].

C. On Randomization and Discovery
In his theoretical paper, Rubin [4] proves the Semantic

Randomization Theorem (SRT) (i.e.,

| 0, = ()= (), | | | (||) |
t c t k

l l r u vrk c k l lϕϕ ϕ ϕ ϕ ϕ+ +

∃ ∀ ≥ > <). First
however, he proves that in general, randomization is
inherently a heuristic process. Indeed, the salient arguments

presented by Rubin [13] and Zadeh [14] are captured by the
Unsolvability of the Randomization Problem [4]. This
theorem serves to vindicate the inherent need for heuristics in
symbolic randomization.

Theorem (unsolvability of the randomization problem): There
is no algorithm, which when presented with indices i and j of
arbitrary computable functions :

i
N Nϕ → and :

j
N Nϕ → can

decide whether
i

ϕ is a randomization of
j

ϕ . Thus, there is no
algorithm, which when presented with the index j of an
arbitrary computable function :

j
N Nϕ → , j N∈ , can

randomize that function (i.e., transform it into
i

ϕ , where i
indexes an arbitrary randomized, or random, function).

It follows as a consequence of the SRT [4] that the
complexity (density) of knowledge is unbounded in the limit.
While intelligence is in every case constrained by the operant
laws of space and time, every non-trivial (i.e., self-referential)
finite realization of intelligence involving randomization is
necessarily domain specific and not recursively enumerable
(i.e., inherently heuristic) as a consequence of this theory [4].
The methodology used to prove the SRT allows us to define a
heuristic mechanics in the novel algorithm for randomizing
feature sets for use in the geodesic search and retrieval of
semi-structured databases.

D. Geodesic Randomization-Based Feature Discovery and
Fusion System

An improved innovative algorithm for iteratively
generalizing the feature space is depicted in Fig. 1. Our
previous example, as currently written, has:

((where) (nearest place) (treating victims) (gas explosions))

 “I have three hospitals in New Orleans with burn units in
order from nearest to furthest.” (2)

One candidate randomized rule would be:

((where) (treating victims) (gas explosions)) “I have three
hospitals in New Orleans with burn units in order from
nearest to furthest.” (3)

A geodesic randomization is defined over the entire rule
base, since each randomization can potentially affect that
which can be randomized (i.e., because of the introduction of
contradictions). In other words, the randomization space is
co-dependent. An overview of geodesic randomization
follows in Fig. 1.

3400

Fig. 1. An overview of geodesic search and retrieval of semi-structured data or multimedia

IV. CONCLUSION
Evolutionary programming, randomization, machine

learning, and their associated representations are endemic to
the search and retrieval of large databases. Furthermore, the
acquisition of knowledge facilitates the further acquisition of
search-control knowledge, which after all defines
randomization [6]. Application to the search and retrieval of
multimedia databases, in particular, will be examined in our
next paper.

ACKNOWLEDGMENT
This work was produced in part by a U.S. government

employee as part of his official duties and is not subject to
copyright. It is approved for public release with an unlimited
distribution.

REFERENCES
[1] S. Amarel, “On Representations of Problems of Reasoning about

Actions,” Mach. Intelligence, vol. 3, pp. 131-171, 1968.
[2] Y. Dote and S.J. Ovaska, “Industrial applications of soft computing:

a review,” Proceedings of the IEEE, vol. 89, no. 9, pp. 1243-1265,
2001.

[3] S.H. Rubin, S.N.J. Murthy, M.H. Smith, and L. Trajkovic, “KASER:
Knowledge Amplification by Structured Expert Randomization,”
IEEE Transactions on Systems, Man, and Cybernetics – Part B:
Cybernetics, vol. 34, no. 6, pp. 2317-2329, December 2004.

[4] S.H. Rubin, “On Randomization and Discovery,” Information
Science, vol. 177, iss. 1, pp. 170-191, 2007.

[5] G.J. Chaitin, “Information-Theoretic Limitations of Formal
Systems,” J. ACM, vol. 21, pp. 403-424, 1974.

[6] G.J. Chaitin, “Randomness and Mathematical Proof,” Sci. Amer.,
vol. 232, no. 5, pp. 47-52, 1975.

[7] S.H. Rubin, “On the Auto-Randomization of Knowledge,” Proc.
IEEE Int. Conf. Info. Reuse and Integration, Las Vegas, NV, pp.
308-313, 2004.

[8] J-H. Lin and J.S. Vitter, “Complexity Results on Learning by Neural
Nets,” Mach. Learn., vol. 6, no. 3, pp. 211-230, 1991.

[9] S.H. Rubin, S.C. Chen, and M.L. Shyu, “Field-Effect Natural
Language Semantic Mapping,” Proc. 2003 IEEE Int. Conf. Syst.
Man, Cybern., Washington, DC, pp. 2483-2487, 2003.

[10] P.H. Winston, Artificial Intelligence, first ed., Addison-Wesley Pub.
Co., 1977.

[11] T.M. Mitchell, Version Spaces: An Approach to Concept Learning,
Ph.D. thesis, Stanford University, 1978.

[12] A.J. Kfoury, R.N. Moll and M.A. Arbib, A Programming Approach
to Computability, New York, NY: Springer-Verlag Inc., 1982.

[13] S.H. Rubin, “Computing with Words,” IEEE Trans. Syst. Man,
Cybern., vol. 29, no. 4, pp. 518-524, 1999.

[14] L.A. Zadeh, “From Computing with Numbers to Computing with
Words – From Manipulation of Measurements to Manipulation of
Perceptions,” IEEE Trans. Ckt. and Systems, vol. 45, no. 1, pp.
105-119, 1999.

3401

