
On the Inherent Necessity of Heuristic Proofs

Stuart H. Rubin
SPAWAR SYSTEMS CENTER

53560 Hull St.
San Diego CA 92152-5001 USA

stuart.rubin@navy.mil

James B. Law
EXPERT2 SYSTEMS, INC.

3920 Leland St.
San Diego CA 92106-1048 USA

jamesblaw@gmail.com

Shu-Ching Chen
FLORIDA INTERNATIONAL UNIVERSITY

School of Computer Science
Miami FL 33199 USA

chens@cs.fiu.edu

Gordon K. Lee
SAN DIEGO STATE UNIVERSITY

Dept. of Electrical & Computer Engineering
San Diego, CA USA

glee@kahuna.sdsu.edu

Abstract - It follows from the Non-Reducibility of the
Theorization Problem that an arbitrary proof cannot be
valid on an absolute scale. Thus, in order for an arbitrary
proof to be generative, it must be self-referential; but then,
it must also be heuristic if not incomplete as a
consequence. By relaxing the validity requirement,
heuristic (i.e., relative) proof techniques are enabled. We
show that heuristics are search randomizations in space-
time. It is shown how one can develop heuristics, which
are randomizations of knowledge. Even more intriguing, it
is shown that heuristic proof is to formal proof what fuzzy
logic is to formal logic. Simply put, the paper argues for
the need to relax the notion of formal proof if AI is to
advance.

Keywords: Extrema techniques, heuristics, local proofs,
randomization.

1 Introduction
 The theory of randomization was first published by

Chaitin and Kolmogorov [1] in 1975. Their work may be
seen as a consequence of Gödel’s Incompleteness Theorem
[2] in that it shows that were it not for essential
incompleteness, then a universal knowledge base could, in
principle, be constructed – one that need employ no search
other than referential search. Lin and Vitter [3] proved that
learning must be domain-specific to be tractable. The
fundamental need for domain-specific knowledge is in
keeping with the Unsolvability of the Randomization
Problem [4], [5].

This paper will show that randomization reduces
evolutionary time in the large. Furthermore, randomization
is not recursively enumerable (r.e.) and, a fortiori, not
recursive. Heuristics work, but the best heuristics may not
be effectively discoverable, or if discovered not effectively
provable.

2 Solution approach
Symmetric domains allow for the proportionate

discovery of heuristics (loss or lossless randomizations).
Evolution needs to utilize random and symmetric
components. By maintaining the space-time definition of
the processed domain as relatively random, evolutionary
speed is necessarily maximized through the incorporation
of heuristics. We prove that since the process of
randomization is not r.e. (i.e., heuristics are incomplete –
they work, but cannot be effectively covered), where
search is guided by search on how to search (i.e., the
evolution of heuristics is necessarily heuristic), etc., an
absolute algorithm for intelligence is not provable. As a
consequence, one may verify class-equivalent English
pseudo-code formalizations using embedded inductive
constraint proofs. For example, one might model pairs of
evolving subsystems in a (closed) network configuration,
which degenerate to a “coin toss”. Thus, meta-rules and
contextual differencing (among other heuristic
methodologies) may only be proven using local (i.e.,
domain-specific) inductive randomization (e.g., in keeping
with the dictates of Occam’s razor), where global or
domain-general proofs of correctness (or optimality) can
never be had.

3 Solution methodology
3.1. Proposition
The set { | : is random}

i
i N Nϕ → is not r.e. and, a fortiori,

not recursive.

Proof: Rubin proves that there is no effective enumeration
of all the random computable functions [6] in Theorem 2.5
(unsolvability of the randomization problem), which
appears in, “On the Auto-Randomization of Knowledge”
[5].

38900-7803-9298-1/05/$20.00©2005 IEEE

2005 IEEE International Conference on Systems, Man and Cybernetics
Waikoloa, Hawaii October 10-12, 2005

3.2. Proposition
Let

0 1
, , ... , ...,

i
f f f i N∈ , be an effective enumeration in

which every
i

f is a random computable function from N to
N. Then, there is a random computable function

:f N N→ , which does not appear in this effective
enumeration.

Proof: To say that

0 1
, , ... , ...,

i
f f f i N∈ is an effective

enumeration of random computable functions means that
there is a total computable function, :g N N→ such that

()g i
fϕ = .

Define :f N N→ by diagonalizing over the functions

0 1
, , ... , ...

i
f f f ; that is, let

() () || ()

i i
f i f i f i= (1)

f is defined to be a random function because

()
||

g i i i
ϕ ϕ ϕ= , where

()
| | | (||) |

g i i i
ϕ ϕ ϕ< as a result of

Theorem 3.5 (the semantic randomization problem [5]).
The concatenation macro, g, is by appeal to Church’s
Thesis. For example, the concatenation of two programs,
each of which adds one to its input variable results in a
program that adds two to its input variable. Here, f is
computable by the while-program:

Begin
2 : (1);X g X= (2)
1 : (2, 1);X X X= Φ

End;

But f cannot appear in the effective enumeration

0 1
, , ... , ...

i
f f f itself, since it would differ from a

concatenation of itself on its own index.

3.3. Corollary. There can be no effective enumeration of
all the random computable functions from N to N. This
completes the proof of the proposition showing that the set
{ | : is random}

i
i N Nϕ → is not r.e.

This corollary has rather profound implications. Were the

set { | : is random}
i

i N Nϕ → r.e., then one could hill-climb
ever-better heuristics for solving an arbitrary computable
problem. (Of course, nothing in the theory precludes the
success of such an approach for a defined computable
problem, given an appropriate representation of the specific
domain.) However, as it turns out, the infeasibility of
evolving a general heuristic solution implies that there can
be no proof of such – for otherwise the proof would serve
as a recursive characterization – in direct contradiction with
the corollary.

It follows that all non-trivial (e.g., self-referential) proofs
are inherently heuristic. That is, the notion of an absolute
non-trivial and valid proof is a misnomer. Nevertheless,
proofs may be partially ordered by their strength. We make
use of such partial orderings to efficiently evolve heuristics
of increasing complexity in Figure 2 (Section 5). The
impossibility of an absolute proof in general allows
transformational knowledge (e.g., a Type II KASER) to be
creative [7]. Heuristic knowledge, like axiomatic
knowledge in this regard, while efficacious is not provable.
Next, we prove that a random set of axioms is not reducible
from an arbitrary theory.

3.4 Theorem (non-reducibility of the theorization
problem)

There is no algorithm, which when presented with
indices i and j of an arbitrary denumerable set of axioms
and a theory, :

i i j
S Sϕ → and :

j j j
S Sϕ → respectively, can

decide whether
i

ϕ is a randomization of
j

ϕ . Thus, there is
no algorithm, which when presented with the index j of an
arbitrary fixed-point set (i.e., so as not to be axiomatic)

:
j j j

S Sϕ → , j N∈ , can randomize that set (i.e., transform it

into
i

ϕ , where i indexes a randomized set of axioms).
Proof: Define the total function

{1, (i);
(,)

0, .

j i
if

theorem i j
otherwise

ϕ ϕ
=

=
 (3)

() .

i i j
i randomizesϕ ϕ ϕ↓ ⇔ (4)

It is clear that (i)

j i
ϕ ϕ= just in case ()

i
iϕ ↓ . By our last

observation,

{1, ;
(,)

0, .

i j
if randomizes

theorem i j
otherwise

ϕ ϕ
= (5)

This means that the function random, defined in Theorem
2.5 [5], is none other than theorem. Since random is not
computable [5], conclude that theorem cannot be either.

By establishing that randomization is inherently heuristic,
it follows from Corollary 3.3 that the heuristics cannot be
effectively enumerated as well. This can only mean that
there are classes of problems (e.g., a global proof of the
KASER [7]), which cannot be effectively solved. That is to
say that the evolution of heuristics in general inherently
depends on chance. It also must depend on symmetry for
tractability. The next section makes this clear by way of
example. It follows that the best way, in theory, to improve
the operational KASER [7], where possible, is to construct

3891

relevant knowledge bases for self-application. That is,
KASERs need be bootstrapped to efficiently evolve.

4 The heuristic 8-puzzle
 Controlling the actions of a robot and automatic

programming are two examples of AI applications that
involve composing a sequence of operations representing
the problem solution. A problem in this category is the 8-
puzzle [8], which consists of an initial and goal state along
with a set of operators for transforming the former into the
latter. There are four operators here: Move empty space
(blank) to the left, move blank up, move blank to the right,
and move blank down. The 8-puzzle has a relatively small
state space; there are only 9! (362,880) different
configurations of the 8 tiles and the blank space.

Finding a good global database, rule set, and control
strategy – the three components of a production system –
is often called the representation problem in AI. Amarel
[9] wrote a classic paper on the subject that took the reader
through a series of progressively better representations for
the missionaries-and-cannibals problem. Rubin [4] and
Zadeh [10] provide compelling evidence that the
representational formalism itself must be included in the
definition of domain-specific learning if it is to be scalable.

A search algorithm is said to be admissible if, for any
graph, it always terminates in an optimal path from a given
start to a goal node whenever a path from the start to a
goal node exists [8]. Heuristic power can often be gained
at the expense of admissibility – i.e., power that allows for
the tractable solution of more complex problems.

According to Nilsson [8], a good heuristic for the 8-
puzzle is embodied by the last two terms in the equation,
f(n) = g(n) + P(n) + 3S(n), where g(n) is the lowest cost
path from a given start node to some arbitrary node found
so far by the search algorithm, P(n) is the sum of the
distances that each tile is from “home” (ignoring
intervening pieces) and S(n) is a sequence score obtained
by checking around the non central squares in turn,
allotting 2 for every tile not followed by its proper
successor and allotting 0 for every other tile; a piece in the
center scores one. This heuristic function is not admissible,
but allows for the rapid solution of much more difficult 8-
puzzles [8]. Furthermore, non-admissible heuristics are
often easier to compute, which serves to further increase
their efficacy. We note that the weight in the term, 3S(n),
serves to emphasize the heuristic component, which works
well at shallow depths, but tends to fail proportionately at
greater depths, where the search is necessarily more
breadth-first.

The remainder of this section will address the discovery
of non-admissible heuristics, scaling them with the rank of
a problem (e.g., from the 8-puzzle to the 15-puzzle), and
their use in transference among similar application
domains (e.g., checkers and chess). Again, chance and
symmetry play pivotal roles in the discovery of heuristic
functions.

Figure 1 depicts the practical realization of functionals,
which are theoretic objects, mapping functions to functions
[6]. The transference graph presented in Figure 1 serves as
a model for Minsky’s, “society of mind” [11]. Here, each
node can be co-evolved on a MIMD machine. The
connectivity models the commissures in the brain [12]. The
Si and Gj represent constraining start and goal states,
respectively. Set-based operations are used in and extracted
from the runs. Here, f(n) = g(n) + [1, 3] Z(n) R {1, 2, 3}
S(n), where the brackets denote a range of integer values, Z
denotes a class of functions, and R denotes a class of
relational operators. In particular, {1, 3} → [1, 3] through
the application of the indicated set-based generalization.
Here, the search space consists of 108 symmetric functions
plus random variations.

Figure 1. A society of mind

Clearly, a non-trivial domain needs to be more or less
symmetric to be tractably characterized. Chance is needed
to the extent that domain-specific hill-climbing yields
suboptimal results.

5 Randomized local extrema

 As previously explained, there is an inherent need for
formal local proof techniques. Such proof techniques are
predicated on more or less formal domain-specific
representations, loss or lossless problem randomizations,
symmetric induction, and where necessary space-time
pruning, since the space of heuristic functions was shown
to be non r.e. Randomized local extrema techniques enable
the Type II KASER to operationally extend itself by way of
self-reference.

Even local non r.e. heuristic functions can be
approximately solved for using this method – given
sufficient space and time. The schema for this five-step
methodology is presented in Figure 2.

3892

1. Design a domain-specific representation for the

problem. Suitable problems include, but are not
limited to, heuristic discovery, heuristic proofs of
correctness, and heuristic optimizations. Every
problem representation consists of four components;
namely, a non-empty state space {S} | {so, s1, s2, …,
sm}, a non-empty set of operators for moving from
state to state {O} | {oo, o1, o2, …, on}, and an
optional non-empty set of initial states {I} | {io, i1,
i2, …, ip} and a non-empty set of goal states {G} |
{go, g1, g2, …, gq}, where p, q ≤ m.

2. Create a random basis, which is defined to be a min
{S, O, I, G} such that p, q ≤ m. In particular, min
(O) is defined to be a most general set of operators
such that at least one state in I is mapped to at least
one state in G, where applicable. (Note that
algorithms and production rules may be placed in
isomorphism, since both representations are
universal.) A random basis may or may not be an
abstraction of the problem as appropriate, but in
either case, it needs to be a smallest sub-problem
that makes sense for the domain characterization.
REPEAT

3. Create a symmetric induction, if any, by
concatenating a distinct pair of results from prior
inductions (random bases), where the definition of
concatenation follows from the domain-specific
problem representation. More formally, {S, O, I, G}
must be non-decreasing (i.e., “equal to or more-
specific-than” in the context of an operator to insure
convergence) in the resultant symmetric
characterization.

4. Create a minimal distinct random variation of the
result of a prior induction (random basis), if any.
More formally, {S, O, I, G} must be non-decreasing
(i.e., “equal to or more-specific-than” in the context
of an operator to insure convergence) in the
resultant random characterization.
UNTIL

5. A (heuristic) solution to the problem is found, if
possible, within the space-time allocation. Remove
unnecessary constraints (i.e., generalize) where
appropriate. Generalization is defined to be a max
{S, O, I, G} such that p, q ≤ m. In particular, max
(O) is defined to be a most specific set of operators
such that at least one state in I is mapped to at least
one state in G, where applicable.

Figure 2. A randomized local extrema methodology

Heuristics are needed to tractably solve many different
types of computable problems. Typical of the NP-hard
problems is the Traveling-Salesman Problem (TSP), where
the problem is to find a minimum distance tour, starting at
one of several cities, visiting each city precisely once, and

returning to the starting city [8]. The TSP arises in
operations research [13], [14]. Let us now turn to see how
our solution methodology can be successfully applied to the
task of finding two heuristic solutions for the TSP. Its
applicability to similar problems is by symmetric induction,
while its applicability to distinct problems is by
randomization. Of course, the methodology is not complete
and fails if a suitable representation, randomization, or
symmetric induction cannot be found (due to the non-
reducibility of the theorization problem). A heuristic
solution to the TSP is presented below.

To save space, this algorithm was presented as an object
in Figure 2, where Figures 3.1 to 3.7 will instantiate it with
examples – thus making clear its generalizations. It needs to
be emphasized that heuristic programming differs from
logic programming in that one formalizes a relaxed or
fuzzy space of possibilities. For example, we may crisply
write, For i = 1 to n; whereas, heuristically we may write,
For i = 1 to env(n), where env(n) represents the fuzzy
region of n – its environment, which of course includes n-1,
n, n+1, and possibly to a lesser extent (i.e.,
probabilistically) the twin tails.

Example: The Traveling Salesman Problem

Step 1 (Representation). The problem generalizes to one of
finding a minimum cost path over the edges of a graph {O}
containing n nodes {S} such that the path visits each of the
n nodes precisely once and returns to the start node {I, G}.

Step 2 (Random Basis). Take n = 2 (linear).

Begin

open := {a, b}; /* min {S} */
start := {a}; /* min {I} */
closed := {a}; /* min {G} */
open := open – start;
While open <> {} do

closed := closed ∪ member open; /* visit
member on open */
open := open – member open; /* min {O} */

/* return to start is goal state */
End;

Figure 2.1.

Step 3 (Symmetric Induction). Take n = 3 (co-linear).

3893

Begin

open := {a, b, c}; /* add “c” to set – i.e., {S} is non-
decreasing */
… /* same as previous randomization – {I, G, O}
are non-decreasing */

End;

Figure 2.2.

Step 4 (Random Variation). Take n = 3 (planar).

Observe that node c has been moved up to create a right
triangle. Then, the shortest path from node c to node a lies
on the hypotenuse.

Begin

/* same as previous randomization – {S, I, G} are
non-decreasing */
…
While open <> {} do

closed := closed ∪ nearest open; /* visit nearest
member on open and resolve ties arbitrarily */
open := open – nearest open; /* {O} is increasing
because nearest is more-specific than member, of
which it is an instance */

/* return to start is goal state */
End;

Figure 2.3.

Step 5 (Evaluate and Generalize). We have progressed to
the point where a first heuristic solution to the TSP can be
specified in general algorithmic form. The serial
complexity of this first heuristic solution can be shown to
be O(n2), or O(n3) if each city is taken, in turn, for the start.

This result is none other than the familiar, “visit the
nearest non-visited city next” heuristic approach for solving
the TSP. A better heuristic solution (i.e., a method for
finding “approximately” optimum tours) has been
published by Lin [15]. Again, it is generally improper to be
concerned with finding an absolute best heuristic (i.e.,
method for finding optimal tours), since heuristics were
shown to be non r.e. Better heuristics; albeit often more
complex ones, may be discovered by allocating more
space-time to our solution methodology as follows. Then,
assuming the evaluation in Step 5 proved to be

unsatisfactory, we take the pre-generalized results of Step 4
as our last iterate:

Begin

open ← n nodes; /* max {S} */
start ← arbitrarily selected node on open; /* max
{I} */
A closer to optimal result may be found if the
algorithm is re-run, taking a distinct city for the start
on each run and subsequently selecting for a
minimal tour. Of course, this generalization will
increase the cost of finding a solution by an order of
magnitude.
closed := start; /* max {G} */
open := open – start;
While open <> {} do

closed := closed ∪ nearest open; /* visit nearest
member on open and resolve ties arbitrarily */
open := open – nearest open; /* max {O} */

/* return to start is goal state */
End;

Figure 2.4.

Step 3 (Symmetric Induction). Take n = 4 (planar).
Starting from node a, we proceed to the nearest neighbor,
which is node b. Now, node c and node d are equidistant
from node b, so a more-specific operator is needed to
resolve the tie. It can be shown that an optimal tour here is
the sequence, (a, b, d, c, a). More generally, this
methodology only requires that one solve for a locally best
tour.

Begin

open := {a, b, c, d}; /* add “d” to set – i.e., {S} is
non-decreasing */
/* same as previous randomization – {I, G} are non-
decreasing */
…
While open <> {} do

closed := closed ∪ nearest2 open; /* visit
nearest member on open, where nearest2 inherits
all the properties of nearest, but in the event of a
tie it selects that unvisited node (e.g., “d”)
furthest from the start. Resolve other ties
arbitrarily. */
open := open – nearest2 open; /* {O} is
increasing because nearest2 is more-specific than
nearest, of which it is an instance */

/* return to start is goal state */
End;

Figure 2.5.

3894

Step 4 (Random Variation). Take n = 5 (planar).

Begin

open := {a, b, c, d, e}; /* add “e” to set – i.e., {S} is
non-decreasing */
/* same as previous randomization – {I, G} are non-
decreasing */
…
Appeal to Church’s Thesis [6] and define furthest to
inherit all the properties of nearest2, but in the
event of a tie, it selects that node on open (i.e., the
set of unvisited nodes – e.g., “e”) furthest from the
remaining unvisited nodes (i.e., using a sum of the
distances, where

0
max(),

m

i j jj
x x x open

=
− ∈∑).

Resolve other ties arbitrarily.
While open <> {} do

closed := closed ∪ furthest open; /* visit furthest
member on open in the event of a tie, which may
be counter-intuitive */
open := open – furthest open; /* {O} is
increasing because furthest inherits from nearest2
and builds upon it using more-specific constructs
*/

/* return to start is goal state */
End;

Figure 2.6.

Observe that node e has been added so as to create a
random variation. The line segments, ab, bc, bd, and ae are
all equidistant as shown. It can be demonstrated that an

optimal tour here is the sequence, (a, e, b, d, c, a), where
selecting e for the second city to visit always results in a
better tour than if city b were selected. Previous tours are
not adversely impacted by this random variation because
{O} is more specific. More generally, again this
methodology only requires that one solve for a locally best
tour.

Step 5 (Evaluate and Generalize). We have progressed to
the point where a second heuristic solution to the TSP can
be specified in general algorithmic form. The serial
complexity of this second heuristic solution can be shown
to be O(n2.x), or O(n3.x) if each city is taken, in turn, for the
start.

Begin

open ← n nodes; /* max {S} */
start ← arbitrarily selected node on open; /* max
{I} */
A closer to optimal result may be found if the
algorithm is re-run, taking a distinct city for the start
on each run and subsequently selecting for a
minimal tour. Of course, this generalization will
increase the cost of finding a solution by an order of
magnitude.
closed := start; /* max {G} */
open := open – start;
Appeal to Church’s Thesis [6] and define furthest to
inherit all the properties of nearest2, but in the
event of a tie, it selects that node on open (i.e., the
set of unvisited nodes – e.g., “e”) furthest from the
remaining unvisited nodes (i.e., using a sum of the
distances, where

0
max(),

m

i j jj
x x x open

=
− ∈∑).

Resolve other ties arbitrarily.
While open <> {} do

closed := closed ∪ furthest open; /* visit furthest
member on open in the event of a tie, which may
be counter-intuitive */
open := open – furthest open; /* max {O} */

/* return to start is goal state */
End;

Figure 2.7.

While the complexity of the second solution is slightly
greater than that of the first solution, it will generally
produce much closer to optimal solutions for larger graphs.
Note that O(ni) < O(ni.x) << O(n!), which is the complexity
necessary to guarantee an optimal solution (again, since the
TSP is NP-hard).

This is a non-trivial heuristic solution to the TSP, which
may rival if not supercede the solution published by Lin
[15] if his technique incorporating “repeated runs on a
problem from random initial tours” is compared with our

3895

technique, where “each city is taken, in turn, for the start”.
Again, better heuristics; albeit often more complex ones,
may be discovered by allocating more space-time to our
solution methodology.
Heuristic proofs of correctness do not require the
enumeration of cases, which would otherwise be required.
Heuristic proofs are useful where stronger proofs (i.e.,
since there can be no such thing as a valid proof of a non-
trivial theorem as a corollary of the non-reducibility of the
theorization problem, or [2]) are not forthcoming, or do not
warrant the associated higher cost of search. A countably
infinite number of proofs can only be specified in heuristic
form as a consequence of the non-reducibility of the
theorization problem. The degree to which any non-trivial
theorem is inherently subject to heuristic proof has been
shown to be relative – never absolute.

6 Conclusion
We note that a TSP, which requires centuries to optimize

on a supercomputer can be heuristically optimized in just
hours on a PC (e.g., within one percent of optimum).
Similarly, we should not be surprised to find that
traditional proofs, which may take centuries to find, if ever
(e.g., a proof of the four-color theorem, Fermat’s last
theorem, et al.) are similarly subject to at least heuristic
discovery and, with additional complexity, heuristic proof.
We have endeavored to provide the reader with several
examples of heuristic proof techniques. These techniques,
while of potentially incredulous utility (e.g., a heuristic
proof of the eight-color theorem) provide more than just
another tool for the mathematician’s toolbox. They show,
when properly interpreted, that Gödel’s Incompleteness
Theorem [2] is an enabling, rather than a limiting result.
That is, we have indirectly shown that essential
incompleteness is what makes true intelligence possible.

7 Future work
Randomization in space-time has been shown to be

synonymous with heuristic discovery. It remains to develop
an operant mechanics for a Type II KASER and
heuristically verify it using a single global fixed-point
heuristic proof as supported by numerous necessarily local
(heuristic) proofs.

8 Acknowledgments
The authors wish to thank Professor Lotfi Zadeh for his

support and inspiration throughout the years. The authors
also thank the Office of Naval Research (ONR) for
financial support. This work was produced by a U.S.
government employee as part of his official duties and is
not subject to copyright. It is approved for public release
with an unlimited distribution.

9 References

[1] G.J. Chaitin, “Randomness and Mathematical Proof,” Sci.
Amer., Vol. 232, No. 5, pp. 47-52, 1975.

[2] V.A. Uspenskii, Gödel’s Incompleteness Theorem,
Translated from Russian. Ves Mir Publishers, Moscow, 1987.

[3] J-H. Lin and J.S. Vitter, “Complexity Results on Learning by
Neural Nets,” Mach. Learn., Vol. 6, No. 3, pp. 211-230,
1991.

[4] S.H. Rubin, “Computing with Words,” IEEE Trans. Syst.
Man, Cybern., Vol. 29, No. 4, pp. 518-524, 1999.

[5] S.H. Rubin, “On the Auto-Randomization of Knowledge,”
Proc. IEEE Int. Conf. Info. Reuse and Integration, Las
Vegas, NV, pp. 308-313, 2004.

[6] A.J. Kfoury, R.N. Moll, and M.A. Arbib, A Programming
Approach to Computability, Springer-Verlag Inc., New York,
NY, 1982.

[7] S.H. Rubin, S.N.J. Murthy, M.H. Smith, and L. Trajkovic,
“KASER: Knowledge Amplification by Structured Expert
Randomization,” IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics, Vol. 34, No. 6, pp. 2317-
2329, December 2004.

[8] N.J. Nilsson, Principles of Artificial Intelligence, Morgan
Kaufmann Publishers, Inc., Mountain View, CA, 1980.

[9] S. Amarel, “On Representations of Problems of Reasoning
about Actions,” Machine Intelligence, Vol. 3, pp. 131-171,
1968.

[10] L.A. Zadeh, “From Computing with Numbers to Computing
with Words – From Manipulation of Measurements to
Manipulation of Perceptions,” IEEE Trans. Ckt. and Systems,
Vol. 45, No. 1, pp. 105-119, 1999.

[11] M. Minsky, The Society of Mind. Simon and Schuster, Inc.,
New York, NY, 1987.

[12] J.C. Eccles, Understanding of the Brain, McGraw-Hill Co.,
2d ed., New York, NY,1976.

[13] H. Wagner, Principles of Operations Research (2d ed.),
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.

[14] F.S. Hillier and G.J. Lieberman, Introduction to Operations
Research (2d ed.), Holden Day Publishers, Inc., San
Francisco, CA, 1974.

[15] S. Lin, “Computer Solutions of the Traveling Salesman
Problem,” Bell System Tech. Journal, Vol. XLIV, No. 10,
pp. 2245-2269, 1965.

3896

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

