
 1

Semantic Relations: The key to integrating and query processing in heterogeneous databases1
Naphtali Rishe, Rukshan I. Athauda, Jun Yuan, Shu-Ching Chen

High-performance Database Research Center
School of Computer Science

Florida International University
University Park, Miami, FL 33199

{ rishen, rathau01, yuanj, chens } @cs.fiu.edu

1 This research was supported in part by NASA (under grants NAGW-4080, NAG5-5095, NAS5-97222,

and NAG5-6830) and NSF (CDA-9711582, IRI-9409661, HRD-9707076, and ANI-9876409).

Abstract
Obtaining useful, complete, accurate information from
on-line web data sources has become a challenging issue
with multiple heterogeneous data sources on-line. With
the increase of structured data sources moving on-line,
collective integrated access to such information sources
requires resolving semantic heterogeneity using
innovative techniques for integration and query
processing.

In this paper, we provide a theoretically sound, complete
and unambiguous approach to resolving semantic
heterogeneity using semantic knowledge. Advantages of
using such knowledge in integration and query
processing, such as acquiring additional information,
complete answers to queries and techniques for
intelligent query optimization are outlined.

1. Introduction
With the advent of the Internet, multiple
heterogeneous structured data sources available on-
line has increased, and thus created a need for
access to these heterogeneous data sources in a
collective manner. The World-Wide Web (WWW),
usually, can be considered as a collection of
unstructured documents. However, during the
recent past, we have seen an increase number of
structured information sources moving on-line.
These sources include both free and commercial
database on product-information, stock market
information, real estate, automobiles, and
entertainment. Access to such heterogeneous
multiple data sources in collective manner has
created a need to investigate the older research
issues such as semantic heterogeneity with more
vigor, interest and emphasis.

Early research on multi-databases [1], federated
databases [11] and heterogeneous database systems

[4][5][10] has resulted in different architectures
for accessing multiple heterogeneous data
sources. A main focus has been dealing with
structural heterogeneity between data models and
entities of schemas [1][6][7][11]. A plethora of
approaches and innovative techniques has been
proposed and implemented. However, problem of
resolving semantic heterogeneity still evades
requiring further research. For resolving semantic
heterogeneity, techniques have been proposed to
identify semantically related attributes and
entities in different schemas using partial and
fully automated methods [2][9]. We focus on
classifying these semantic related constructs with
the intention of utilizing such information to the
full-extent in integration and query processing of
heterogeneous database schemas.

Our approach to resolving semantic heterogeneity
tries to exploit some of the advantages of dealing
with structured data sources. Structured data
sources, unlike un-structured or semi-structured
data sources, consists of a schema with an
unambiguous definition, whether explicitly stated
or not, and a set of data items (extent) for each
construct of the schema. Utilizing this
information, we propose a set of relations, named
semantic relations, which exploits both schema
and its extent in integration and query processing.
With the use of the semantic relations as the basis
in integration, we can easily preserve data quality
attributes including completeness and accuracy.
An example best illustrates the problem of
semantic heterogeneity and answer-completeness.

Example 1. Let us consider accessing two
databases (i.e. DB1 and DB2) with the following
schema.

 2

DB1: Person(ssn, last_name, first_name, address)
DB2: Researcher(ssn, project_id, position)

Project(pid, project_name,
fundingAgency)

The relation Person in database DB1 contains
tuples describing the currently employed personnel
at company A. Database DB2 describes researchers
and their projects at lab L of company A since its
inception. The relation Researcher contains tuples
of researchers working or has worked at lab L of
company A. The relation Project contains tuples of
projects that the lab is currently working or already
completed. The field ssn is the primary key of
relation Person while fields ssn and project_id are
the primary keys of relation Researcher. The field
ssn in both relations Person and Researcher
represent the social security number of a person.
The field pid is the primary key of relation Project
while project_id of relation Researcher is the
foreign-key field referring pid field of relation
Project.

For the above example schemas, let us consider the
query, which obtains the last name of researchers
who worked or are working at lab L and the names
of the projects they worked on or are working on.
Assume that the last name of persons working for
company A are stored in DB1 as last_name field of
relation Person, while the project names are stored
in DB2 as project_name field of relation Project.
We require accessing both databases DB1 and
DB2. In the traditional approach to heterogeneous
database integration, relation Person and relation
Researcher will be mapped as equivalent since they
both represent personnel working at company A or
mapped as a sub-class/super-class relationship
because relation Researchers represent a
specialized class of all personnel working at
company A represented by relation Person. Hence,
to answer the above-mentioned query, the
following SQL statement may be posed by the
heterogeneous/multi-database or mediator system:
SELECT DB1.Person.last_name,

DB2.Project.project_name
FROM DB1.Person, DB2.Researcher,

DB2.Project
WHERE (DB1.Person.ssn =

DB2.Researcher.ssn) AND
(DB2.Researcher.project_id =
DB2.Project.pid)

Note that the result of this query only suffices to
provide a partial answer. Researchers who have

worked on a project at lab L but not currently
employed in company A are not represented in
the query result. This aspect, known as answer-
completeness of queries [8] becomes a major
factor in dealing with multiple databases,
especially on-line data sources. Determining
answer-completeness is important with multitude
of databases since this may determine the need to
access additional data sources.

Our approach, based on semantic relations, for
integration and query processing of multitude of
data sources including structured web data
sources is guaranteed to avoid errors such as
incomplete answers. A major concern with most
web users is obtaining relevant, complete, correct
information from a variety of data sources
available on the Internet. When dealing with
structured on-line data sources, these factors
translate to successful integration of on-line data
sources and answer-completeness of user’s
queries. Our approach addresses both these
situations successfully. In this paper, we present
techniques based on semantic knowledge that is
sound, unambiguous and complete to be used for
integration and query processing in
heterogeneous database environments. The major
contributions of this paper include: (i.) a
theoretical sound approach to heterogeneous
schema integration using semantic relations. In
sections 2.1 and 2.2, we define semantic
relations, illustrate proofs for its completeness
and soundness and also provide inference rules
that can be used to automatically generate new
semantic information from existing knowledge;
(ii.) Classification of interesting cases for
semantic relations, which yields additional
information during integration, that is not explicit
otherwise. We discuss and illustrate examples for
each case in section 2.3; (iii.) Comparison of
existing integration methodology to the proposed
technique is illustrated in section 2.4; (iv.)
Answer-completeness of queries due to the use of
semantic knowledge for integration along with
potential means of exploiting semantic
knowledge for query processing is illustrated in
section 3. Finally, section 4 presents future work
and proposes an application area for the use of
semantic knowledge.
2. Integration using Semantic Relations
An important feature of structured data sources is
the availability of a schema along with data.

 3

Schema is meta-data describing the
data/information stored in the database. Hence,
each construct in a schema (for instance, relation or
field in a relational database schema) contains a set
of data values or objects that it represents at any
particular database instance, called the extent of the
construct. Let us represent the extent of a construct,
say A, as EXT(A). We can define four different
types of semantic relations between two constructs
of different database schema.

2.1 Semantic Relations
Let A be a construct of Schema1 and B be a
construct of Schema2. We can derive four possible
semantic relations between constructs A and B as
follows:
1. Semantically Equivalent (SEM_EQ): A is

semantically equivalent to B (represented as, A
SEM_EQ B) if and only if EXT(A) = EXT(B)
for all database instances at any given time t.

2. Semantically Subset (SEM_SUB): A is
semantically subset of B (represented as, A
SEM_SUB B) if and only if EXT(A) ⊆ EXT(B)
for all database instances at any given time t1
and EXT(A) ⊂ EXT(B) for some database
instance at time t2.

3. Semantically Overlap (SEM_OVER): A is
semantically overlapping with B (represented
as, A SEM_OVER B) if and only if EXT(A) ∩
EXT(B) ≠ φ for some database instances at time
t1 and EXT(A) ∩ EXT(B) ≠ A or EXT(A) ∩
EXT(B) ≠ B for all database instances at any
given time t2.

4. Semantically Disjoint (SEM_DIS): A is
semantically disjoint with B (represented as, A
SEM_DIS B) if and only if EXT(A) ∩EXT(B) =
φ for all database instances at any given time t.

Note that the semantic relations are disjoint. That
is, if A r1 B and A r2 B where r1, r2 ∈ { SEM_EQ,
SEM_SUB, SEM_OVER, SEM_DIS} , then r1 = r2.

Proof Idea: The completeness and correctness of
the above semantic relations can be verified by
examining all the possible scenarios of a Venn
diagram for the extents of constructs A and B. This
is shown in Figure 1. EXT(A) and EXT(B) are
shaded in the figure. Note the ε represents the
{ domain of database containing construct A} ∪
{ domain of database containing construct B} .
Figures (a.) – (d.), depict all possible cases for

semantic relations between any two database
constructs A and B.

Some commutative rules for semantic relations
include: A SEM_EQ B ≡ B SEM_EQ A; A
SEM_DIS B ≡ B SEM_DIS A; A SEM_OVER B ≡
B SEM_OVER A; where A, B are constructs of
database schema.

The following example illustrates each semantic
relation.
Example 2. Let us consider five constructs of
different database schema in a university
application.
Database Construct Extent
Registrar Employee contains all

current
employees of
university A

Registrar Student contains all
currently
enrolled students
of university A

Registrar Department contains all the
department of
university A

Payroll Faculty contains all
current faculty of
university A

Payroll Emp contains all
current
employees of
university A

EXT (B)

ε EXT (A) EXT (B) ε

EXT
(A)

EXT (B)

ε

EXT (A)

EXT (B)

ε

EXT (A)

(a.) (b.)

(c.) (d.)

Figure 1. All possible scenarios for EXT(A) and
EXT(B): (a.) EXT(A) = EXT(B); (b.)EXT(A) ⊆
EXT(B); (c.) EXT(A) ∩ EXT(B) ≠ φ; (d.) EXT(A)
∩ EXT(B) = φ;

 4

By considering the extents, we can assume the
following:
Registrar.Employee SEM_EQ Payroll.Emp
(because both constructs represents the current
employees of university A)
Payroll.Faculty SEM_SUB Registrar.Employee
(because Faculty construct contain the current
faculty members of university A who are also
employees of university A)
Payroll.Faculty SEM_OVER Registrar.Student
(assuming that the faculty member can also be
registered to courses as students in university A)
Registrar.Department SEM_DIS Payroll.Emp
(since departments cannot be employees for
obvious reasons)

2.2 Inference Rules
By examining the semantic relations in example 2,
we can figure out for instance that
Registrar.Employee SEM_DIS Payroll.Emp due to
the same reason that Registrar.Department
SEM_DIS Payroll.Emp. Thus, in order to derive
new semantic relations from existing semantic
relations, we have identified the following
inference rules:

Assume that A, B and C are constructs of different
database schema.
Rule 1: If A SEM_EQ B and B SEM_EQ C then for

A SEM_EQ C
Rule 2: If A SEM_EQ B and B SEM_SUB C then A

SEM_SUB C
Rule 3: If A SEM_EQ B and B SEM_OVER C then

A SEM_OVER C
Rule 4: If A SEM_SUB B and B SEM_SUB C then

A SEM_SUB C
Rule 5: If A SEM_SUB B and B SEM_DIS C then

A SEM_DIS C
The inference rules 1-5 can be proved using set
theory principles, however not shown here due to
space limitations.

The above-mentioned inference rules derive the
following set of semantic relations from the already
identified semantic relations in example 2.
Payroll.Faculty SEM_SUB Registrar.Emp
Registrar.Department SEM_DIS Payroll.Employee
Payroll.Faculty SEM_DIS Registrar.Department

2.3 Interesting cases
The semantic relations, defined in section 2.1, have
been enumerated previously in literature [3].

However, its powerful expressiveness and full
potential have not been realized. If constructs A
and B are related by either SEM_EQ, SEM_SUB
or SEM_OVER, we classify the constructs as
interesting for integration and query processing
in a heterogeneous database environment. Two
important aspects arise with these interesting
cases:
(i.) Object Equivalence: Identification of
common objects in EXT(A) and EXT(B) when A
SEM_EQ B or A SEM_SUB B or A SEM_OVER
B.
(ii.) Boundary Conditions: Specification of
boundary conditions for constructs A and B when
A SEM_SUB B and A SEM_OVER B.

2.3.1 Object Equivalence
When two constructs, say A and B, are known to
be semantically related by either SEM_EQ,
SEM_SUB or SEM_OVER, it is possible for
EXT(A) and EXT(B) to have the same real-world
objects represented (i.e. this is the set of objects
in EXT(A) ∩ EXT(B)). The identification of
equivalent objects in different constructs is
especially advantageous if the constructs are
entities. This allows extraction of extra
information during integration of different
schemas. This factor is illustrated in example 3.

Example 3. Let us consider two relational
databases DB1 and DB2 consisting of students at
university A:
DB1: Pupil(ssn, address)
DB2: Student(social_sec, gpa, phone)
For simplicity, let us assume that Pupil SEM_EQ
Student and fields, ssn and social_sec, represent
social security number in the same format and
they are the primary keys of relations Pupil and
Student respectively. Hence, if DB1.Pupil.ssn
match with DB2.Student.social_sec, implies that
objects are equivalent (i.e. the same student).

Since Pupil SEM_EQ Student, every object in
Pupil has a matching object in Student and vice-
versa. Now it is possible to obtain a relation, say
STD in global schema, which contains attributes:
social_security, address, gpa, and phone for
every student object at university A. This
information cannot be obtained by accessing DB1
or DB2 individually. That is, it was possible to
obtain additional information (i.e. address, gpa,
phone, collectively) for every student in

 5

university A using an integrated access to DB1 and
DB2. This example illustrates a simple scenario;
this concept can be generalized for complex
schemas.

2.3.2 Boundary Conditions
When either semantic relations, SEM_SUB or
SUM_OVER relates two constructs, it is important
to consider the boundary conditions on which the
two constructs intersect. Considering these
boundary conditions provides useful knowledge
similar to object equivalence which otherwise is not
explicit.

Example 4. Let us consider the scenario presented
in example 1. Since relation Person contains all the
employees currently working for company A and
relation Researcher contains all the persons who
worked or are working in lab L of company A, we
can infer that Person SEM_OVER Researcher.
The persons currently working at lab L who are
also employees of company A consists of
EXT(Person) ∩ EXT(Researcher). Current
employees of company A not working in lab L are
in { EXT(Person) – { EXT(Person) ∩
EXT(Researcher)} } . Researchers who used to work
at lab L, but are not presently employees of
company A are in { EXT(Researcher) –
{ EXT(Person) ∩ EXT(Researcher)} } . This
knowledge is significant in query processing as
shown below.

For instance, we can now answer the query that
asks for social security numbers of researchers who
worked in lab L but have left company A (not
currently working for company A) as follows:
SELECT DISTINCT DB2. Researcher.ssn
FROM DB2.Researcher
WHERE DB2.Researcher.ssn NOT IN

(SELECT DB1.Person.ssn
 FROM DB1.Person)
This information could not be obtained by
accessing the databases individually. This example
illustrates a simple case, but can be generalized for
complex schemas.

2.4 Integration
We use semantic relations as the basis for
integration in a heterogeneous database
environment. This is advantageous as it is
complete, unambiguous and sound because they are
based on the extent, which is same as the original

DBA’s view when he/she initially creates the
constructs of the schema. The following example
illustrates the difference between integration with
semantic rules taken into consideration and
without the use of semantic rules.

Example 5. Let us consider two relations Pupil
and Student from DB1 and DB2 respectively,
such that Pupil contains the currently enrolled
students at university A and Student contains the
currently enrolled student at university B. If we
assume that a student cannot be enrolled in both
universities A and B simultaneously, then
relations Student and Pupil will be related by
semantic relation SEM_DIS (i.e. DB1.Student
SEM_DIS DB2.Pupil) according to the
definition. This methodology is in contrast to
existing semantic heterogeneity techniques,
which relates Student and Pupil as “similar” or
“equivalent” . The argument is that Student and
Pupil represent similar real-word concepts.
However, if we define them as related (say by
relation “equivalent”) during query processing, it
will lead to incomplete answers such as in
example 1. Thus, the method of integration is
ambiguous. It is true that there is a high-
probability to find interesting cases of semantic
relations by looking for similar concepts,
however, finding similar concepts does not
necessarily mean they are semantically related if
they are presented in different contexts (such as
the case where relation Student’ s context is
university A while relation Pupil’ s context is
university B). Such kinds of ambiguity do not
occur with semantic relations.

The use of semantic relations do not restrict in
defining a new relation, say S, in the global
schema which has its extent as, EXT(S) =
EXT(Student) ∪ EXT(Person), which contains
both enrolled student at university A and
university B. Object-oriented data models can
represent relation S as a super class of relations
Student and Pupil. Hence, use of semantic
relations do not restrict the expressiveness in any
way, on the contrary, provides an unambiguous
definition of semantic relations between entities
of different database for schema integration and
interoperability in a heterogeneous database
environment.

 6

3. Query processing using semantic knowledge
Extraction of semantic knowledge in terms of
semantic relations, object equivalences and
boundary conditions during integration/
reconciliation process can be exploited for efficient,
correct and intelligent query processing and
optimization techniques. Detailed specification of
query processing techniques exploiting the
semantic knowledge is out-of-scope for this paper.
However, we will briefly introduce two important
techniques.

Complete answers: Using semantic knowledge,
the query processor is able to provide complete
answers to queries (see example 6 below).

Example 6. Let us consider the query in example 1.
Semantic relation SEM_OVER relates the
constructs Person and Researcher (see example 4).
Thus, when trying to answer the query, it is
apparent that there exist objects in Researcher,
which are not in Person (see definition of
SEM_OVER). Hence, the query processor will
either look for a data source that will provide the
missing values or place NULL (not known) values
for the query result, thus providing a complete
answer.

Intelligent query distribution: The query
processor can utilize the semantic relations and
boundary conditions to intelligently distribute the
queries. For instance, if two constructs in different
databases are related by SEM_EQ it is spurious to
query both databases, since they contain the same
information, rather choosing to query the less
expensive and easily accessible data source. These
types of optimizations techniques may result in
significant performance gains, especially in web
environment, where accessing certain web data
sources may be extremely expensive. The use
semantic knowledge for query processing and
optimizing has significant potential and these issues
will be investigated in detail in our future work.

4. Future Work
A significant challenge and the success of utilizing
of semantic knowledge in a variety of application
domains will depend on techniques that are
developed for efficiently and accurately identifying
semantic knowledge. We will focus on this issue in
our future work. Semantic knowledge has potential
to be used in a variety of applications, involving

integration, interoperability of multiple data
sources, such as mediator based web information
integration systems. With the on-going efforts in
XML-based web data sources, extracting
schema/meta-data information is feasible for
semi-structured data. Hence, concepts presented
in this paper can be applied for integrating and
querying such data sources in future.

5. References
[1] Batini C., Lenzerini M. and Navathe S.B., "A
comparative analysis of methodologies for database
schema integration". In ACM Computing Surveys,
Vol.18, No.4, pp. 323-364, 1986.
[2] Bright M.W., Hurson A.R. and Pakzad S.,
“Automated Resolution of Semantic Heterogeneity in
Multidatabases” . In ACM Transactions on Database
Systems, Vol. 19, No. 2, pp. 212-253, 1994.
[3] Castano S. and Antonellis V., “Semantic
Dictionary Design for Database Interoperability” . In
Proceedings of 13th International Conference on Data
Engineering, pp. 43-54, 1997.
[4] Collet C., Huhns M.N. and Shen W.M.,
“Resource Integration Using a Large Knowledge Base
in Carnot” . In IEEE Computer, Vol. 24, No. 12, pp.
55-62, 1991.
[5] Kelley W., Gala S., Kim W., Reyes T. and
Graham B., “Schema Architecture of the UniSQL/M
Multidatabase System”. In Modern Database Systems:
The Object Model, Interoperability, and Beyond,
editor Kim W., ACM Press, pp. 621-648, 1995.
[6] Kim W. and Seu J., “Classifying Schematic and
Data Heterogeneity in Multidatabase Systems” . In
IEEE Computer, Vol. 24, No. 12, pp. 12-18, 1991.
[7] Kim W., Choi I., Gala S.K. and Scheevel M., “On
Resolving Schematic Heterogeneity in Multidatabase
Systems” . In Distributed and Parallel Databases,
Vol.1, No. 3, pp. 251-279, 1993.
[8] Levy A., “Obtaining Complete Answers from
Incomplete Databases” . In Proceedings of 22nd
International Conference on Very Large Data Bases,
pp. 402-412, 1996.
[9] Li W.S. and Clifton C, “Semantic Integration in
Heterogeneous Databases Using Neural Networks” . In
Proceedings of 20th International Conference on Very
Large Data Bases, pp. 1-12, 1994.
[10] Rafi A., Smedt P.D., Du W., Kent W., Ketabchi
M.A., Litwin W.A., Rafii A., and Shan M.C., “The
Pegasus Multidatabase System”. In IEEE Computer,
Vol. 24, No. 12, pp. 19-27, 1991.
[11] Shet A., and Larson J.A., "Federated database
systems for managing distributed, homogeneous, and
autonomous databases". In ACM Computing Surveys,
Vol.22, No. 3, pp. 183-236, 1990.

