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Abstract - It follows from the Non-Reducibility of the 
Theorization Problem that an arbitrary proof cannot be 
valid on an absolute scale. Thus, in order for an arbitrary 
proof to be generative, it must be self-referential; but then, 
it must also be heuristic if not incomplete as a 
consequence. By relaxing the validity requirement, 
heuristic (i.e., relative) proof techniques are enabled. We 
show that heuristics are search randomizations in space-
time. It is shown how one can develop heuristics, which 
are randomizations of knowledge. Even more intriguing, it 
is shown that heuristic proof is to formal proof what fuzzy 
logic is to formal logic. Simply put, the paper argues for 
the need to relax the notion of formal proof if AI is to 
advance. 

Keywords: Extrema techniques, heuristics, local proofs, 
randomization. 

1 Introduction 
 The theory of randomization was first published by 

Chaitin and Kolmogorov [1] in 1975. Their work may be 
seen as a consequence of Gödel’s Incompleteness Theorem 
[2] in that it shows that were it not for essential 
incompleteness, then a universal knowledge base could, in 
principle, be constructed – one that need employ no search 
other than referential search. Lin and Vitter [3] proved that 
learning must be domain-specific to be tractable. The 
fundamental need for domain-specific knowledge is in 
keeping with the Unsolvability of the Randomization 
Problem [4], [5]. 

This paper will show that randomization reduces 
evolutionary time in the large. Furthermore, randomization 
is not recursively enumerable (r.e.) and, a fortiori, not 
recursive. Heuristics work, but the best heuristics may not 
be effectively discoverable, or if discovered not effectively 
provable. 

2 Solution approach 
Symmetric domains allow for the proportionate 

discovery of heuristics (loss or lossless randomizations). 
Evolution needs to utilize random and symmetric 
components. By maintaining the space-time definition of 
the processed domain as relatively random, evolutionary 
speed is necessarily maximized through the incorporation 
of heuristics. We prove that since the process of 
randomization is not r.e. (i.e., heuristics are incomplete – 
they work, but cannot be effectively covered), where 
search is guided by search on how to search (i.e., the 
evolution of heuristics is necessarily heuristic), etc., an 
absolute algorithm for intelligence is not provable. As a 
consequence, one may verify class-equivalent English 
pseudo-code formalizations using embedded inductive 
constraint proofs. For example, one might model pairs of 
evolving subsystems in a (closed) network configuration, 
which degenerate to a “coin toss”. Thus, meta-rules and 
contextual differencing (among other heuristic 
methodologies) may only be proven using local (i.e., 
domain-specific) inductive randomization (e.g., in keeping 
with the dictates of Occam’s razor), where global or 
domain-general proofs of correctness (or optimality) can 
never be had. 

3 Solution methodology 
3.1. Proposition 
The set { | :  is random}

i
i N Nϕ →  is not r.e. and, a fortiori, 

not recursive. 
 
Proof: Rubin proves that there is no effective enumeration 
of all the random computable functions [6] in Theorem 2.5 
(unsolvability of the randomization problem), which 
appears in, “On the Auto-Randomization of Knowledge” 
[5]. 
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3.2. Proposition 
Let 

0 1
, , ... , ...,

i
f f f i N∈ , be an effective enumeration in 

which every 
i

f  is a random computable function from N to 
N. Then, there is a random computable function 

:f N N→ , which does not appear in this effective 
enumeration. 
 
Proof: To say that 

0 1
, , ... , ...,

i
f f f i N∈  is an effective 

enumeration of random computable functions means that 
there is a total computable function, :g N N→  such that 

( )g i
fϕ = . 

Define :f N N→  by diagonalizing over the functions 

0 1
, , ... , ...

i
f f f ; that is, let 

 
( ) ( ) || ( )

i i
f i f i f i=                   (1) 

 
f  is defined to be a random function because 

( )
||

g i i i
ϕ ϕ ϕ= , where 

( )
| | | ( || ) |

g i i i
ϕ ϕ ϕ<  as a result of 

Theorem 3.5 (the semantic randomization problem [5]). 
The concatenation macro, g, is by appeal to Church’s 
Thesis. For example, the concatenation of two programs, 
each of which adds one to its input variable results in a 
program that adds two to its input variable. Here, f  is 
computable by the while-program: 
 

Begin 
2 : ( 1);X g X=                      (2) 
1 : ( 2, 1);X X X= Φ  

End; 
 
But f  cannot appear in the effective enumeration 

0 1
, , ... , ...

i
f f f  itself, since it would differ from a 

concatenation of itself on its own index.         
 
3.3. Corollary. There can be no effective enumeration of 
all the random computable functions from N to N. This 
completes the proof of the proposition showing that the set 
{ | :  is random}

i
i N Nϕ →  is not r.e.           

 
This corollary has rather profound implications. Were the 

set { | :  is random}
i

i N Nϕ →  r.e., then one could hill-climb 
ever-better heuristics for solving an arbitrary computable 
problem. (Of course, nothing in the theory precludes the 
success of such an approach for a defined computable 
problem, given an appropriate representation of the specific 
domain.) However, as it turns out, the infeasibility of 
evolving a general heuristic solution implies that there can 
be no proof of such – for otherwise the proof would serve 
as a recursive characterization – in direct contradiction with 
the corollary. 

It follows that all non-trivial (e.g., self-referential) proofs 
are inherently heuristic. That is, the notion of an absolute 
non-trivial and valid proof is a misnomer. Nevertheless, 
proofs may be partially ordered by their strength. We make 
use of such partial orderings to efficiently evolve heuristics 
of increasing complexity in Figure 2 (Section 5). The 
impossibility of an absolute proof in general allows 
transformational knowledge (e.g., a Type II KASER) to be 
creative [7]. Heuristic knowledge, like axiomatic 
knowledge in this regard, while efficacious is not provable. 
Next, we prove that a random set of axioms is not reducible 
from an arbitrary theory. 
 
3.4 Theorem (non-reducibility of the theorization 
problem) 
 

There is no algorithm, which when presented with 
indices i and j of an arbitrary denumerable set of axioms 
and a theory, :

i i j
S Sϕ →  and :

j j j
S Sϕ →  respectively, can 

decide whether 
i

ϕ  is a randomization of 
j

ϕ . Thus, there is 
no algorithm, which when presented with the index j of an 
arbitrary fixed-point set (i.e., so as not to be axiomatic) 

:
j j j

S Sϕ → , j N∈ , can randomize that set (i.e., transform it 

into 
i

ϕ , where i indexes a randomized set of axioms). 
Proof:   Define the total function 

 

{1,   (i);
( , )

0,  .

j i
if

theorem i j
otherwise

ϕ ϕ
=

=
                    (3) 

 
( )     .

i i j
i randomizesϕ ϕ ϕ↓ ⇔                       (4) 

 
It is clear that (i)

j i
ϕ ϕ=  just in case ( )

i
iϕ ↓ . By our last 

observation, 
 

{1,     ;
( , )

0,  .

i j
if randomizes

theorem i j
otherwise

ϕ ϕ
=                 (5) 

 
This means that the function random, defined in Theorem 
2.5 [5], is none other than theorem. Since random is not 
computable [5], conclude that theorem cannot be either.    
 

By establishing that randomization is inherently heuristic, 
it follows from Corollary 3.3 that the heuristics cannot be 
effectively enumerated as well. This can only mean that 
there are classes of problems (e.g., a global proof of the 
KASER [7]), which cannot be effectively solved. That is to 
say that the evolution of heuristics in general inherently 
depends on chance. It also must depend on symmetry for 
tractability. The next section makes this clear by way of 
example. It follows that the best way, in theory, to improve 
the operational KASER [7], where possible, is to construct 
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relevant knowledge bases for self-application. That is, 
KASERs need be bootstrapped to efficiently evolve. 
 

4 The heuristic 8-puzzle 
 Controlling the actions of a robot and automatic 

programming are two examples of AI applications that 
involve composing a sequence of operations representing 
the problem solution. A problem in this category is the 8-
puzzle [8], which consists of an initial and goal state along 
with a set of operators for transforming the former into the 
latter. There are four operators here: Move empty space 
(blank) to the left, move blank up, move blank to the right, 
and move blank down. The 8-puzzle has a relatively small 
state space; there are only 9! (362,880) different 
configurations of the 8 tiles and the blank space. 

Finding a good global database, rule set, and control 
strategy – the three components of a production system – 
is often called the representation problem in AI. Amarel 
[9] wrote a classic paper on the subject that took the reader 
through a series of progressively better representations for 
the missionaries-and-cannibals problem. Rubin [4] and 
Zadeh [10] provide compelling evidence that the 
representational formalism itself must be included in the 
definition of domain-specific learning if it is to be scalable. 

A search algorithm is said to be admissible if, for any 
graph, it always terminates in an optimal path from a given 
start to a goal node whenever a path from the start to a 
goal node exists [8]. Heuristic power can often be gained 
at the expense of admissibility – i.e., power that allows for 
the tractable solution of more complex problems. 

According to Nilsson [8], a good heuristic for the 8-
puzzle is embodied by the last two terms in the equation, 
f(n) = g(n) + P(n) + 3S(n), where g(n) is the lowest cost 
path from a given start node to some arbitrary node found 
so far by the search algorithm, P(n) is the sum of the 
distances that each tile is from “home” (ignoring 
intervening pieces) and S(n) is a sequence score obtained 
by checking around the non central squares in turn, 
allotting 2 for every tile not followed by its proper 
successor and allotting 0 for every other tile; a piece in the 
center scores one. This heuristic function is not admissible, 
but allows for the rapid solution of much more difficult 8-
puzzles [8]. Furthermore, non-admissible heuristics are 
often easier to compute, which serves to further increase 
their efficacy. We note that the weight in the term, 3S(n), 
serves to emphasize the heuristic component, which works 
well at shallow depths, but tends to fail proportionately at 
greater depths, where the search is necessarily more 
breadth-first. 

The remainder of this section will address the discovery 
of non-admissible heuristics, scaling them with the rank of 
a problem (e.g., from the 8-puzzle to the 15-puzzle), and 
their use in transference among similar application 
domains (e.g., checkers and chess). Again, chance and 
symmetry play pivotal roles in the discovery of heuristic 
functions. 

Figure 1 depicts the practical realization of functionals, 
which are theoretic objects, mapping functions to functions 
[6]. The transference graph presented in Figure 1 serves as 
a model for Minsky’s, “society of mind” [11]. Here, each 
node can be co-evolved on a MIMD machine. The 
connectivity models the commissures in the brain [12]. The 
Si and Gj represent constraining start and goal states, 
respectively. Set-based operations are used in and extracted 
from the runs. Here, f(n) = g(n) + [1, 3] Z(n) R {1, 2, 3} 
S(n), where the brackets denote a range of integer values, Z 
denotes a class of functions, and R denotes a class of 
relational operators. In particular, {1, 3} →  [1, 3] through 
the application of the indicated set-based generalization. 
Here, the search space consists of 108 symmetric functions 
plus random variations. 

 

 
Figure 1. A society of mind 

Clearly, a non-trivial domain needs to be more or less 
symmetric to be tractably characterized. Chance is needed 
to the extent that domain-specific hill-climbing yields 
suboptimal results. 
 
5 Randomized local extrema 

 As previously explained, there is an inherent need for 
formal local proof techniques. Such proof techniques are 
predicated on more or less formal domain-specific 
representations, loss or lossless problem randomizations, 
symmetric induction, and where necessary space-time 
pruning, since the space of heuristic functions was shown 
to be non r.e. Randomized local extrema techniques enable 
the Type II KASER to operationally extend itself by way of 
self-reference. 

Even local non r.e. heuristic functions can be 
approximately solved for using this method – given 
sufficient space and time. The schema for this five-step 
methodology is presented in Figure 2. 
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1. Design a domain-specific representation for the 

problem. Suitable problems include, but are not 
limited to, heuristic discovery, heuristic proofs of 
correctness, and heuristic optimizations. Every 
problem representation consists of four components; 
namely, a non-empty state space {S} | {so, s1, s2, …, 
sm}, a non-empty set of operators for moving from 
state to state {O} | {oo, o1, o2, …, on}, and an 
optional non-empty set of initial states {I} | {io, i1, 
i2, …, ip} and a non-empty set of goal states {G} | 
{go, g1, g2, …, gq}, where p, q ≤  m. 

2. Create a random basis, which is defined to be a min 
{S, O, I, G} such that p, q ≤  m. In particular, min 
(O) is defined to be a most general set of operators 
such that at least one state in I is mapped to at least 
one state in G, where applicable. (Note that 
algorithms and production rules may be placed in 
isomorphism, since both representations are 
universal.) A random basis may or may not be an 
abstraction of the problem as appropriate, but in 
either case, it needs to be a smallest sub-problem 
that makes sense for the domain characterization. 
REPEAT 

3. Create a symmetric induction, if any, by 
concatenating a distinct pair of results from prior 
inductions (random bases), where the definition of 
concatenation follows from the domain-specific 
problem representation. More formally, {S, O, I, G} 
must be non-decreasing (i.e., “equal to or more-
specific-than” in the context of an operator to insure 
convergence) in the resultant symmetric 
characterization. 

4. Create a minimal distinct random variation of the 
result of a prior induction (random basis), if any. 
More formally, {S, O, I, G} must be non-decreasing 
(i.e., “equal to or more-specific-than” in the context 
of an operator to insure convergence) in the 
resultant random characterization. 
UNTIL 

5. A (heuristic) solution to the problem is found, if 
possible, within the space-time allocation. Remove 
unnecessary constraints (i.e., generalize) where 
appropriate. Generalization is defined to be a max 
{S, O, I, G} such that p, q ≤  m. In particular, max 
(O) is defined to be a most specific set of operators 
such that at least one state in I is mapped to at least 
one state in G, where applicable. 

 
 

Figure 2. A randomized local extrema methodology 
 
Heuristics are needed to tractably solve many different 
types of computable problems. Typical of the NP-hard 
problems is the Traveling-Salesman Problem (TSP), where 
the problem is to find a minimum distance tour, starting at 
one of several cities, visiting each city precisely once, and 

returning to the starting city [8]. The TSP arises in 
operations research [13], [14]. Let us now turn to see how 
our solution methodology can be successfully applied to the 
task of finding two heuristic solutions for the TSP. Its 
applicability to similar problems is by symmetric induction, 
while its applicability to distinct problems is by 
randomization. Of course, the methodology is not complete 
and fails if a suitable representation, randomization, or 
symmetric induction cannot be found (due to the non-
reducibility of the theorization problem). A heuristic 
solution to the TSP is presented below. 

To save space, this algorithm was presented as an object 
in Figure 2, where Figures 3.1 to 3.7 will instantiate it with 
examples – thus making clear its generalizations. It needs to 
be emphasized that heuristic programming differs from 
logic programming in that one formalizes a relaxed or 
fuzzy space of possibilities. For example, we may crisply 
write, For i = 1 to n; whereas, heuristically we may write, 
For i = 1 to env(n), where env(n) represents the fuzzy 
region of n – its environment, which of course includes n-1, 
n, n+1, and possibly to a lesser extent (i.e., 
probabilistically) the twin tails. 
 
Example: The Traveling Salesman Problem 
 
Step 1 (Representation). The problem generalizes to one of 
finding a minimum cost path over the edges of a graph {O} 
containing n nodes {S} such that the path visits each of the 
n nodes precisely once and returns to the start node {I, G}. 
 
Step 2 (Random Basis). Take n = 2 (linear). 

  
 

 
Begin 

open := {a, b}; /* min {S} */ 
start := {a}; /* min {I} */ 
closed := {a}; /* min {G} */ 
open := open – start; 
While open <> {} do 

closed := closed ∪  member open; /* visit 
member on open */ 
open := open – member open; /* min {O} */ 

/* return to start is goal state */ 
End; 

 
 

Figure 2.1. 
 
Step 3 (Symmetric Induction). Take n = 3 (co-linear). 
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Begin 

open := {a, b, c}; /* add “c” to set – i.e., {S} is non-
decreasing */ 
… /* same as previous randomization – {I, G, O} 
are non-decreasing */ 

End; 
 

 
Figure 2.2. 

 
Step 4 (Random Variation). Take n = 3 (planar). 

 
Observe that node c has been moved up to create a right 
triangle. Then, the shortest path from node c to node a lies 
on the hypotenuse. 
 

 
Begin 

/* same as previous randomization – {S, I, G} are 
non-decreasing */ 
… 
While open <> {} do 

closed := closed ∪  nearest open; /* visit nearest 
member on open and resolve ties arbitrarily */ 
open := open – nearest open; /* {O} is increasing 
because nearest is more-specific than member, of 
which it is an instance */ 

/* return to start is goal state */ 
End; 

 
 

Figure 2.3. 
 
Step 5 (Evaluate and Generalize). We have progressed to 
the point where a first heuristic solution to the TSP can be 
specified in general algorithmic form. The serial 
complexity of this first heuristic solution can be shown to 
be O(n2), or O(n3) if each city is taken, in turn, for the start. 

This result is none other than the familiar, “visit the 
nearest non-visited city next” heuristic approach for solving 
the TSP. A better heuristic solution (i.e., a method for 
finding “approximately” optimum tours) has been 
published by Lin [15]. Again, it is generally improper to be 
concerned with finding an absolute best heuristic (i.e., 
method for finding optimal tours), since heuristics were 
shown to be non r.e. Better heuristics; albeit often more 
complex ones, may be discovered by allocating more 
space-time to our solution methodology as follows. Then, 
assuming the evaluation in Step 5 proved to be 

unsatisfactory, we take the pre-generalized results of Step 4 
as our last iterate: 
 

 
Begin 

open ←  n nodes; /* max {S} */ 
start ←  arbitrarily selected node on open; /* max 
{I} */ 
A closer to optimal result may be found if the 
algorithm is re-run, taking a distinct city for the start 
on each run and subsequently selecting for a 
minimal tour. Of course, this generalization will 
increase the cost of finding a solution by an order of 
magnitude. 
closed := start; /* max {G} */ 
open := open – start; 
While open <> {} do 

closed := closed ∪  nearest open; /* visit nearest 
member on open and resolve ties arbitrarily */ 
open := open – nearest open; /* max {O} */  

/* return to start is goal state */ 
End; 

 
 

Figure 2.4. 
 
Step 3 (Symmetric Induction). Take n = 4 (planar). 
Starting from node a, we proceed to the nearest neighbor, 
which is node b. Now, node c and node d are equidistant 
from node b, so a more-specific operator is needed to 
resolve the tie. It can be shown that an optimal tour here is 
the sequence, (a, b, d, c, a). More generally, this 
methodology only requires that one solve for a locally best 
tour. 
 

 
Begin 

open := {a, b, c, d}; /* add “d” to set – i.e., {S} is 
non-decreasing */ 
/* same as previous randomization – {I, G} are non-
decreasing */ 
… 
While open <> {} do 

closed := closed ∪  nearest2 open; /* visit 
nearest member on open, where nearest2 inherits 
all the properties of nearest, but in the event of a 
tie it selects that unvisited node (e.g., “d”) 
furthest from the start. Resolve other ties 
arbitrarily. */ 
open := open – nearest2 open; /* {O} is 
increasing because nearest2 is more-specific than 
nearest, of which it is an instance */ 

/* return to start is goal state */ 
End; 

 
 

Figure 2.5. 
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Step 4 (Random Variation). Take n = 5 (planar).      

 

 
 

 
Begin 

open := {a, b, c, d, e}; /* add “e” to set – i.e., {S} is 
non-decreasing */ 
/* same as previous randomization – {I, G} are non-
decreasing */ 
… 
Appeal to Church’s Thesis [6] and define furthest to 
inherit all the properties of nearest2, but in the 
event of a tie, it selects that node on open (i.e., the 
set of unvisited nodes – e.g., “e”) furthest from the 
remaining unvisited nodes (i.e., using a sum of the 
distances, where 

0
max( ),  

m

i j jj
x x x open

=
− ∈∑ ). 

Resolve other ties arbitrarily. 
While open <> {} do 

closed := closed ∪  furthest open; /* visit furthest 
member on open in the event of a tie, which may 
be counter-intuitive */ 
open := open – furthest open; /* {O} is 
increasing because furthest inherits from nearest2 
and builds upon it using more-specific constructs 
*/ 

/* return to start is goal state */ 
End; 

 
 

Figure 2.6. 
 
Observe that node e has been added so as to create a 
random variation. The line segments, ab, bc, bd, and ae are 
all equidistant as shown. It can be demonstrated that an 

optimal tour here is the sequence, (a, e, b, d, c, a), where 
selecting e for the second city to visit always results in a 
better tour than if city b were selected. Previous tours are 
not adversely impacted by this random variation because 
{O} is more specific. More generally, again this 
methodology only requires that one solve for a locally best 
tour. 
 
Step 5 (Evaluate and Generalize). We have progressed to 
the point where a second heuristic solution to the TSP can 
be specified in general algorithmic form. The serial 
complexity of this second heuristic solution can be shown 
to be O(n2.x), or O(n3.x) if each city is taken, in turn, for the 
start. 
 

 
Begin 

open ←  n nodes; /* max {S} */ 
start ←  arbitrarily selected node on open; /* max 
{I} */ 
A closer to optimal result may be found if the 
algorithm is re-run, taking a distinct city for the start 
on each run and subsequently selecting for a 
minimal tour. Of course, this generalization will 
increase the cost of finding a solution by an order of 
magnitude. 
closed := start; /* max {G} */ 
open := open – start; 
Appeal to Church’s Thesis [6] and define furthest to 
inherit all the properties of nearest2, but in the 
event of a tie, it selects that node on open (i.e., the 
set of unvisited nodes – e.g., “e”) furthest from the 
remaining unvisited nodes (i.e., using a sum of the 
distances, where 

0
max( ),  

m

i j jj
x x x open

=
− ∈∑ ). 

Resolve other ties arbitrarily. 
While open <> {} do 

closed := closed ∪  furthest open; /* visit furthest 
member on open in the event of a tie, which may 
be counter-intuitive */ 
open := open – furthest open; /* max {O} */ 

/* return to start is goal state */ 
End; 

 
 

Figure 2.7. 
 

While the complexity of the second solution is slightly 
greater than that of the first solution, it will generally 
produce much closer to optimal solutions for larger graphs. 
Note that O(ni) < O(ni.x) << O(n!), which is the complexity 
necessary to guarantee an optimal solution (again, since the 
TSP is NP-hard). 

This is a non-trivial heuristic solution to the TSP, which 
may rival if not supercede the solution published by Lin 
[15] if his technique incorporating “repeated runs on a 
problem from random initial tours” is compared with our 
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technique, where “each city is taken, in turn, for the start”. 
Again, better heuristics; albeit often more complex ones, 
may be discovered by allocating more space-time to our 
solution methodology. 
Heuristic proofs of correctness do not require the 
enumeration of cases, which would otherwise be required. 
Heuristic proofs are useful where stronger proofs (i.e., 
since there can be no such thing as a valid proof of a non-
trivial theorem as a corollary of the non-reducibility of the 
theorization problem, or [2]) are not forthcoming, or do not 
warrant the associated higher cost of search. A countably 
infinite number of proofs can only be specified in heuristic 
form as a consequence of the non-reducibility of the 
theorization problem. The degree to which any non-trivial 
theorem is inherently subject to heuristic proof has been 
shown to be relative – never absolute. 

6 Conclusion 
We note that a TSP, which requires centuries to optimize 

on a supercomputer can be heuristically optimized in just 
hours on a PC (e.g., within one percent of optimum). 
Similarly, we should not be surprised to find that 
traditional proofs, which may take centuries to find, if ever 
(e.g., a proof of the four-color theorem, Fermat’s last 
theorem, et al.) are similarly subject to at least heuristic 
discovery and, with additional complexity, heuristic proof. 
We have endeavored to provide the reader with several 
examples of heuristic proof techniques. These techniques, 
while of potentially incredulous utility (e.g., a heuristic 
proof of the eight-color theorem) provide more than just 
another tool for the mathematician’s toolbox. They show, 
when properly interpreted, that Gödel’s Incompleteness 
Theorem [2] is an enabling, rather than a limiting result. 
That is, we have indirectly shown that essential 
incompleteness is what makes true intelligence possible. 

7 Future work 
Randomization in space-time has been shown to be 

synonymous with heuristic discovery. It remains to develop 
an operant mechanics for a Type II KASER and 
heuristically verify it using a single global fixed-point 
heuristic proof as supported by numerous necessarily local 
(heuristic) proofs. 
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