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ABSTRACT OF THE DISSERTATION

KNOWLEDGE ASSISTED DATA MANAGEMENT AND RETRIEVAL IN

MULTIMEDIA DATABASE SYSTEMS

by

Min Chen

Florida International University, 2007

Miami, Florida

Professor Shu-Ching Chen, Major Professor

With the proliferation of multimedia data and ever-growing requests for multimedia

applications, there is an increasing need for efficient and effective indexing, storage and

retrieval of multimedia data, such as graphics, images, animation, video, audio and text.

Due to the special characteristics of the multimedia data, the Multimedia Database

management Systems (MMDBMSs) have emerged and attracted great research attention

in recent years.

Though much research effort has been devoted to this area, it is still far from matu-

rity and there exist many open issues. In this dissertation, with the focus of addressing

three of the essential challenges in developing the MMDBMS, namely, semantic gap,

perception subjectivity and data organization, a systematic and integrated framework

is proposed with video database and image database serving as the testbed. In par-

ticular, the framework addresses these challenges separately yet coherently from three

main aspects of a MMDBMS: multimedia data representation, indexing and retrieval. In

terms of multimedia data representation, the key to address the semantic gap issue is to

intelligently and automatically model the mid-level representation and/or semi-semantic

descriptors besides the extraction of the low-level media features. The data organization
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challenge is mainly addressed by the aspect of media indexing where various levels of

indexing are required to support the diverse query requirements. In particular, the focus

of this study is to facilitate the high-level video indexing by proposing a multimodal event

mining framework associated with temporal knowledge discovery approaches. With re-

spect to the perception subjectivity issue, advanced techniques are proposed to support

users’ interaction and to effectively model users’ perception from the feedback at both

the image-level and object-level.
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CHAPTER 1

Introduction and Motivation

The advances in data acquisition, generation, storage, and communication technologies

have made vast amounts of multimedia data available to consumer and enterprise appli-

cations. Here, multimedia data typically refers to the digital representation of multiple

media types such as graphics, image, animation, video, audio and text data. In general,

the media types can be broadly classified into two categories, viz. Static and Dynamic (or

time continuous) media based on whether it has time dimensions [74]. Multimedia data

is blessed with a number of exciting characteristics. For instance, it can provide more

effective dissemination of information in science, engineering, medicine, modern biology,

and social sciences. It can also facilitates the development of new paradigms in distance

learning and interactive personal/group entertainment.

Due to the proliferation of multimedia data and strong demands of multimedia ap-

plications such as TiVo, digital library, video on demand, there is a growing research

interest in efficient and effective indexing, storage and retrieval of multimedia data. How-

ever, traditional Database Management Systems (DBMSs), which retrieve items based

on structured data using exact matching, cannot handle multimedia data effectively be-

cause of the great differences between the characteristics of traditional textual data and

multimedia data. In brief, such differences can be addressed from both the presentation

and semantics perspectives.

• From a presentation viewpoint, the multimedia data is generally with huge volume

and involves time-dependent characteristics that must be adhered to for coherent

viewing. For example, to ensure smooth performance, videos have to be played at

around 25 frames per second and a 20-minute video in MPEG format of medium

frame size (320*240) with medium quality requires above 100 MB storage [74].
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• In terms of semantics, multimedia data lacks clear semantic structure as opposed

to the text data in the sense that it is represented either by a set of spatially

ordered pixel values (e.g., image) or by temporally sequenced visual/audio samples

(e.g., video), which inhibits the automatic content recognition by computer. In

addition, multimedia data is rich in information and its meaning is sometimes

fuzzy and subjective for different viewers. Therefore, multimedia data requests

complex processing to derive semantics from its contents, which is not required for

traditional textual data.

Due to the special characteristics of multimedia data, Multimedia Database Manage-

ment Systems (MMDBMSs) have emerged and attracted great attention in recent years.

In the early phase, MMDBMSs relied mainly on the operating system for storing and

querying files. These were ad-hoc systems that served mostly as repositories. Later on,

some MMDBMSs were proposed to handle multimedia content by providing complex

object types for various kinds of media. The object-oriented style provides the facility to

define new data types and operators for media such as video, image and audio. Recently,

much research effort has been dedicated to capture, represent and deliver the semantic

meanings of the media contents. Nevertheless, this research area is still far from matu-

rity and there exist many open issues. Such issues include how to extract, organize, and

structure features from different multimedia data for efficient retrieval, how to measure

the “similarity” for different media types, how to build an easy-to-use yet sophisticated

enough user interface that can construct complicated, fuzzy, and flexible queries, how to

handle the spatio-temporal queries in multimedia databases, etc. As it is not possible to

cover all the issues in detail within the scope of this dissertation, the primary purpose

of this study is to provide a systematic and coherent solution to a number of essential

issues in developing a successful MMDBMS.
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The remainder of this chapter is organized as follows. In the next section, the critical

research issues will be discussed. Then in Section 1.2, a brief introduction of the proposed

framework will be given to address these issues. The significance and contributions of

this proposed work are presented in Section 1.3. In Section 1.4, the scope and limitations

of this framework are discussed. Finally, section 1.5 gives the outline of this dissertation.

1.1 Existing Issues in MMDBMS

Due to the specific characteristics of the multimedia data and the emerging trend of

multimedia applications, several issues are becoming especially critical for MMDBMSs.

     
(a) (b) (c)

Figure 1.1: Example images for semantic gap issue.

• Semantic Gap Issue. In an MMDBMS, features and attributes of media items are

normally extracted, parameterized, and stored together with the items themselves.

During the retrieval process, these features and attributes instead of the media

items are searched and compared based on certain similarity metrics. In other

words, in such a system, each media object is first mapped to a point in a certain

feature space, where the features can be categorized into color [109], texture [59],

shape [143], and so forth. Next, given a query in terms of a media object example,

the system retrieves media objects with regard to their features [48]. However,

there exists a so-called semantic gap between the representation of media and its

perceived content (or semantic meaning). For instance, an image showing cloudy

sky (its content) might have features of blue and white colors (its data represen-
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tation) as shown in Fig. 1.1(a). If a query is issued using this image, a group of

images with predominantly blue and white colors might be retrieved; among them

some are actually images of “a white cat standing before a blue curtain” (Fig.

1.1(b)) or “a white castle along ocean” (Fig. 1.1(c)), etc. Note that all the images

shown in this dissertation are from Corel image library unless otherwise mentioned.

In real application, users typically wish to query the database based on semantics

instead of low-level features. A database management system therefore requires

knowledge for interpreting raw data into the content implied. Knowledge-assisted

representation thus plays an essential role for multimedia database retrieval.

 

(a)  (b) 

(c)  (d) 

Figure 1.2: Example images for perception subjectivity issue.
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• Perception Subjectivity Issue. The perception subjectivity problem also challenges

an MMDBMS in the sense that different users might have various interpretations

over a single media. In other words, in viewing the same image (e.g., Fig. 1.2(a)),

different users might possess various interests in either a certain object (e.g., the

house, the tree, etc.) or the entire image (e.g., a landscape during the autumn

season). In this case, Fig. 1.2(b), Fig. 1.2(c), or Fig. 1.2(d), respectively, might be

considered as the relevant image with regard to Fig. 1.2(a). In addition, sometimes

even the same user can have different perceptions toward the same media at various

situations and with different purposes. Thus, a user-friendly MMDBMS should

offer a mechanism to incorporate users’ feedbacks and the search engine should be

equipped with an inference engine to observe and learn from user interactions.

• Data Organization Issue. Considering the huge volume of media data and high-

dimensional media representations, the indexing techniques and data structures are

indispensable to speeding up the search process so that the relevant media can be

located quickly. Indexes of standard database systems are one-dimensional, usually

hash-based or B-tree based. They are designed for standard data types, such as

numbers, character strings, and in most cases are either unsuitable or insufficient

for similarity matching in an MMDBMS. Over the years, many specialized indexes

and data structures, such as A-tree and M-tree, have been designed for efficient

multimedia retrieval based on similarity and a survey was given in [75]. However,

though indexing has been studied upon the low-level features, the need for high-

level indexing and retrieval is growing dramatically.

Obviously, there exist many other issues in building a full-fledged and well-performed

MMDBMS. However, the above-mentioned issues are widely considered to be among the

most challenging and essential problems and are the research focus of this dissertation.
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1.2 Proposed Solutions

In this dissertation, a systematic and integrated framework is proposed, which ad-

dresses the above-mentioned issues separately yet coherently from the main aspects of an

MMDBMS, namely multimedia data representation, indexing and retrieval. In particular,

since image and video are widely deemed as the typical types in static and dynamic media

categories, respectively, without loss of generality, image database and video database

serve as the test beds for the proposed framework in this dissertation.

1.2.1 Multimedia Data Representation

This aspect deals with the representation of the multimedia objects to facilitate var-

ious multimedia database operations, such as media indexing, browsing, querying, and

retrieval. Extensive research has been conducted to extract representative low-level fea-

tures for various media, such as color [109], and texture [59] for images and visual [131],

audio [133], and text [140] features for videos. Object-level features, such as object

shape [143] for images or object motion [27] for videos are also studied to support oper-

ations towards the salient objects. In this dissertation, a set of low-level and object-level

features that rely on MPEG-7 standard are extracted automatically from the media

source. More importantly, as a key to address the semantic gap issue, mid-level and

knowledge-based (high-level) data representation is explored intelligently via the knowl-

edge discovery approaches to bridge the gaps between the semantic meaning and low-level

characteristics/structure of the media.

Specifically, in terms of image database, a set of well-defined methodologies are ap-

plied to extract representative color and texture features at image level (or called global

features) and object-level. A semantic network is then constructed to capture the affin-

ity relationships among the images. Intuitively, such relationships, once captured, offer a

valuable source to bridge the semantic gap since image retrieval is essentially a process to

explore the relationships between the query image and the other images in the database.
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Note that such techniques, though presented for image database, can be applied to video

database with certain extension. In fact, in video database, it is quite common that a

segment of video is represented by its key frame (a single static image which conveys the

representative meaning of the video segment) and query by key frame is a basic query

type in video retrieval. Therefore, effective image representation will in turn be helpful

in this manner.

Compared to images, videos are more domain oriented and are rich in temporal

information. Therefore, an effective mid-level representation and/or knowledge-assisted

representation through temporal analysis is of great importance to address the semantic

gap issue in video database.

1.2.2 Multimedia Data Indexing

Data indexing is an essential process for effective data organization and fast data

searching. Structured organization of video data is especially critical due to its huge data

volume and complicated spatial-temporal characteristics. Video indexing is thus the basis

to build large video archives which allow efficient retrieval, browsing and manipulation.

Conventionally, video data have to be manually annotated with keywords. However, it is

time consuming and most likely incomplete. Therefore, the focus of this dissertation is

to develop automatic video analysis and indexing techniques. In particular, an effective

data analysis and classification framework is proposed to capture the important and

interesting activities (called events, such as goal events, traffic accidents) and high-level

semantic features (called concepts, such as commercial, sports) in the video data, which

in turn lead to the high-level video indexing.

1.2.3 Multimedia Querying

Querying in a multimedia database normally differs greatly from that in a traditional

database in the sense that the queries can contain multimedia object issued by the user

(called Query-By-Example or QBE) and the query results can be based not on perfect
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matches but on degrees of similarity. Such a process is called Content-Based Retrieval

(CBR). Compared to image queries, users’ perceptions towards a certain video segment

are generally more consistent and well-defined with the assistance of its context. There-

fore, in this dissertation, the perception subjectivity issue is systematically studied for

image retrieval, where both the general concepts and individual user’s specific interests

are taken into consideration.

Specifically, a long-term learning (or called log-based retrieval) approach is devised to

capture users’ general concepts by stochastically analyzing the historical feedback logs ac-

cumulated in the database. As will be discussed in Section 2.1.3, this mechanism targets

reducing the overhead incurred during on-line users’ relevance feedback and addresses

the “cold-start” problem in long term (collective) learning. Meanwhile, to acknowledge

individual user’s specific query interests, a real-time query refinement scheme is proposed,

which is conducted through user interaction and the similarity metrics is re-visited to

take into consideration the user perception. This scheme is integrated seamlessly with

the long-term learning process in the proposed framework, which can be stated from

two perspectives. First, long-term learning provides an effective mechanism to speed up

the convergence of the real-time query refinement process. Second, the relevance feed-

back information is accumulated in the database and the long-term learning is triggered

periodically when the number of accumulated feedbacks reaches a certain threshold.

In summary, the main objective of this dissertation is to explain the working principles

of a novel data management and retrieval system whose main functionality is to endow

its users with an easy-to-use, effective, and efficient scheme for retrieving the required

multimedia information.

1.3 Contributions

In this dissertation, a new paradigm is presented for effective data management and

retrieval of multimedia data. The proposed system tries to achieve its objectives by
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developing novel and effective approaches to tackle the issues addressed in Section 1.1.

The major contributions are listed as follows.

1. Different from the common approaches which try to capture the semantic content of

an individual image (it is more difficult and most likely incomplete), a probabilistic

semantic network is constructed in this study to represent the semantic relationships

among images. Such a network is useful because image retrieval is actually a process

to explore the relationships between the query image and the other images in the

database. In addition, in contrast to the work proposed in [76] that requires extra

manual effort in labeling the images, this framework provides the capability to

accumulate the previous feedback information and automatically mine the semantic

relationships among the images to construct and update the probabilistic semantic

network. Therefore, instead of starting each query with the low-level features, the

semantic information is gradually embedded into the framework to improve the

initial query results.

2. Besides using accumulative learning to bridge semantic gaps in image data repre-

sentation, the proposed framework also supports the query refinement to accom-

modate individual user’s query interests in real-time. In particular, a temporary

semantic subnetwork is extracted from the semantic network and updated based on

the current user’s interests. For the sake of system efficiency and avoiding the bias

caused by a single user, such update is conducted only on the temporary semantic

subnetwork, without affecting the original semantic network. In the meanwhile, the

individual user’s feedback is collected continuously, and the update of the whole se-

mantic network is triggered only when the number of accumulated feedbacks reaches

a threshold. Such update is conducted off-line to enable accumulative learning while

maintaining efficiency.
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3. As an effort to further extend the semantic network based data representation and

retrieval scheme, a unified framework incorporating Multiple Instance Learning

technique is developed to explore the high-level semantic concepts in a query from

both the object-level and image-level and to address the needs of serving the specific

user’s query interest as well as reducing the convergence cycles.

4. In terms of video database, a systematic framework is devised for video content

analysis and indexing, which consists of three primary processes: structure analysis,

multimodal data representation, and abstraction (i.e., high-level indexing). A set of

novel techniques and methodologies are applied in each component and integrated

seamlessly to both reduce the processing time and improve the system accuracy.

In particular, to effectively link the low-level features to the content and structure

of video data, a group of mid-level descriptors are introduced, which are deduced

from low-level feature representations and are motivated by high-level inference.

Such mid-level descriptors offer a reasonable tradeoff between the computational

requirements and the resulting semantics. In addition, the introduction of mid-level

descriptors allow the separation of domain specific knowledge and rules from the

extraction of low-level features and offers robust and reusable representations for

high-level semantic analysis using customized solutions.

5. With the ultimate goal of developing an extensible video content analysis and in-

dexing framework that can be robustly transferred to a variety of applications, a

critical aspect is to relax the need for the domain knowledge, and hence to reduce

the manual efforts in selecting the representative patterns and defining the corre-

sponding thresholds. For this purpose, a novel temporal segment analysis approach

and temporal association rule mining scheme are proposed, which are motivated by

the fact that temporal information of a video sequence plays an important role in

conveying the video content. The advantage of such approaches is that they largely
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improve the extensibility and flexibility of the proposed video content analysis and

indexing framework.

1.4 Scope and Limitations

The proposed framework has the following assumptions and limitations.

1. In the proposed image data representation and retrieval approaches, various as-

sumptions are made in terms of the amount of noisy data contained in the image

database. For instance, it is presumed that the image quality is reasonably good. In

addition, for the proposed long-term learning framework, it is assumed that while

a certain user might introduce the noise information into the query log, the rate

is negligibly low. Some of the assumptions might not hold in real-world applica-

tions, especially in this era of information explosion. Therefore, the construction

of the noise-tolerate mechanism may be required, where the techniques like outlier

detection, fuzzy logic, etc. can be introduced for this purpose.

2. Though a set of advanced techniques, such as semantic network based data repre-

sentation and retrieval, temporal segment analysis and temporal association mining,

etc., are proposed in this framework to effectively alleviate the semantic gap and

perception subjectivity issues, it is very challenging to solve these issues completely

and ultimately. In fact, it is a general agreement in the multimedia database re-

search society that it is difficult to build a fully-automatic, general-purpose MMDBMS

which can understand media content and match users’ perception perfectly.

3. Object segmentation remains an open issue and the results are far from satisfactory

according to the current state of the art in computer vision, pattern recognition

and image processing. Intuitively, one of the reasons lies in the fact that the

analysis of low-level features alone cannot provide accurate descriptions for semantic

objects. As a result, sometimes an object is segmented into several regions (called
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over-segmentation) or multiple objects are merged into one segment (called under-

segmentation). In this framework, though the dependency on the segmentation

results has been largely relaxed, the performance of several components such as

region-based retrieval and shot-boundary detection can be potentially affected.

1.5 Outline

The organization of this dissertation is as follows. In Chapter 2, the literature reviews

are given in the areas of content-based indexing and retrieval for image and video data,

with the focus on the existing approaches in addressing the semantic gap, perception

subjectivity and data management challenges.

Chapter 3 describes the proposed multimedia data management and retrieval frame-

work for the multimedia database systems. Each component of the framework will be

discussed in detail.

The current stand of the proposed data management and retrieval for image database

is presented in Chapter 4, where the focus is on the automatic knowledge discovery for

image representation and retrieval.

In Chapter 5, data management and indexing for video database is discussed. Specifi-

cally, a mid-level data representation and high-level event detection framework is detailed.

In Chapter 6, to further assist the video high-level indexing, knowledge discovery

approaches are discussed to intelligently explore the characteristic temporal patterns for

event detection.

In Chapter 7, the conclusions are given with the proposed future work.
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CHAPTER 2

Background and Related Work

As discussed in Section 1.2, image database and video database are selected as the test bed

for the proposed framework in this dissertation. In this chapter, the existing approaches

and methodologies of data management and retrieval for image and video database sys-

tems are summarized.

2.1 Data Management and Retrieval for Image Database

Digital images hold an important position among all the multimedia data types.

They are central to a wide variety of applications, ranging from medicine to remote

sensing, and play a valuable role in numerous human activities, such as entertainment,

law enforcement, etc. In the literature, there are three main approaches to support image

retrieval [74], which in turn affects the design of image databases.

• In the first type, image contents are modeled as a set of predefined attributes (such

as image category, subject, etc.) extracted manually and managed within the

framework of conventional database management systems. Queries are specified

by using these attributes. Thus images can be indexed and retrieved by using a

powerful relational database model [85]. Obviously, the major drawback of this

approach is that these attributes may not be able to describe the image contents

completely, and the types of queries are limited to those based on these attributes.

• The second approach uses textual descriptions (keywords) to describe (annotate)

images and employs Information Retrieval (IR) techniques to carry out image re-

trieval. Text can describe the high-level abstraction contained in images. However,

it has two major issues. First, image annotation requires a prohibitive amount

of labor when the size of image database becomes large. The other, and probably

most essential, drawback results from the difficulty of capturing the rich image con-
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Figure 2.1: Example results of keyword-based retrieval in Google Images.

tents using a small number of keywords and the subjectivity of human perception

involved in the annotation process [69]. As an example, Google Images [39] cur-

rently supports keyword-based retrieval scheme. Given a query keyword “Sunset”

with the intention of retrieving sunset landscape images, the retrieval results might

not be satisfactory, as illustrated in Fig. 2.1. As can be seen, though Fig. 2.1(a)

shows a sunset scene, Fig. 2.1(b) (Keoki Sunset Bottled) and Fig. 2.1(c) (Driving

directions to Sunset beach) are also returned as they both were annotated with the

keyword of “Sunset.”

• The third approach uses global or object-level image features to index and retrieve

images. This approach is generally called Content-Based Image Retrieval (CBIR) as

the retrieval is based on pictorial contents. The advantage of this approach is that

the indexing and retrieval process can be automatically performed and conveniently

implemented. However, it suffers from the semantic gap and perception subjectivity

issues as discussed in Section 1.1.

Currently, the research and design of image database management systems aim to

support the third approach. Therefore, a literature review of the image data representa-

tion, indexing and retrieval aspects in such systems is given in the following sections.
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2.1.1 Image Data Representation

Feature extraction is the basis for an image database system and constitutes the

first stage of indexing images by content. Features can be categorized as general or

domain-specific [69]. General features typically include color, texture, shape and sketch,

whereas domain-specific features are applicable in specialized domains such as human

face recognition or fingerprint recognition. As the target of this dissertation is towards

general image databases, in this section only the general features are introduced. Note

that each feature may have several representations. For example, as will be discussed

below, color histogram color moments, and color sets are representations of the image

color feature.

Color Features

Color is one of the most recognizable elements of image content and is widely used

as image data representation because of its invariance with respect to image scaling,

translation, and rotation. The key issues in color feature extraction include the color

space and color quantization.

• Color Space. The commonly used color spaces include RGB, HSL, and CIELAB.

Here RGB stands for Red-Green-Blue which are primary colors used to compose

any other colors. RGB is device-dependent and normally used on monitors. HSL

denotes Hue, Saturation and Luminosity. Hue is the perception of the nuance. It is

the perception of what one sees in a rainbow. The perception of Saturation is the

vividness and purity of a color. For example, a sky blue has different saturation

from a deep blue. Luminosity, also called brightness, is the perception of an area

to exhibit more or less light. Although the representation of the colors in the RGB

space is quite adapted for monitors, HSV space is preferred for a human being. In

terms of CIELAB, the CIE defined the Lab spaces in order to get more uniform

and accurate color models, where L defines lightness, a denotes red/green value,
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and b indicates the yellow/blue value. It is worth mentioning that MPEG-7 XM

V2 supports RGB and HSV color spaces, and some linear transformation matrices

with reference to RGB [82].

• Color Quantization. Color quantization is used to reduce the color resolution of an

image. Using a quantized color map can considerably decrease the computational

complexity during image retrieval. In MPEG-7 XM V2, three quantization types

are supported: linear, nonlinear, and lookup table [82].

The commonly used color feature representations in image retrieval include color

histogram, color moments, and color sets.

Texture Features

Texture refers to visual patterns with properties of homogeneity that do not result

from the presence of only a single color or intensity [107]. Although the ability to re-

trieve images on the basis of texture similarity may not seem very useful, the ability to

match on texture similarity can often be useful in distinguishing between areas of images

with similar color. Typical textural features include contrast, uniformity, coarseness,

roughness, frequency, density, and directionality [72]. Texture features usually contain

important information about the structural arrangement of surfaces and their relation-

ship to the surrounding environment. There are two basic classes of texture descriptors:

statistical model-based and transform-based. The former explores the gray-level spatial

dependence of textures and then extracts meaningful statistics as texture representation,

which were adopted in some well-known CBIR systems such as QBIC [35] and MARS

[86]. As for transform-based texture extractions, some commonly used transforms are

the discrete cosine transform (DCT transform), the Fourier-Mellin transform, the Polar

Fourier transform, and the wavelet transform.
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Shape Features

Unlike texture, shape is a fairly well defined concept, and there is considerable ev-

idence that natural objects are primarily recognized by their shape. To extract shape

features, two steps are involved, namely, object segmentation and shape representation.

• Object Segmentation. The existing segmentation techniques include the global

threshold-based, the region-growing, the split-and-merge, the edge-detection-based,

the texture-based, the color-based, and the model-based techniques [69]. Generally

speaking, it is difficult to achieve a precise segmentation owing to the complexity

of the individual object shape, the existence of shadows and noise, etc.

• Shape Representation. Once objects are segmented, their shape features can be

represented and indexed. In general, shape representations can be classified into

three categories: boundary-based representations (e.g., Fourier descriptor), region-

based representations (e.g., moment invariants) and combined representations (i.e.,

the integration of several basic representations such as moment invariants with

Fourier descriptor).

Other features

In the literature, many other types of image features have also been proposed, which

mainly rely on complex transformations of pixel intensities to yield better image represen-

tations with regard to human descriptions. Among them, the most well-known technique

is to use the wavelet transform to model an image at several different resolutions.

Studies show that the results are often unsatisfactory in real applications with the

use of a single class of descriptors. A strategy to potentially improve image retrieval

is to combine multiple heterogeneous features, which result in multidimensional feature

vectors. In an image database, such vectors are often used to measure the similarity of

two images by calculating a descriptor distance in the feature space. For a large-scale
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image database, a sequential linear search fails to provide reasonable efficiency. Thus

feature indexing becomes necessary.

2.1.2 Image Feature Indexing

In traditional DBMSs, data are indexed by key entities, where the most popular

indexing techniques are B-tree and its variations. In an image database, the images

should be indexed based on extracted inherent visual features such as color and texture

to support an efficient search based on image contents. As mentioned above, an image

can be represented by a multidimensional feature vector, which acts as the signature

of the image. Intuitively, this feature vector can be assumed to be associated with a

point in a multidimensional space. For instance, assume images in an image database are

represented by N-dimensional feature vectors. Retrieving similar images to a query image

then is converted to the issue of finding the indices of those images in the N-dimensional

search space whose feature vectors are within some threshold of proximity to the point

of the query image. This indexing structure is widely known as Multidimensional Access

Structure (MAS).

The B-tree related indexing techniques are not suitable to index the high-dimensional

features. Thus in the literature, a number of multidimensional indexing techniques have

been proposed. For instance, in [24], M-tree was proposed to organize and search large

data sets in metric spaces. [96] proposed an index structure called A-tree (Approximation

tree) for similarity search of high-dimensional data using relative approximation. A

KVA-File (kernel VA-File) that extends VA-File to kernel-based retrieval methods was

proposed in [49]. A survey of the techniques and data structures, such as k-d tree, quad-

tree, R-tree and its variants (R+ tree and R∗ tree), VAM k-d tree, VAMSplit R-tree, and

2D h-tree, for efficient multimedia retrieval based on similarity was given in [75]. Among

them, the R-tree and its variants are the most popular. In brief, an R-tree is a B-tree-like

indexing structure where each internal node represents a k-dimensional hyper-rectangle.
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Experiments indicate that though R-trees and R∗ trees work well for similarity re-

trieval when the dimension of the indexing key is less than 20, the performance of these

tree-structured indices degrades rapidly for a higher dimensional space [69]. Therefore,

dimension reduction might be required before employing the multidimensional indexing

technique upon the feature vectors. Karhunen-Loeve Transform (KLT) and its variations

have been widely used in dimension reduction in many areas such as features for facial

recognition, eigen-images and principal component analysis [58].

2.1.3 Content-based Image Retrieval

Multimedia information, typically image information, is growing rapidly across the

Internet and elsewhere. With the explosive growth in the amount and complexity of image

data, there is an increasing need to search and retrieve images efficiently and accurately

from image databases. However, as discussed earlier, the traditional query-by-keyword is

not suitable for image retrieval for the following reasons: 1) Keyword-based annotation

is extremely labor-intensive in processing the voluminous images; and 2) Due to the rich

semantics of the images and the subjectivity of human perception, it is difficult to choose

the proper keywords for the images. To solve these problems, instead of indexing and

retrieving by keywords, Content-Based Image Retrieval (CBIR) was proposed to retrieve

images based on their content.

The existing works in CBIR can be roughly classified into the following four categories:

1. Feature Analysis and Similarity Measures

Many early-year studies on CBIR focused primarily on feature analysis and similar-

ity measures [89][146]. Fig. 2.2 illustrates the basic idea of these approaches. Given

the images in the image database as shown in Fig. 2.2(a), their features of all the

images will be extracted. Now if the user wants to retrieve the images similar to

this query image as highlighted by the green rectangle in Fig. 2.2(a), the similarity

values between the query image and other images will be calculated in the image
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Figure 2.2: Idea of the works on feature analysis and similarity measures.

feature space and the most similar images are returned to the user as shown in Fig.

2.2(b). Some research prototypes and commercial systems have been implemented

for CBIR. In the Virage system [40], image content is given primarily in terms of

the properties of color and texture. The QBIC system of IBM [35] provides the

support for queries on color, texture and shape. The photobook [88] system sup-

ports queries by image content in conjunction with text queries. However, due to

the semantic gap and the perception subjectivity issues, it is extremely difficult to

discriminate the images by solely relying on the similarity measure upon the low-

level features in the real-world image databases [50]. As shown in Fig. 2.2(b), the

retrieved images might include the misidentified “fish” image and omit the correct

one (e.g., the “eagle” image centered in Fig. 2.2(a)).

2. Relevance Feedback (RF)

A variety of RF mechanisms from heuristic techniques to sophisticated learning

techniques have been proposed and actively studied in recent years to mitigate

the semantic gap by modeling the user’s subjective perception from the user’s
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feedback [95][118]. The principle of RF is to adjust the subsequent queries by

altering the position of the query point (or called the query center) and/or the

feature weights based on the information gathered from the user’s feedback, which

can be regarded as a form of supervised learning. As illustrated in Fig. 2.3, the

basic idea is as follows: Once a query is formulated, the system returns an initial set

of results. In this process, all features used in the similarity metric are considered

equally important because the user’s preference is not specified. Using the initial

result set, the user can give some positive or negative feedback to the system. For

example, labels such as “relevant” and “irrelevant” can be attached to the images.

The query, augmented by labeled images, is then resubmitted and processed by

the search engine. The system will thereafter refine the query and retrieve a new

list of images. Hence, the key issue in RF is how to incorporate positive and

negative examples in query and/or in the similarity refinement. There are two

main approaches called query point movement (query refinement) and re-weighting

(similarity measure refinement).

• The query point movement method essentially tries to improve the estimate

of the “ideal query point” by moving it towards good example points and

away from bad example points. The frequently used technique to iteratively

improve this estimation is Rocchio’s formula.

• The central idea behind the re-weighting method is to re-weight different fea-

tures during the search, reflecting the importance attached to them by the

user. It enhances the importance of those dimensions of a feature vector that

help in retrieving the relevant images and reduce the effects of those that hin-

der this process. Typically, the empirical standard deviation of each feature

is computed from the example set and its inverse is used as weight. That is,

if the variance of the good examples is high along a principle axis j (i.e., jth
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feature), it can be deduced that the values on this axis are not very relevant to

the input query and the importance of this feature is relatively low. Therefore,

a low weight wj is assigned on it.

From past research studies, RF has been shown as an effective scheme to improve

the retrieval performance of CBIR and has already been incorporated as a key part

in designing a CBIR system. Examples of such systems include MARS [86], IRIS

[136], WebSEEK [108], PicHunter [26], etc. However, those RF-based systems have

two major limitations as follows.

• RF estimates the ideal query parameters only from the low-level image fea-

tures. Due to the limited power of the low-level features in representing the

high-level semantics, it is quite common that the relevant samples are scarce

in the initial query or the relevant images are widely scattered in the feature

space. As a result, RF technique is often inadequate in learning the concepts

[55]. For instance, it typically takes quite a number of iterations to achieve

convergence of the learning process to obtain the high-level concepts. In many

cases, the desired query results could not be achieved even after a large number

of user interactions.

• Though the feedback information provided in each interaction contains certain

high-level concepts, it is solely used to improve the current query results for

a specific user. In other words, no mechanism is included in these systems

to memorize or to accumulate the relevance feedback information to improve

both the current query accuracy and the future system performance.

Furthermore, most of the existing RF based applications regard each image as

a whole, which often fails to produce satisfactory results when the user’s query

interest is just the salient region(s) in the image.
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Figure 2.3: Procedure of Relevance Feedback.
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3. Region-based approaches

With the assumption that human discernment of certain visual contents could be

potentially associated with the semantically meaningful object(s) in the image,

region-based retrieval [21][56] and MIL [13] techniques offer an alternative solution

by decomposing the images into a set of homogeneous regions for analysis. Each

region roughly corresponds to an object and is represented by a set of local image

features. The similarity measurements are then applied at the object/region level.

As a result of continuous effort towards this area, some region-based image retrieval

systems have been proposed. For example, Blobworld [4] is an early region-based

image retrieval system that segments the images into blobs based on color and tex-

ture features, and queries the blobs by using some high-dimensional index structure.

For each image, a similarity score is given by a fuzzy combination over the similarity

scores between the query blobs and their most similar blob in that image. However,

the multi-region queries remain unclear and unaddressed in this work. The SIM-

PLicity [124] system uses the integrated region matching technique (IRM) to allow

many-to-many matching between regions in two images. WALRUS [84] is another

region-based retrieval system, segmenting images by using wavelets. The use of

wavelets for segmentation has been promising. In its retrieval process, the sum of

the sizes of all the retrieved regions for each image is calculated, and only those

images with their matched region sizes exceeding some threshold are returned. In

[56], an indexing schema customized especially for region-based image retrieval was

proposed. Other systems in this category include [1] [20][70]. It is worth noting

that, as will be discussed in Section 4.2.2, to some extent the MIL technique might

be considered as a hybrid of the RF technique and the region-based approach.

However, semantically accurate image segmentation is an ambitious long-term goal

for computer vision researchers, which highly limits the performance of these ap-
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proaches. Here, semantically accurate image segmentation means the capability of

building a one-to-one mapping between the segmented regions and the objects in

the image [21]. In addition, the assumption of the existence of salient object(s) in

the images does not always hold.

4. Log-based retrieval (or called long-term learning)

Due to the complexity of image understanding, the regular learning techniques, such

as RF and MIL, need quite a number of rounds of feedback to reach satisfactory re-

sults. In addition, all the feedback obtained during the RF or MIL process is solely

used to improve current query results for a specific user. In other words, no mech-

anism is provided to memorize or to accumulate the valuable relevance feedback

information to improve both the current query accuracy and the future system per-

formance. Consequently, log-based retrieval was proposed recently [50][106], which

seeks to speed up the convergence process to capture the high-level semantic con-

cepts in a query with the assistance of the historical feedback logs accumulated in

the database system from the long-term learning perspective. However, most of

the existing log-based retrieval frameworks solely capture the general user concepts

but fail to adjust or customize the high-level semantic concepts in a query with

regard to a specific user. Also, similar to most of the RF techniques, they have

difficulty in propagating the feedback information across the query sessions toward

the region or object level.

As can be seen, by acting alone the above-mentioned approaches have certain limita-

tions in terms of retrieval accuracy and/or processing costs. Therefore, a few efforts have

been directed to propose the integrated frameworks to improve the retrieval performance.

In [47], the authors suggested to incorporate the RF technique with the Singular Value

Decomposition (SVD) based long term learning. In addition, Hoi et al. [50] studied the

log-based relevance feedback for the purpose of improving the retrieval performance and
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reducing the semantic gap in CBIR. However, these approaches solely direct the focus on

the image level. In our recent work [22], we extended our research efforts to the object

level by incorporating the Latent Semantic Indexing (LSI) based long-term learning and

One-class Support Vector Machine (SVM) based MIL technique. However, to record the

query logs, the users are asked to pick the region of interest in the segmented image,

which imposes a heavy burden on the users.

2.2 Data Management and Retrieval for Video Database

An enormous amount of video data is being generated these days all over the world.

This requires efficient and effective mechanisms to store, access, and retrieve these data.

Video streams are considered the most complex form of multimedia data because they

contain almost all other forms such as images and audio in addition to their inherent

temporal dimension. One promising solution that enables searching multimedia data,

in general, and video data in particular is the concept of content-based search and re-

trieval. Similar to image database, data representation, indexing and retrieval need to

be addressed for the video database systems. However, different from static images, a

video sequence consists of a sequence of images taken at a certain rate. Therefore, if

these frames are treated individually, indexing and retrieval might not be efficient. Con-

sequently, most of the proposed video indexing and retrieval prototypes are constructed

with the following two major phases [33]:

1. Database Population Phase

Normally, this phase consists of the following steps.

• Shot Boundary Detection. Since video is normally made of a number of logical

units or segments, the purpose of this step is to partition a video stream into

a set of meaningful and manageable segments, which then serve as the basic

units for indexing. Shot-based video indexing and retrieval is the approach
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generally adopted in the video database, where a shot is defined as a short

sequence of contiguous frames that signify a single camera operation.

• Key Frames Selection. This steps attempts to summarize the information in

each shot by selecting representative frames that capture the salient charac-

teristics of that shot.

• Extracting Low-Level Features from Key Frames. During this step, a number

of low-level spatial features (color, texture, etc.) are extracted in order to use

them as indices to key frames and hence to shots. Temporal features (e.g.,

object motion) can be used too.

2. Retrieval Phase

In this stage, a query is presented to the system that in turn performs similarity

matching operations and returns similar data (if found) back to the user. One

technique that is commonly used to present queries to video databases is so-called

Query By Example (QBE). In this technique, an image or a video clip is presented

to the system and the user requests the system to retrieve similar items.

Consequently, the related works in video data management and information retrieval

are discussed in the following sections.

2.2.1 Video Shot Boundary Detection

The first step is to segment the video into shots, a step commonly called video tem-

poral segmentation, partition, or shot boundary detection. A camera break (or called

shot cut) is the simplest transition between two shots, where consecutive frames on either

side of a camera break display a significant quantitative change in content. More sophis-

ticated camera operations include dissolve, wipe, fade-in, and fade-out. Here, fade-in

means a scene gradually appears. Fade-out is when a scene gradually disappears. Dis-

solve is when one scene gradually disappears while another gradually appears. Wipe is
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when one scene gradually enters across the frame while another gradually leaves. Such

special effects involve much more gradual changes between consecutive frames than does

a camera break and require a more sophisticated approach.

The key issue in shot detection is how to measure the frame-to-frame differences. A

number of difference measures between frames have been proposed. The most simple

measure is the sum of pixel-to-pixel differences between neighboring frames [142]. If the

sum is larger than a preset threshold, a shot boundary is said to exist between these

two frames. This method is not effective and many false shot detections will be reported

because it is sensitive to object and camera movement.

The second method measures color histogram distance between neighboring frames

[114]. The principle behind this method is that object/camera motion causes little his-

togram difference. Thus if a large difference is found, it is highly possible that a camera

break occurred.

The above shot detection techniques rely on a single frame-to-frame difference thresh-

old for shot detection. However, they have difficulty in detecting shot boundaries when

the change between frames is gradual. In addition, these techniques do not consider

spatial color distribution. Different techniques are needed to tackle these problems.

The difference values within a fade-in, fade-out, dissolve, and wipe operation tend to

be higher than those within a shot but significantly lower than the shot cut threshold.

Intuitively, a single threshold might not work, since in order to capture gradual transition,

the threshold must be lowered significantly, which results in many false detections. To

solve this problem, Zhang et al. [142] developed a twin-comparison technique to detect

both normal camera breaks and gradual transitions. In general, it is hard to correctly

determine gradual transitions. Trying to improve the success rate, [138] proposed a shot

detection technique based on wavelet transformation. Their technique is based on the

assumption that during fade-in, fade-out, and dissolve, the high frequency component of
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the image is reduced. As discussed in [74], ideally the frame-to-frame distances used for

shot detection should have a distribution close to zero with very little variation within

a shot and significantly larger than those between shots. However, the frame-to-frame

distances of common videos do not have this type of distribution due to object and camera

motion and other changes between frames. To improve the shot detection performance, a

filter was proposed in [87] to remove the effects of object and camera motion so that the

distribution of the frame-to-frame distance is close to the ideal distribution. Besides the

works based on the color or intensity histograms, [149] proposed a shot detection method

based on edge detection. In addition, Haas et al. [41] presented a method of using the

motion within the video to determine the shot boundary locations.

There are also some works which carry out video segmentation and indexing directly

based on compressed data [52][66]. Two main types of information used are Discrete

Cosine Transform (DCT) coefficients and motion information. In MPEG 1 and MPEG

2, DCT is applied to each I block and differential block. Among the 64 DCT coefficients of

each block, the first coefficient, called the Direct Current (DC) coefficient, represents the

average intensity of that block. The DC image is 64 times smaller than the original image,

but contains the main features of the original image. Therefore, many researchers have

proposed to perform video segmentation based on DC images where the frame-to-frame

distance measures can be used with minor update [66]. Another type of information

that is used for video segmentation is motion information. In brief, the directional

information of motion vectors are used to determine camera operations such as panning

and zooming. Then the number of bidirectionally coded macroblocks in B frames is used

for shot detection. If a B frame is in the same shot as its previous and next reference

pictures, most macroblocks can be coded by using bidirectional coding. Therefore, if the

number of bidirectional coded macroblocks is below a certain threshold, it is likely that

a shot boundary occurs around the B frame [129].
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After the video segmentation process, the next step is to represent and index each

shot so that shots can be located and retrieved quickly in response to queries.

2.2.2 Video Data Representation

The most common way is to represent each shot with one or more key frames or

representative frames. The reference frame(s) captures the main contents of the shot,

whose features such as color and shape, as discussed in Section 2.1.1 can be extracted. An

important issue in video data representation is actually related to the problem of how to

choose the representative frame(s). It can in turn be decomposed into two subproblems

as 1) how many reference frame(s) should be used in a shot, and 2) how to select the

corresponding number of reference frame(s) within a shot.

A number of methods have been proposed to address these issues as follows.

• The first method uses one reference frame per shot where the first frame is normally

picked. The limitation of this method is that it does not consider the length and

content changes of shots [81].

• The second method assigns the number of reference frame(s) to shots according to

their length. In this method, a segment is defined as a video portion with a duration

of one second. Then an average frame is defined so that each pixel in this frame

is the average of pixel values at the same grid point in all frames of the segment.

Finally the frame within this segment that is most similar to the average frame is

selected as the representative frame. However, this approach solely considers the

shot duration and ignores its content.

• In the third method, each shot is divided into subshots which are detected based

on changes in content with respect to motion vectors, optical flow, etc. Then the

histograms of all the frames in the subshot are averaged and the frame whose

histogram is the closest to this average histogram is selected as the reference frame.
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In general, the choice of reference frame selection method is application dependent. Be-

sides the features extracted at image-level or object-level from the reference frames, shot-

level motion information is also generally extracted from optical flow or motion vectors,

to capture the temporal or motion information contained in the video [111].

2.2.3 Video Indexing and Retrieval

Indexing video data is essential for providing content based access. Since the indexing

effort is directly proportional to the granularity of video access (or retrieval interests), in

this dissertation, video indexing and retrieval are discussed and considered as a concrete

unit. In the literature, video indexing and retrieval can be broadly classified into four

main categories [3].

• High-level Indexing and Retrieval. This approach uses a set of predefined index

terms for annotating video. The index terms are organized based on a high level

ontological categories like action, time, and space. In this case, video can be in-

dexed and retrieved based on annotation using the traditional IR techniques. The

high level indexing techniques are primarily designed from the perspective of man-

ual indexing or annotation and require considerable manual efforts. However, it

is still widely used because automatic high-level video content understanding is

currently not feasible for general video. Alternatively, many videos have associated

transcripts and subtitles that can be directly used for video indexing and retrieval.

Thirdly, if subtitles are not available, speech recognition can be applied to the sound

track to extract spoken words, which can then be used for indexing and retrieval.

However, this approach is still very challenging because the performance of speech

recognition is still far from satisfactory.

• Domain Specific Indexing and Retrieval. High-level indexing and retrieval is in

great need in many applications. However, as mentioned above, it is technically
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challenging or involves extensive manual efforts. Alternatively, domain specific

indexing and retrieval can use the high level structure of video or a priori knowl-

edge to assist the extraction of video features and/or semantic meanings. These

techniques are effective in their intended domain of application.

• Object-level Indexing and Retrieval. In this method, the salient video objects

are used to represent the spatio-temporal characteristics of video clips [6][12]. The

motivation of this approach is that any given scene is generally a complex collection

of objects. Thus the location and physical qualities of each object, as well as their

interaction with each other, define the content of the scene and the extracted object

can serve as a valuable visual index cue.

• Low-level Indexing and Retrieval. Such techniques provide access to video based on

properties like color and texture. The driving force behind this group of techniques

is to organize the features based on some distance metric and to use similarity based

matching to retrieve the video. Their primary limitation is the lack of semantics

attached to the features.

As discussed in [145], from the user’s point of view, there are mainly two kinds of

video retrieval demands: visual query and concept query. Visual query refers to the cases

when users want to find video shots that are visually similar to a given example, which

can be realized by directly comparing low level visual features of video shots or their

key frames. Obviously, this type of query request can be well supported by a low-level

indexing scheme. However, generally users are more interested in concept query, that is,

to find video shots by the presence of specific objects or events. Although a number of

researches have been conducted to model and retrieve the video data based on objects

[12][127], the performance is still largely limited by the difficulties of automatic object

extraction, tracking and recognition. There are also considerable approaches which at-

tempt to capture video events, especially for specific application domains such as sports
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videos [67], traffic videos [65], etc. Specifically, in most existing works, event detection

is normally carried out in a two-step procedure [67]. In the first step, low-level descrip-

tors are extracted from the video documents to represent the low-level information in

a compact way. Then in the second step, a decision-making algorithm is used to ex-

plore the semantic index from the low-level descriptors. For instance, in the domain

of sports videos, depending on the types of low-level features extracted and utilized for

event detection, the frameworks can be classified into two categories: unimodal (using

only the visual [32], auditory [93], or textual modality [140]) and multimodal [2] [126].

The multimodal approach attracts growing attention nowadays as it captures the video

content in a more comprehensive manner. In terms of the decision-making algorithms,

the Markov model-based techniques have been extensively studied, including the Hidden

Markov Model (HMM) [132], Controlled Markov Chain (CMC) [67], etc. to model the

temporal relations among the frames or shots for a certain event. Another type of heuris-

tic method uses a set of heuristic rules that are derived from the domain knowledge to

map the feature descriptors to events [120][147]. In addition, a multimedia data mining

approach was presented in our earlier work [11][14] to mine the high-level semantics and

patterns from a large amount of multimedia data. However, the semantic gap issue re-

mains a major obstacle and most of approaches require vast amounts of manual efforts

or domain knowledge.

33



CHAPTER 3

Overview of the Framework

The advances in data capturing, storage, and communication technologies have made vast

amounts of multimedia data available to consumer and enterprise applications. However,

the tools and techniques are still limited in terms of describing, organizing, and managing

multimedia data. In this dissertation, an integrated multimedia data management and

retrieval framework will be proposed with the focus to address the semantic gap and per-

ception subjectivity issues and to facilitate the effective data organization. Fig. 3.2 shows

the proposed framework. As can be seen, it consists of three major components: data

representation, indexing and retrieval. These three components are integrated closely

and act as a coherent entity to support the essential functionalities of an MMDBMS.

Specifically, data representation serves as the basis for effective indexing and retrieval.

To bridge the semantic gap, the data representation generally consists not only of the

low-level media features, but also mid-level and knowledge-assisted descriptors. Indexing

is then performed upon the data representation to ensure a fast searching and retrieval

mechanism of the media objects.

As discussed in Section 1.2, image database and video database serve as the test beds

for this framework. Therefore, the framework will be detailed for them separately for

the purpose of clarity. However, as a video stream consists of a consecutive sequence of

image and sound data with temporal constraints, many techniques adopted for image

indexing and retrieval can serve as the basis for video database.

3.1 Image Database

3.1.1 Image Data Representation

Global features (i.e., image-level features), such as color and texture, have long been

used for image content analysis and representation. Recently, with the assumption that

human discernment of certain visual contents could be potentially associated with the
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semantically meaningful object(s) in the image, region-level or object-level features should

also be explored, where an image segmentation process must be performed beforehand to

decompose the images into a set of homogeneous regions. In this proposed framework, an

unsupervised image segmentation method called WavSeg [141] is adopted to partition the

image. Then both image-level and object-level color and texture features are extracted.

Though the extraction of the above-mentioned features is the basis for image content

analysis, these features alone are inadequate to represent the image semantic meanings.

To tackle this issue, in this proposal, a semantic network framework is proposed, which

is constructed from the viewpoint of long-term learning based on the concept of Markov

Model Mediator (MMM) [99]. Different from the general Relevance Feedback approach

where the user’s feedback is solely used to customize the current query and then discarded,

the basic idea of semantic network is that such feedback contains valuable semantic

information and should be accumulated for a stochastic modeling scheme to capture the

semantic concepts from the viewpoint of the majority users. Therefore, to construct the

semantic network, the relevance feedback information is accumulated in the database log

and acts as the training data set. A training process is thus applied upon the training

data to stochastically model the semantic relationships among the images. As mentioned

earlier, such a network is useful because image retrieval is basically a process to explore

the relationships between the query image and the other images in the database. Since

the network is built by using the accumulated relevance feedback information provided

by a group of users, it possesses the capability of modeling the users’ general concepts in

regard to the images’ semantic meanings.

3.1.2 Image Data Organization

Efficiency is another important issue in CBIR. For a large image database, the tradi-

tional retrieval methods such as sequential searching do not work well since they are time

expensive. Two approaches have been widely used for the sake of retrieval efficiency: 1)
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Feature space reduction and search space reduction; 2) Indexing and data structures for

organizing image feature vectors. For feature reduction, principal component analysis

(PCA) and wavelet transform are two commonly used techniques to generate compact

representations for original feature space. For search space reduction, there are various

pre-filtering processes [75], such as filtering with structured attributes, methods based

on triangle inequality, and filtering with color histograms [42].

In terms of developing the appropriate indexing techniques and data structures to

speed up the image search process, it remains an open issue. Many data structures,

approaches and techniques have been proposed to manage an image database and has-

ten the retrieval process, such as VA-file [128], M-tree [24], and MB+-trees [29]. The

QBIC system [35], for instance, uses the pre-filtering technique and the efficient indexing

structure like R-trees to accelerate its searching performance. As another example, the

ImageScape system [68] uses k-d tree as its indexing structure. A survey of the tech-

niques and data structures for efficient multimedia retrieval based on similarity was given

in [75]. Most of the existing works on data indexing and data structures are conducted

at a single data set level based on low-level features. However, to address the semantic

gap issue, there’s a strong need to index the image not only based on its low-level fea-

tures (low-level indexing) or object-level features (object-level indexing), but also on the

high-level representations. In contrast, clustering [43] is one of the most useful knowledge

discovery techniques for identifying the correlations in large data sets. There are differ-

ent types of clustering algorithms in the literature such as the partitioning clustering

algorithms [79], hierarchical clustering methods where a representative of the data set is

computed based on their hierarchical structures [110], and syntactic methods which are

based on the static structure of the information source [61]. One of the disadvantages

of the syntactic method is that it ignores the actual access patterns. Another type of

method collects the statistics pertaining to the access patterns from feedback logs and
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conducts partitioning based on the statistics [101], which will be extended in this dis-

sertation to organize the image data in the database. In addition, most of the existing

work concentrates on data indexing and data clustering schema at a single database level,

which is not sufficient to meet the increasing demand of handling efficient image database

retrieval in a distributed environment, in which the query process may be carried out

across several image databases residing in distributed places and the query results may

come from different databases. A database clustering approach will be of great help in

this manner and will also be studied.

3.1.3 Image Retrieval

To effectively tackle the perception subjectivity issue, a probabilistic semantic network-

based image retrieval framework incorporated with Relevance Feedback (RF) technique

is proposed [100], which not only takes into consideration the low-level image content fea-

tures, but also fully utilizes the relative affinity measurements captured in the semantic

network. Therefore, instead of starting each query with low-level features as conducted

by most of the existing systems, the users’ general perceptions are gradually embedded

into the framework to improve the initial query results. To serve for individual user’s

query interests, the semantic network is intelligently traversed based on user’s feedback

and the query results are refined accordingly. This framework thus possesses the capabil-

ity of capturing the general user concepts and meanwhile adjusting to the perception with

regard to a specific user. One potential limitation is that this framework models user’s

perception at the image-level and has difficulties in propagating the feedback information

across the query sessions toward the region or object level.

In order to dynamically discover the object in the image that is the focus of a user’s

attention, an advanced CBIR system called MMIR is proposed by further extending the

above-mentioned framework [7]. In brief, the MMIR system utilizes the MMM mecha-

nism to direct the focus on the image level analysis together with the Multiple Instance
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Figure 3.1: General video structure.

Learning (MIL) technique (with the Neural Network technique as its core) for real-time

capturing and learning of the object-level semantic concepts with the facilitation of user

feedback. In addition, from a long-term learning perspective, the user feedback logs ex-

plored by the semantic network are used to speed up the learning process and to increase

the retrieval accuracy for a query.

3.2 Video Database

3.2.1 Video Data Representation

Generally speaking, video data can be modeled hierarchically as shown in Fig. 3.1.

Here, a video clip is composed of a set of video scenes, which can be defined as a collection

of semantically related and temporally adjacent shots. A shot in turn consists of an

unbroken sequence of frames taken from one camera. Since shot is widely considered as
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a self-contained unit, in this dissertation, the shot-based approach is adopted in terms

of modeling and mining videos in a video database system. Therefore, a shot-boundary

detection approach is first applied to segment the videos into a set of meaningful and

manageable units. Then the visual/audio features are extracted for each shot at different

granularities. Specifically, shot-level features are obtained by averaging the feature values

within the shot range. In addition, the shot is also abstracted and represented by key

frame(s) whose content is also analyzed and features are extracted correspondingly. Note

that as illustrated in Fig. 3.2, the feature extraction and object segmentation techniques

developed for image content analysis are readily used in the video shot detection process

and visual feature extraction from shots and key frames. Meanwhile, audio features in

time domain and frequency domain are explored.

Although the low-level features are captured in multiple channels (or called multi-

modal features) and contain more complete video information in comparison to the uni-

modal approach, due to the complexity of video contents, they alone are generally not

sufficient to deliver comprehensive content meanings. Therefore, two main approaches

are proposed in this dissertation, namely mid-level representation extraction and auto-

matic knowledge discovery (to construct knowledge-assisted representation), to enrich

the video data representation and to bridge the semantic gap.

Mid-level representations are deduced from low-level features and are motivated by

high-level inference or a priori knowledge. Taking the soccer videos as the test bed,

four mid-level features describing camera view types, field ratio, level of excitement,

and corner view types are proposed. Among them, the first three features are generic

descriptors for field-sports videos as they are not game specific. In contrast, the corner

view type descriptor is semi-generic because while it is useful in identifying corner events

(corner kicks, line throws from the corner, free kicks close to the penalty box, etc.) in

soccer videos, it is a less important indicator of events in other types of field-sports.
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As an alternative approach, automatic knowledge discovery algorithms are proposed

to intelligently model knowledge-assisted data representation and to relax the frame-

work’s dependence on the domain knowledge and human efforts by fully exploring the

temporal evolution and context information in the video data. Two advanced techniques

are developed for this purpose, namely temporal segment analysis [8] and temporal as-

sociation mining.

In temporal segment analysis, a novel time window algorithm is conducted to auto-

matically search for the optimal temporal segment and its associated features that are

significant for characterizing the events. Then a temporal pattern clustering process is

performed for data reduction to boost the event detection performance. One limitation

of this approach is that although a significant time window for certain events can be effec-

tively identified, it has difficulties to systematically capture and model the characteristic

context from the time window. The reason lies in the fact that such important con-

text might occur at uneven inter-arrival times and display at different sequential orders.

Therefore, the concept of temporal segment analysis is further extended and a tempo-

ral association mining scheme is applied to not only explore the characteristic temporal

patterns but also offer an intelligent representation of such patterns. The basic idea is

that the problem of finding temporal patterns can be converted so as to find adjacent

attributes which have strong associations with (and thus characterize) the target event.

Therefore, association rule mining provides a possible solution since the inference made by

association rule suggests a strong co-occurrence relationship between items [115]. How-

ever, the problem of temporal pattern discovery for video streams has its own unique

characteristics, which differs greatly from the traditional association rule mining and is

thus tackled by the proposed hierarchical temporal association mining framework.
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3.2.2 Video Indexing and Retrieval

If we perceive a video clip as a document, video indexing can then be analogous to

text document indexing where a structural analysis is first performed to decompose the

document into paragraphs, sentences, and words, before building indices. In general, a

video can be decomposed into scenes, shots, frames, etc. In this work, to facilitate fast

and accurate content access to video data, the video document is segmented into shots

as mentioned earlier. Its shot-level features and key frame features can be acted as its

index entry. Such indexing is mainly used to support the visual queries, such as key

frame query. That is, the system will retrieve the video shots visually similar to a given

example by extracting its low-level visual features and directly comparing them with the

features of the key frames stored in the database. In this case, the query mechanism and

search engine applied in the image database can be readily used, with the only exception

that instead of returning a static image, a corresponding shot is displayed.

In addition, the users are generally more interested in concept query, that is, to find

video shots by the presence of specific events, as discussed in Section 2.2.3. In response to

such requests, important activities and events are detected in this work by applying the

data classification algorithm on a combination of multimodal mid-level descriptors (or

knowledge-assisted data representation) and low-level features. Specifically, the decision

tree learning algorithm is adopted for this purpose as it is mathematically less complex

and possesses the capability of mapping data representation to high-level concepts [97].

This framework has been tested using soccer videos with different production styles and

from different video sources. In addition, this framework is also extended to detect

important concepts (i.e., high-level semantic features), such as “commercial,” “sports,”

from TRECVID news videos [122]. It is worth noting that TRECVID program was

led by the National Institute of Standards and Technology to provide a benchmark for

multimedia research by offering common data set and common evaluation procedure.
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Such event/concept labels can thus be tagged to the shots for high-level video indexing

or video annotation to support concept query.
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CHAPTER 4

Data Management and Retrieval for Image Database

The explosive growth of image data has made efficient image indexing and retrieval

mechanism indispensable. As mentioned in Section 1.1, semantic gap and perception

subjectivity issues are two of the major bottlenecks for CBIR systems. In this chapter,

these issues are addressed from the perspectives of both image data representation and

image retrieval processes.

4.1 Image Data Representation

It is widely accepted that the major bottleneck of CBIR systems is the large semantic

gap between the low-level image features and high-level semantic concepts, which prevents

the systems from being applied to real applications [50]. Therefore, in terms of image

data representation, besides the structured description of visual contents, a semantic

network is constructed to capture the relative affinity measurement among the images,

which can serve as an essential data representation to bridge the semantic gap.

The perception subjectivity problem poses additional challenges for CBIR systems.

In other words, as illustrated in Fig. 1.2 (for better understanding, this figure is inserted

again in this Section) and discussed in Section 1.1, in viewing the same image (e.g., Fig.

4.1(a)), different users might possess various interests in either a certain object (e.g., the

house, the tree, etc.) or the entire image (e.g., a landscape during the autumn season).

In addition, even the same user can have different perceptions towards the same image at

various situations and with different purposes. Therefore, features from both the image

and object levels are required to support the multi-level query interests.

The main focus of this study is to propose effective approaches to mitigate the above-

mentioned issues instead of exploring the most appropriate features for image indexing

and retrieval. Therefore, in the next two subsections, a brief introduction will be given

for feature extraction followed by a detailed discussion about the semantic network.
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Figure 4.1: Example images

4.1.1 Global Features

Two groups of global features, color and texture, are extracted at the image level.

• Color Feature. Since the color feature is closely associated with image scenes and it

is more robust to changes due to scaling, orientation, perspective and occlusion of

images, it is widely adopted in a CBIR system for its simplification and effectiveness.

The HSV color space is used to obtain the color feature for each image in this study

for the following two reasons: 1) HSV color space and its variants are proven to

be particularly amenable to color image analysis [23], and 2) it was shown in the

benchmark results that the color histogram in the HSV color space has the best

performance [77]. Also as discussed in [37], though the wavelength of visible light
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ranges from 400 to 700 nanometers, the colors that can be named by all the cultures

are generally limited to be around 11. Therefore, the color space is quantized

using color categorization based on H, S, V value ranges and 13 representative

colors are identified [7]. Besides black and white, ten discernible colors (‘red,’ ‘red-

yellow,’ ‘yellow,’ ‘yellow-green,’ ‘green,’ ‘green-blue,’ ‘blue,’ ‘blue-purple,’ ‘purple,’

and ‘purple-red’) are extracted by dividing the Hue into five main color slices and

five transition color slices. Here, each transition color slice like ‘red-yellow,’ ‘yellow-

green,’ is considered between two adjacent main color slices. In addition, a new

category ‘gray’ is added for the remaining value ranges. Colors with the number

of pixels less than 5% of the total number of pixels are regarded as non-important

and the corresponding positions in the feature vector have the value 0. Otherwise,

the corresponding percentage of that color component will be used.

• Texture Feature. Texture is an important cue for image analysis. It has been shown

in a variety of studies [107][118] that characterizing texture features in terms of

structure, orientation, and scale fits perfectly with the models of human perception.

A number of texture analysis approaches have been proposed. In this study, a one-

level wavelet transformation using Daubechies wavelets is used to generate the

horizontal detail sub-image, the vertical detail sub-image, and the diagonal detail

sub-image. The reason for selecting Daubechies wavelet transform lies in the fact

that it was proven to be suitable for image analysis. For the wavelet coefficients

in each of the above three subbands, the mean and variance values are collected,

respectively. Therefore, six texture features are extracted.

In summary, the extraction process for global feature extraction is relatively straight-

forward where an image is considered as a whole and a vector of 19 features (13 color

features and 6 texture features) is generated in this study as discussed above. Note that

for simplicity, it is assumed that the color and texture information are of equal impor-

46



tance such that the values of the color features should be equal to those of the texture

features. Therefore, a feature normalization process is conducted. As a result, the sum

of all feature values for a given image is 1, with both the sum of all the color features

and that of texture features being 0.5.

4.1.2 Object-level Features

As far as the region level features are considered, an image segmentation process

needs to be carried out beforehand.

In this study, the WavSeg algorithm proposed in our earlier work [141] is applied to

partition the images. In brief, WavSeg adopts a wavelet analysis in concert with the

SPCPE algorithm [19] to segment an image into a set of regions. The problem of seg-

mentation is converted to the problem of simultaneously estimating the class partition

and the parameter for each class and is addressed in an iterative process. By using

Daubechies wavelets, the high-frequency components will disappear in larger scale sub-

bands and the possible regions will be clearly evident. Then by grouping the salient

points from each channel, an initial coarse partition is obtained and passed as the in-

put to the SPCPE segmentation algorithm, which has been proven to outperform the

random initial partition-based SPCPE algorithm. In addition, this wavelet transform

process can actually produce region-level texture features together with the extraction of

the region-of-interest within one entry scanning through the image data. Once the region

information becomes available, the region-level color features can be easily extracted.

4.1.3 Semantic Network

To tackle the semantic gap issue, a probabilistic semantic network is proposed based

on the concept of Markov Model Mediator (MMM), a probabilistic reasoning model that

adopts the Markov model framework and the concept of mediators. The Markov model is

one of the most powerful tools available for scientists and engineers to analyze complicated

systems, whereas a mediator is defined as a program to collect and combine information
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Table 4.1: The relative affinity matrix A of the example semantic network.

Img 1 Img 2 Img 3 Img 4 ... Img m ... Img N
Img 1 a1,1 a1,2 0 0 ... a1,m ... 0
Img 2 a2,1 a2,2 a2,3 a2,4 ... 0 ... 0
Img 3 0 a3,2 a3,3 0 ... a3,m ... 0
Img 4 0 a4,2 0 a4,4 ... 0 ... 0
... ... ... ... ... ... ... ... ...
Img m am,1 0 am,3 0 ... am,m ... 0
... ... ... ... ... ... ... ... ...
Img N 0 0 0 0 ... 0 ... aN,N

from one or more sources, and finally yield the resulting information [130]. Markov models

have been used in many applications. Some well-known examples are Markov Random

Field Models in [36], and Hidden Markov Models (HMMs) [92]. Some research work has

been done to integrate the Markov model into the content-based image retrieval. Lin et

al. [71] used a Markov model to combine spatial and color information. In their approach,

each image in the database is represented by a pseudo two-dimensional hidden Markov

model (HMM) in order to adequately capture both the spatial and chromatic information

about that image. In [83], a hidden Markov model was employed to model the time series

of the feature vector for the cases of events and objects in their probabilistic framework

for semantic level indexing and retrieval. In brief, the MMM mechanism contains two

major parameters, namely the relative affinity matrix A and the feature matrix B, to

represent both the semantic network and the low-level features for the images in the

database. Note that the MMM mechanism directs the focus on the image level analysis;

therefore matrix B contains global features as introduced in Section 4.1.1 and matrix A
(the semantic network) is constructed [100] as follows.

Assume N is the total number of images in the image database and I = {i1, i2, ... ,

iN} is the image set. The semantic network is modeled by the relative affinity matrix A,

where A = {am,n} (1 ≤ m, n ≤ N) denotes the probabilities of the semantic relationships

among the images based on users’ preferences, and the relationships of the images in the
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Figure 4.2: Probabilistic semantic network.

semantic network are represented by the sequences of the states (images) connected by

transitions. Fig. 4.2 shows an example of the semantic network, where the lines with

zero probabilities are omitted. Table 4.1 shows the corresponding A matrix.

In the network, two different kinds of relationships are defined between two images:

1. Directly related (RD)

im RD in ⇔ am,n 6= 0 where im, in ∈ I, am,n ∈ A
For example: i1 RD i2, i2 RD i3, etc.

2. Indirectly related (RI)

im RI in ⇔ ((am,n = 0) ∧ (∃ix ∈ I ⇒ am,x 6= 0 ∧ ax,n 6= 0)) where im, in, ix ∈ I,

am,n, am,x, ax,n ∈ A, and m 6= n

For example: i1 RI i3, i1 RI i4, etc.
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In other words, RD is the relationship between two directly linked images, while RI

exists between two images that are connected to a common image. For the purpose of

constructing the semantic network, a set of training data is needed.

Figure 4.3: The interface of the training system.

Training Data Set

To construct the semantic network, a training data set is required to generate the

probabilistic semantic relationships among the images. The source of the training data

set is the log of user access patterns and access frequencies on the image data. Access

patterns denote the co-occurrence relationships among the images accessed by the user

queries, while access frequencies denote how often each query was issued by the users.

To collect the user access patterns and access frequencies, an image retrieval system

implemented earlier by our research group [18] is adopted in this framework. Fig. 4.3
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shows the system interface. In brief, the training process is described as follows: The

user first selects one query image. After the “Query” button is clicked, a query message

is sent to the server through UDP. The query results are sent back after the server fulfills

the query process. It is worth mentioning that for training purpose, any available image

retrieval methods can be implemented on the server side. Upon receiving the results, the

user selects the images that he/she thinks are related to the query image by right-clicking

on the image canvases, and clicks the “Feedback” button to send the feedback back to

the server. When the server receives and identifies this feedback message, it updates the

user access patterns and access frequencies accordingly. Then the user can continue the

training process or exit. Detailed information can be found in [18]. In this study, a group

of users were asked to randomly issue queries and select positive and negative examples

from the results for each query. The positive examples selected in each query are said to

have the co-occurrence relationships with each other. Intuitively, they are semantically

related. In addition, the more frequently two images are accessed together, the more

closely they are related. It is worth mentioning that such a process is actually supported

by most of image database systems which offer interactive user interfaces for users to

provide feedback on the query results (and possibly refine the results accordingly using

Relevance Feedback principle). In real applications, by accumulating feedback in the log

mechanism, the semantic network concept can be readily applied to these systems for

performance improvement.

The formal definition regarding the training data set is given as follows:

Definition 4.1. Assume N is the total number of images in the image database and

a set of queries Q = {q1, q2, ..., qnq} were issued to the database in a period of time. The

training data set consists of the following information:

• Let usem,k denote the usage pattern of image m with respect to query qk per time

period, where the value of usem,k is 1 when m is accessed by qk and zero otherwise.
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Table 4.2: The query access frequencies (accessk) and access patterns (usek,m) of the
sample images.

Query accessk Img (a) Img (b) Img (c) Img (d) ...
q1 4 1 1 0 ... ...
q2 1 0 1 1 ... ...
q3 access3 0 0 0 ... ...
... ... ... ... ... ... ...

• The value of accessk denotes the access frequency of query qk per time period.

Table 4.2 gives some example queries issued to the image database with their corre-

sponding access frequencies. The access patterns of the four sample images in Fig. 4.1

versus the example queries are also shown in Table 4.2. In this table, the entry (k, m)

= 1 indicates that the mth image is accessed by query qk. For example, suppose q1 is a

user-issued query related to retrieving images containing country house scenes. Img (a)

and (b) are accessed together in q1, with their corresponding entries in the access pattern

matrix having the value 1. Let q2 denote a query related to the concept of ‘trees’, then

Img (a) and Img (c) will probably be accessed together in this query. However, since

most users regard Img (a) as a country house scene more than a ‘trees’ scene, the access

frequency of q1 is larger than that of q2. Consequently, after the system training, Img (b)

is more likely to be retrieved than Img (c), given that Img (a) is selected as the query

image. Thus, the users’ subjective concepts about the images are captured by the pair

of user access patterns and user access frequencies.

Construct the Semantic Network

Based on the information in the training data set, the semantic relationships can be

captured among the images in the database and construct the semantic network. In order

to capture the semantic relationships among all the images, an assisting matrix AFF is

defined, which is constructed by having the affm,n to be the relative affinity relationship

between two images m and n using the following definition.
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Definition 4.2. The relative affinity measurement (affm,n) between two images m

and n (1 ≤ m,n ≤ N) indicates how frequently these two images are accessed together,

where

affm,n =

nq∑

k=1

usem,k × usen,k × accessk (4.1)

Let N be the total number of the images in the database. The matrix A is initialized

by having am,n be the element in the (m,n)th entry in A, where

am,n = 1/N (4.2)

Then A is constructed via the following equation.

am,n =





affm,nP
k∈d affm,k

if
∑

k∈d affm,k 6= 0

am,n otherwise.

(4.3)

From the above equations, it can be seen that each row m in the A matrix represents

the RD relationship between the image im and the other images, while the wholeAmatrix

contains information of both kinds of relationships among the images in the database.

The values in A are then used to construct the semantic network.

For the sake of efficiency, during a training period, the training system only collects

all the user access patterns. Once the number of records reaches a threshold (e.g., 500),

an update of A matrix is triggered automatically. All the computations are done off-line.

Moreover, instead of using the whole A matrix, in the retrieval process only the RD

relationship between the query image and the other images together with the low-level

features are used to generate the initial query results. In other words, for a specific query

image im (im ∈ I), only the mth row in matrix A (denoted as Am) is applied in order to

reduce the computational load and I/O cost.

4.2 Content-based Image Retrieval

In our earlier studies, the MMM mechanism was applied to multimedia database

management [104][105] and document management on the World Wide Web (WWW)
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[101][102]. MMM is used for content-based image retrieval and the preliminary results

were presented in [99], where the MMM mechanism functions as both the searching engine

and the image similarity arbitrator for image retrieval. However, MMM considers only

the direct relationship between the query image q and the other images in the database

and does not support real-time query refinement based on user feedback. Therefore, in

the following two sections, two extended frameworks are presented to support real-time

query refinement and to explore user perceptions at both the image-level and object-level.

4.2.1 Probabilistic Semantic Network-Based Image Retrieval

As discussed in Section 2.1.3, RF aims to adjust to a specific user’s query perception

according to the user’s feedback. However, the RF technique is often inadequate in

learning the concepts [55] due to the limited power of the low-level features in representing

high-level semantics. To address this issue, a framework that performs relevance feedback

on both the images’ low-level features and the semantic contents represented by keywords

was proposed [76]. In their work, a semantic network was constructed as a set of keywords

linked to the images in the database. Though the retrieval accuracy is improved by using

this approach, extra effort is required to label the images manually with the keywords. To

overcome such limitations, in this section, a probabilistic semantic network-based image

retrieval framework, called MMM RF, is proposed [100], which employs both relevance

feedback and Markov Model Mediator (MMM) mechanism for image retrieval. The low-

level global features and semantic network representation extracted in Section 4.1.1 and

Section 4.1.3 respectively, are fully utilized. This proposed framework can support both

accumulative learning to capture general user concepts and on-line instance learning for

individual user interests.

The architecture of the proposed framework is shown in Fig. 4.4. As can be seen

from this figure, a training process is used to construct the semantic network off-line

as discussed in Section 4.1.3. Then image retrieval is conducted by utilizing both the
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Figure 4.4: Framework architecture.

low-level features and the semantic network captured in the feature matrix B and the

relative affinity matrix A, respectively. A feedback process refines the current retrieval

results by updating the temporary semantic subnetwork. Meanwhile, the user feedback is

collected continuously as the training data for subsequent updates of the whole semantic

network. A discussion about on-line retrieval is detailed in the following subsection.

Refine the Semantic Subnetwork On-Line

As mentioned above, the relative affinity matrix A is obtained based on the feedback

provided by various users on different kinds of queries. Therefore, matrix A represents

the general user concepts and can help to achieve better query results. However, in the

retrieval process, different users may have different concepts about the query images.

Therefore, in addition to supporting accumulative learning, the system also needs to

support instant learning which enables the query refinement for individual users on the

fly. Moreover, it is most likely that the query images chosen by the users have no existing

RD or RI relationships in the current semantic network. In this subsection, a refinement

55



method for the semantic subnetwork is proposed to solve these problems based on user

feedback. Note that as discussed earlier, such refinement is conducted on the temporary

subnetwork only for the sake of system efficiency and avoiding the bias caused by a single

user.

For a query image im (im ∈ I), the user can choose to accept the initial query results

obtained by using the general user concepts, or to provide feedback via indicating the

positive and negative examples. The access patterns can be obtained based on these

positive and negative examples, as mentioned in the previous subsection. Such access

patterns are then used to update the Amatrix to further improve the initial query results.

More importantly, the user specified RD relationship A′
m = [a

′
k] (1 ≤ k ≤ N) between im

and other images can be obtained by using Eqs. (4.1) and (4.3) with parameter m fixed

and n varied from 1 to N. Let vector Vm = [vj] (1 ≤ j ≤ N) denote the information of

both RD and RI relationships between im and other images. Table 4.3 shows the steps

to calculate it. The idea is quite straightforward. As we know, each a
′
ni

in A′
m represents

the RD probability from im to ini
, while each ani,j in Ani

denotes the RD probability

from ini
to ij. Therefore, the RD probability from im to ij connected by a common

image ini
can be obtained by a

′
ni
× ani,j. A pair of images can be indirectly related to

each other via multiple paths in the semantic network. For example, Img 1 and Img 3

are indirectly related via two different ways – one through Img 2 and one through Img

m (as shown in Fig. 4.2). In such a situation, the maximal probability is kept since

this maximal probability indicates the actual degree of their semantic relationship. It is

worth mentioning that normally the set of non-zero items in A′
m is quite small, so the

algorithm is efficient in terms of space and time.

Stochastic Process for Information Retrieval

In this subsection, a stochastic retrieval process is defined to calculate the edge weights

among the images utilizing both the low-level features and the semantic network. Assume
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Table 4.3: Capture RD and RI relationships between im and other images.

1. Obtain non-zero items [a
′
n1

, a
′
n2

, ..., a
′
nT

] in A
′
m, where T is the total number of

images which have non-zero RD relationships with im (1 ≤ T ≤ N)
2. For each a

′
ni

(1 ≤ i ≤ T ), get its corresponding Ani
= [ani,j] (1 ≤ j ≤ N) from

matrix A
3. Normalize each Ani

as:
if (max(Ani

) 6= min(Ani
))

ani,j = (ani,j−min(Ani
))/(max(Ani

)-min(Ani
))

else

ani,j =

{
1 if ni = j

0 otherwise

4. Define a matrix P = {pi,j} (1 ≤ i ≤ T, 1 ≤ j ≤ N)
For j = 1 to N

For i = 1 to T
pi,j = a

′
ni
× ani,j

end
vj = the maximal value of the jth column of P

end
5. Normalize the vector V = {vj} (1 ≤ j ≤ N) as:

vj =
vjP

1≤i≤N vi

N is the total number of images in the database, and the features of the query image q

are denoted as {o1, o2, ..., oT}, where T is the total number of non-zero features of the

query image q. In this study, 1 ≤ T ≤ 19 since there are 19 features in total.

Definition 4.3. Wt(i) is defined as the edge weight from image i to q at the evaluation

of the tth feature (ot) in the query, where 1 ≤ i ≤ N and 1 ≤ t ≤ T .

Based on the definition, the retrieval algorithm is given as follows. At t = 1,

W1(i) = (1− |bi(o1)− bq(o1)|/bq(o1)) (4.4)

The value of Wt+1(i), where 1 ≤ t ≤ T − 1, is calculated by using the value of Wt(i).

Wt+1(i) = Wt(i)aq,i(1− |bi(ot+1)− bq(ot+1)|/bq(ot+1)) (4.5)

As mentioned before, A represents the relative affinity measures of the semantic

relationships among the images in the probabilistic semantic network and B contains the
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Table 4.4: Image retrieval steps using the proposed framework.

1. Given the query image q, obtain its feature vector {o1, o2, ..., oT}, where T is the
total number of non-zero features of the query image q.

2. Upon the first feature o1, calculate W1(i) according to Eq. (4.4).
3. To generate the initial query results, set aq,i to be the value of (q, i)th entry in

matrix A. Otherwise, based on the user feedback, calculate vector Vq by using the
algorithm presented in Table 4.3 and let aq,i equal to vi, the ith entry in Vq.

4. Move on to calculate W2(i) according to Eq. (4.5).
5. Continue to calculate the next values for the W vector until all the features in the

query have been taken care of.
6. Upon each non-zero feature in the query image, a vector Wt(i) (1 ≤ t ≤ T ) can

be obtained. Then each value at the same position in the vectors W1(i), W2(i), ...,
WT (i) is summed up. Namely, sumWT (i) =

∑
T Wt(i) is calculated.

7. Find the candidate images by sorting their corresponding values in sumWT (i). The
bigger the value is, the stronger the relationship that exists between the candidate
image and the query image.

low-level features. To generate the initial query results, the value of aq,i from matrix

A is used. Once the user provides the feedback, a vector Vq is calculated by using the

algorithm presented in Table 4.3. Then aq,i = vi (vi ∈ Vq) is applied in Eq. (4.5). The

stochastic process for image retrieval by using the dynamic programming algorithm is

shown in Table 4.4.

Experiments

In the above section, a framework is presented where the semantic network and low-

level features can be integrated seamlessly into the image retrieval process to improve

the query results. In this section, the experimental results are presented to demonstrate

the effectiveness of this framework.

In the experiments, 10,000 color images from the Corel image library with more than

70 categories, such as people, animal, etc., are used. In order to avoid bias and to

capture the general users’ perceptions, the training process was performed by a group

of 10 university students, who were not involved in the design and development of the

framework and have no knowledge of the image content in the database. Currently,
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Table 4.5: The category distribution of the query image set.

Category Explanation Number of Query Images
Landscape Land, Sky, Mountain 16
Flower Flower 16
Animal Elephant, Panther, Tiger 16
Vehicle Car, Bus, Plane, Ship 16
Human Human 16

1,400 user access patterns have been collected through the training system, which covered

less than half of the images in the database. The A matrix and the semantic network

are constructed according to the algorithms presented earlier. For the low-level image

features, the color and texture features of the images are considered and the B matrix is

obtained by using the procedures illustrated. The constructions of these matrices can be

performed off-line.

To test the retrieval performance and efficiency of the proposed mechanism, 80 ran-

domly chosen images belonging to 5 distinct categories were used as the query images.

Table 4.5 lists the descriptions for each category as well as the number of query images

selected from each category.

For a given query image issued by a user, the proposed stochastic process is conducted

to dynamically find the matching images for the user’s query. The similarity scores of

the images with respect to certain query image are determined by the values in the

resulting sumWT vectors according to the rules described in Table 4.4. Fig. 4.5 gives a

query-by-image example, in which the retrieved images are ranked and displayed in the

descending order of their similarity scores from the top left to the bottom right, with the

upper leftmost image being the query image. In this example, the query image belongs

to the ’Landscape’ category. As can be seen from this figure, the perceptions contained

in these returned images are quite similar and the ranking is reasonably good.

In order to demonstrate the performance improvement and the flexibility of the pro-

posed model, the accuracy-scope curve is used to compare the performance of this mech-
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Figure 4.5: The snapshot of a query-by-image example.

anism with a common relevance feedback method. In the accuracy-scope curve, the scope

specifies the number of images returned to the users and the accuracy is defined as the

percentage of the retrieved images that are semantically related to the query image.

In the experiments, the overall performance of the proposed MMM mechanism is

compared with the relevance feedback method (RF) proposed in [94] in the absence of

the information of user access patterns and access frequencies. The RF method pro-

posed in [94] conducts the query refinement based on re-weighting the low-level image

features (matrix B) alone. In fact, any normalized vector-based image feature set can be

plugged into the matrix B. Figure 4.6 shows the curves for the average accuracy values
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Figure 4.6: Performance comparison.

of the proposed CBIR system and the RF CBIR system, respectively. In Figs. 4.6(a),

‘MMM Initial’ and ‘RF initial’ indicate the accuracy values of the MMM mechanism and

the RF method at the initial retrieval time, respectively. The ‘MMM RF 1(2)’ and the

‘RF 1(2)’ in Figs. 4.6 (b)-(c) represent the accuracy values of the two methods after

the first and the second rounds of user relevance feedback. The results in Fig. 4.6 are

calculated by using the averages of all the 80 query images. It can be easily observed that

this proposed method outperforms the RF method for the various numbers of images re-

trieved at each iteration. This proves that the use of the user access patterns and access
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Table 4.6: Accuracy and efficiency comparison between Relevance Feedback method and
the proposed framework.

Relevance Feedback Proposed Framework
Category Number of

feedbacks
Feedbacks
per image

Accuracy Number of
Feedbacks

Feedbacks
per image

Accuracy

Landscape 48 3 55.3% 21 1.3 61.3%
Flower 48 3 44.7% 23 1.4 73.4%
Animal 48 3 48.8% 20 1.3 81.6%
Vehicle 48 3 23.8% 44 2.8 74.4%
Human 48 3 26.9% 33 2.1 75.0%
Summary 240 3 39.9% 141 1.8 73.1%

frequencies obtained from the off-line training process can capture the subjective aspects

of the user concepts. As another observation, the proposed method and the RF method

share the same trend, which implies that the more the iterations of user feedback, the

higher the accuracy they can achieve.

Table 4.6 lists the number of user feedback iterations observed in the RF method and

the proposed method for each image category. For example, the number of query images

in the ‘Landscape’ category is 16, and the number of user feedback iterations observed for

those 16 images is 48 and 21, respectively, for the RF method and the proposed method.

Thus, the number of feedback iterations per image is 48/16=3 for the RF method, while

it is 1.3 for the proposed method. As can be seen from this table, the proposed method

can achieve better retrieval performance even by using a smaller number of feedback

iterations than that of the RF method in all five categories.

Conclusions

One of the key problems in the CBIR systems come from the concern of lacking a

mapping between the high-level concepts and the low-level features. Although Relevance

Feedback (RF) has been proposed to address the perception subjectivity issue, the per-

formance is limited by the insufficient power of the low-level features in representing the

high-level concepts. In addition, the users are required to take heavy responsibility dur-
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ing the retrieval process to provide feedback in several iterations. The useful information

contained in the user feedback is employed to improve the current query results only,

without being further utilized to boost the system performance. In response to these

issues, a probabilistic semantic network-based image retrieval framework using both rel-

evance feedback and the Markov Model Mediator (MMM) mechanism is proposed. As a

result, the semantic network and the low-level features are seamlessly utilized to achieve

a higher retrieval accuracy. One of the distinct properties of this framework is that it

provides the capability to learn the concepts and affinities among the images, represented

by semantic network, off-line based on the training data set, such as access patterns and

access frequencies without any user interaction. This off-line learning is in fact an affinity-

mining process which can reveal both the inner-query and inter-query image affinities.

In addition, the proposed framework also supports the query refinement for individual

users in real-time. The experimental results demonstrate the effectiveness and efficiency

of this proposed framework for image retrieval.

4.2.2 Hierarchical Learning Framework

As discussed in Chapter 2, by acting alone, the existing CBIR approaches have cer-

tain limitations in terms of retrieval accuracy and/or processing costs. In Section 4.2.1,

a unified framework is proposed, which integrates the MMM mechanism with the RF

technique. However, it intends to bridge the semantic gap and capture the user’s percep-

tion at the image-level. In this section, the framework is further extended to explore the

high-level semantic concepts in a query from both the object-level and the image-level

and to address the needs of serving the specific user’s query interest as well as reducing

the convergence cycles [7].

Specifically, an advanced content-based image retrieval system, MMIR, is proposed

[7], where MMM and MIL (the region-based learning approach with Neural Network tech-

nique as the core) are integrated seamlessly and act coherently as a hierarchical learning
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Figure 4.7: Overview of the difference between two learning schemes. (a) Idea of tradi-
tional supervised learning; (b) Idea of multiple instance learning

engine to boost both the retrieval accuracy and efficiency. By intelligent integration, it

aims at offering a potentially promising solution for the CBIR system. As the concept of

MMM has been discussed, in the following section, MIL will be introduced first followed

by a discussion of the proposed hierarchical learning framework.

Multiple Instance Learning

Motivated by the drug activity prediction problem, Dietterich et al. [30] introduced

the Multiple Instance Learning model. Since its introduction, it has become increasingly

important in machine learning. The idea of multiple instance learning varies from that

of traditional learning problem as illustrated in Fig. 4.7.

As can be seen from Fig. 4.7(a), in a traditional supervised learning problem, the

task is to learn a function

y = f(x1, x2, ..., xn) (4.6)

given a group of examples (yi, xi1, xi2, ..., xin), i = 1, 2, ..., Z.
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Here, Z represents the number of input examples and n denotes the number of features

for each example object. Each set of input values (xi1, xi2, ..., xin) is tagged with the label

yi, and the task is to learn a hypothesis (function f) that can accurately predict the labels

for the unseen objects.

In MIL, however, the input vector (xi1, xi2, ..., xin) (called an instance) is not individ-

ually labeled with its corresponding yi value. Instead, one or more instances are grouped

together to form a bag Bb ∈ β and are collectively labeled with a Yb ∈ L, as illustrated

in Fig. 4.7(b). The purpose of MIL is that given a training set of bags as well as their

labels, it can deduce the label for each instance. Furthermore, since a bag consists of a

set of instances, the label of a given bag can be in turn determined. The input/training

set of MIL is not as complete as traditional Learning. Here, β denotes the bag space and

L represents the label space with L = {0(Negative), 1(Positive)} for binary classifica-

tion. Let α be the instance space and assume there are m instances in Bb, the relation

between the bag label Yb and the labels {ybj|ybj ∈ L} (j = 1, 2, ..., m) of all its instances

{Ibj|Ibj ∈ α} is defined as follows.

Yb =





1 if ∃m
j=1ybj = 1

0 if ∀m
j=1ybj = 0.

(4.7)

The label of a bag (i.e., Yb) is a disjunction of the labels of the instances in the bag

(i.e., Ybj where j = 1, 2, ...,m). The bag is labeled as positive if and only if at least one

of its instances is positive; whereas it is negative when all the instances in that bag are

negative. The goal of the learner is to generate a hypothesis h : β → L to accurately

predict the label of a previously unseen bag.

In terms of image representations in the region-based retrieval, images are first seg-

mented into regions, where each of them is roughly homogeneous in color and texture and

characterized by a feature vector. Consequently, each image is represented by a collection
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of feature vectors. From the perspective of learning, the labels (positive or negative) are

directly associated with images instead of individual regions. It is reasonable to assume

that if an image is labeled as positive, at least one of its regions is of user interest. Intu-

itively, the basic idea is essentially identical to the MIL settings, where a bag refers to an

image; whereas an instance corresponds to a region. With the facilitation of MIL, it can

be expected to have a reasonably good query performance by discovering and applying

the query-related objects in the process and filtering out the irrelevant objects.

In this study, for the sake of accuracy, the real-valued MIL approach developed in

our earlier work [51] is adopted. The idea is to transfer the discrete label space L =

{0(Negative), 1(Positive)} to a continuous label space LR = [0, 1], where the value

indicates the degree of positive for a bag, with label ‘1’ being 100% positive. Therefore,

the goal of the learner is to generate a hypothesis hR : β → LR. Consequently, the label

of the bag (i.e., the degree of the bag being positive) can be represented by the maximum

of the labels of all its instances and Eq. 4.7 is then transformed as follows.

Yb = maxj{ybj} (4.8)

Let hI : α → LR be the hypothesis to predict the label of an instance, the relationship

between hypotheses hR and hI is depicted in Eq. 4.9.

Yb = hR(Bb) = maxj{ybj} = maxj{hI(Ibj)} (4.9)

Then the Minimum Square Error (MSE) criterion is used. That is, it tries to learn

the hypotheses hR and hI to minimize the following function.

S =
∑

b

(Yb − hR(Bb))
2 =

∑

b

(Yb −maxjhI(Ibj))
2. (4.10)

In this study, the Multilayer Feed-Forward Neural Network is adopted to represent

the hypothesis hI and the back-propagation learning method is used to train the neural

66



network to minimize S. More detailed discussion can be found in [51]. In the Experimental

Section, the structure and parameter settings of the neural network are discussed. To
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Figure 4.8: The Hierarchical Learning Framework.

some extent, the MIL approach can be considered as a hybrid of the RF technique and the

region-based retrieval. MIL intends to achieve better query results in the next round by

analyzing the training bag labels (i.e., user’s feedback), which resembles the RF concepts.
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Nevertheless, the main focus of MIL is to explore the region of users’ interest, which is

the reason that MIL can be classified as a region-based approach.

Hierarchical Learning Scheme

As discussed earlier, integrating the essential functionalities from both MMM and

MIL has potential in constructing a robust CBIR.

In this subsection, the basic idea and procedure of constructing the hierarchical learn-

ing framework (for short, MMM MIL framework) is presented by integrating these two

techniques for the MMIR system, which is illustrated in Fig. 4.8. As can be seen in this

figure, the MMM MIL framework consists of an off-line process which aims at extract-

ing the image and object-level features to obtain the MMM parameters, and an on-line

retrieval process. These two processes work closely with each other in the sense that the

off-line process prepares the essential data for the on-line process to reduce the on-line

processing time. In addition, the feedback provided in the on-line process can be accu-

mulated in the logs for the off-line process to update the MMM parameters periodically.

In this section, the focus is on the on-line retrieval process.

• Initial Query

In most of the existing CBIR systems, given a query image, the initial query re-

sults are simply computed by using a certain similarity function (e.g., Euclidean

distance, Manhattan distance, etc.) upon the low-level features either in the image

or the object level. For instance, in the general MIL framework, since there is no

training data available for the outset of the retrieval process, a simple distance-

based metric is applied to measure the similarity of two images [51]. Formally,

given a query image q with Rq regions (denoted as q = {qi}, i = 1, 2, ..., Rq),

its difference with respect to an image m consisting of Rm regions (denoted as

m = {mj}, j = 1, 2, ..., Rm) is defined as:
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Dist(q,m) =
∑

i

minj{|qi −mj|}. (4.11)

Here, |qi−mj| represents the distance between two feature vectors of regions qi and

mj. However, due to the semantic gap issue, it is highly possible that the number

of “positive” images retrieved in the initial run is relatively small (e.g., less than 5

positives out of the top 30 images). This lack of positive samples greatly hinders

the learning performance for most of the learning algorithms, including the NN-

based MIL approach discussed earlier. In contrast, MMM possesses the capability

of representing the general concepts in the query and outperforms the region-based

approach defined in Eq. 4.11 on the average. One exception, though, is that any

query image that has not been accessed before will force the MMM mechanism to

perform a similarity match upon the low-level image features as discussed in Section

4.2.1. In this case, the region-based approach will be applied as it captures more

completed information. Therefore, in the proposed hierarchical learning framework,

the initial query is carried out as illustrated in Fig. 4.8. It is worth noting that the

test of whether an image q has been accessed before (its access record) in the log

can be formally transformed to test whether
∑

j a(q, j) equals 0, where a(q, j) ∈ A.

• MMM MIL iteration

With the initial query results, the users are asked to provide the feedback for the

MMM MIL iteration, which is defined as an MIL process followed by MMM. The

basic idea is that based on the region of interest (e.g., instance Ip in image or bag

Bp) MIL learned for a specific user, the semantic network represented by MMM is

intelligently traversed to explore the images which are semantically related to Bp.

Obviously, it can be easily carried out by treating Bp as the query image and using

the algorithms described in Section 4.2.1.
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Specifically, if a group of positive bags (images) are identified, which is actually

the general case, the situation becomes relatively complicated in the sense that a

number of paths need to be traversed and the results are then aggregated to reach

the final outputs. Therefore, the extended MMM mechanism, MMM RF, is used

to solve this problem. The difference between MMM and MMM RF is that MMM

considers only the direct relationship between the query image q and the other

images in the database; whereas MMM RF adopts an additional relationship called

Indirectly related (RI) relationship which denotes the situation when two images

are connected to a common image. With the introduction of RI , the multiple

paths mentioned above can be effectively merged into a new path, where the same

dynamic programming based stochastic output process can be applied to produce

the final results (please refer to Section 4.2.1).

Experiments

To perform rigorous evaluation of the proposed framework, 9,800 real-world images

from the Corel image CDs were used, where every 100 images represent one distinct topic

of interest. Therefore, the data set contains 98 thematically diverse image categories,

including antique, balloon, car, cat, firework, flower, horse, etc., where all the images are

in JPEG format with size 384*256 or 256*384.

In order to evaluate the performance of the proposed MMIR system, the off-line

process needs to be carried out first, which includes feature extraction and query log

collection. In addition, the neural network structure for MIL should be defined before

the on-line process can be conducted.

• Image Representation.

Each image is represented by the color and texture features extracted from both

the image and object levels as discussed in Section 4.1.1 and 4.1.2, respectively.
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• Query Logs.

The collection of query logs is a critical process for learning the essential parameters

in this framework. Therefore, in MMIR, a group of 7 users were asked to create

the log information. The users were requested to perform query-by-example (QBE)

execution on the system and provide their feedback on the retrieved results.

In order to ensure that the logs cover a wide range of images, each time a query

image is randomly seeded from the image database and the system returns the top

30 ranked images by employing the region-based approach defined earlier. The user

then provides the feedback (positive or negative) on the images by judging whether

they are relevant to the query image. Such information is named as a query log

and is accumulated in the database. Currently, 896 query logs have been collected.

Though the users may give noisy information to the logs, it will not significantly

affect the learning performance as long as it only accounts for a small portion of

the query logs.

• Neural Network.

As discussed earlier, a three-layer Feed-Forward Neural Network is used to map an

image region with a low-level feature vector into the user’s high-level concept.

As can be seen from Fig. 4.9, the network consists of an input layer, a hidden

layer and an output layer. Here, the input layer contains 19 input units, where

each of them represents a low-level feature of an image region. Therefore, the

notations f1, f2, ..., f19 correspond to the 19 low-level features described previously.

The hidden layer is composed of 19 hidden nodes with wij being the weight of

the connection between the ith input unit Ii and the jth hidden node Hj (where

i, j = 1, 2, ..., 19). The output layer contains only one node, which outputs the

real value y ∈ LR = [0, 1] indicating the satisfactory level of an image region with

regard to a user’s concept. The weight between the output node and the jth hidden
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Figure 4.9: The three-layer Feed-Forward Neural Network.

node Hj is in turn denoted as wj. The Sigmoid function with slope parameter 1

is used as the activation function and the back-propagation (BP) learning method

is applied with a learning rate of 0.1 with no momentum. The initial weights for

all the connections (i.e., wij and wj) are randomly set with relatively small values

(e.g., in the range of [-0.1, 0.1]) and the termination condition of the BP algorithm

is defined as follows.

|S(k) − S(k−1)| < α× S(k−1). (4.12)

Here, S(k) denotes the value of S at the kth iteration and α is a small constant,

which is set to 0.005 in the experiment.

As usual, the performance measurement metric employed in the experiments is ac-

curacy, which is defined as the average ratio of the number of relevant images retrieved

over the number of total returned images (or called scope).

In order to evaluate the performance of the hierarchical learning framework (denoted

as MMM MIL), it is compared with the Neural Network based MIL technique with

relevance feedback (for short, MIL RF) which does not support the log-based retrieval.
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In addition, its performance is also compared with another general feature re-weighting

algorithm [94] with relevance feedback using both Euclidean and Manhattan distances,

denoted as RF Euc and RF Mah, respectively.
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Figure 4.10: MMIR Experimental Results.

Fifty query images are randomly issued. For each query image, the Initial query

results are first retrieved and then followed by two rounds of user feedback with regard
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to MIL RF, RF Euc and RF Mah algorithms. Correspondingly, besides the initial query,

one MMM MIL iteration is performed as each iteration consists of two rounds of feedback.

In the database log, totally 896 distinct queries have been recorded which are used by

MMM MIL. In addition, the region-level features used by MIL RF are the same as the

ones used by MMM MIL. Similarly, the image-level features used by RF Euc, RF Mah

and MMM MIL are also identical.

The accuracy within different scopes, i.e., the percentages of positive images within

the top 6, 12, 18, 24, and 30 retrieved images are calculated. The results are illustrated in

Fig. 4.10, where Figs. 4.10(a) and 4.10(b) show the initial query results and the second

query (or the first round of MMM MIL) results, respectively.

As can be seen from this figure, the accuracy of MMM MIL greatly outperforms

all the other three algorithms in all the cases. More specifically, with regard to the

initial query results (Fig. 4.10(a)), MMM MIL (represented by the red line) performs far

better than the remaining three algorithms with more than 10% difference in accuracy on

average, which demonstrates MMM’s strong capability in capturing the general concepts.

Furthermore, by comparing Fig. 4.10(a) and Fig. 4.10(b), it can be observed that

the MMM MIL results improve tremendously where the increment of the accuracy rate

reaches 30% on average. In contrast, the improvements of the other approaches are

relatively small (with the improvement of the accuracy rate ranging from 10% to 20%),

which indicates that MMM MIL can achieve an extremely fast convergence of the concept.

Conclusions

As an emerging topic, the application of the learning techniques in the CBIR system

has attracted increasing attention nowadays. With the aim of addressing the semantic

gap and the perception subjectivity issues, an advanced content-based image retrieval

system called MMIR is proposed in this section that is facilitated with a hierarchical

learning framework called MMM MIL. The proposed MMIR system utilizes the MMM
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mechanism to direct the focus on the image level analysis together with MIL technique

(with the Neural Network technique as its core) to real-time capture and learn the object-

level semantic concepts with some help of the user feedback. In addition, from a long-

term learning perspective, the user feedback logs are explored by MMM to speed up

the learning process and to increase the retrieval accuracy. As a result, the unique

characteristic of the proposed framework is that it not only possesses strong capabilities in

real-time capturing and learning of the object and image semantic concepts, but also offers

an effective solution to speed up the learning process. Comparative experiments with

the well-known learning techniques fully demonstrate the effectiveness of the proposed

MMIR system.

4.2.3 Inter-database Retrieval

The above-discussed approaches are mainly conducted on a single database level,

which is not sufficient to meet the increasing demand of handling efficient image database

retrieval in a distributed environment. In addition, in the traditional database research

area, data clustering places related or similar valued records or objects in the same page

on disks for performance purposes. However, due to the autonomous nature of each

image database, it is not realistic to improve the performance of databases by actually

moving around the databases.

In response to these issues, the MMM mechanism is further extended to enable im-

age database clustering and cluster-based image retrieval for efficiency purposes [106].

In particular, the work is proposed to use MMMs for the construction of probabilistic

networks via the affinity mining process, to facilitate the conceptual database clustering

and the image retrieval process at both intra-database and inter-database levels. It is a

unified framework in the sense that the same mechanism (MMM) is utilized at different

hierarchies (local image databases and image database clusters) to build probabilistic net-

works which represent the affinity relations among images and databases. The proposed
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database clustering strategy fully utilizes the information contained in the integrated

probabilistic networks, and partitions the image databases into a set of conceptual im-

age database clusters without physically moving them. Essentially, since a set of image

databases with close relationships are put in the same image database cluster and are re-

quired consecutively on some query access path, the number of platter (cluster) switches

for data retrieval with respect to the queries can be reduced.

The core of the proposed framework is the MMM mechanism that facilitates concep-

tual database clustering to improve the retrieval accuracy. An MMM-based conceptual

clustering strategy consists of two major steps: 1) calculating the similarity measures

between every two image databases, and 2) clustering databases using the similarity

measures. Here, two image databases are said to be related if they are accessed together

frequently or contain similar images. In the first step, a local probabilistic network is

built to represent the affinity relationships among all the images within each database,

which is modeled by a local MMM and enables accurate image retrieval at the intra-

database level, which has been discussed above and will not be covered in this section.

The second step is the proposed conceptual clustering strategy that fully utilizes the

parameters of the local MMMs to avoid the extra cost of information summarization,

which may be unavoidable in other clustering methods. In our previous work [106], a

thorough comparative study has been conducted, in which the MMM mechanism was

compared with several clustering algorithms including single-link, complete-link, group-

average-link, etc. The experimental results demonstrated that MMMs produce the best

performance in general-purpose database clustering. However, it cannot be directly ap-

plied to image database clustering because: 1) image data have special characteristics

that are quite different from numerical/textual data; and 2) image database queries are

different from traditional database queries in that they may involve users subjective

perceptions in the retrieval process.
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In this study, the general MMM-based clustering strategy is further extended to

handle image database clustering. For each image database cluster, an inter-database

level probabilistic network, represented by an integrated MMM, is constructed to model

a set of autonomous and interconnected image databases in it, which serves to reduce

the cost of retrieving images across the image databases and to facilitate accurate image

retrieval within the cluster.

Calculating the Similarity Measures

The conceptual image database clustering strategy is to group related image databases

in the same cluster such that the intra-cluster similarity is high and the inter-cluster

similarity is low. Thus, a similarity measure needs to be calculated for each pair of image

databases in the distributed database system. These similarity measures indicate the

relationships among the image databases and are then used to partition the databases

into clusters.

Let di and dj be two image databases, and X = {x1, ..., xk1} and Y = {y1, ..., yk2}
be the set of images in di and dj, where k1 and k2 are the numbers of the images in

X and Y , respectively. Let Nk = k1 + k2 and Ok = {o1, ..., oNk} be an observation set

with the features belonging to di and dj and generated by query qk, where the features

o1, ..., ok1 belong to di and ok1+1, ..., oNk belong to dj. Assume that the observation set

Ok is conditionally independent given X and Y , and the sets X ∈ di and Y ∈ dj are

conditionally independent given di and dj. The similarity measure S(di, dj) is defined in

following equation.

S(di, dj) = (
∑

Oi⊂OS

P (Ok|X,Y ; di, dj)P (X, Y ; di, dj))F (Nk) (4.13)

where P (X, Y ; di, dj) is the joint probability of X ∈ di and Y ∈ dj, and P (Ok|X,Y ; di, dj)

is the probability of occurrence of Ok given X in di and Y in dj. They are in turn defined

as follows:
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P (Ok|X, Y ; di, dj) = Πk1
u=1P (ou|xu)Π

Nk
v=k1+1P (ov|yv−k1) (4.14)

P (X, Y ; di, dj) = Πk1
u=2P (xu|xu−1)Π

Nk
v=k1+2P (yv−k1|yv−k1−1)P (y1) (4.15)

In Eq. 4.14, P (ou|xu) (or P (ov|yv−k1)) represents the probability of observing a feature

ou (or ov) from an image xu (or yv−k1), which as discussed earlier is captured in matrix

B of an individual database. In Eq. 4.15, P (xu|xu−1) (or P (yv−k1|yv−k1−1) indicates the

probability of retrieving an image xu (or yv−k1) given the current query image as xu−1 (or

yv−k1−1), which is represented by the semantic network as introduced above. P (x1) (or

P (y1)) is the initial probability contained in Π, which is called the initial state probability

distribution and indicates the probability that an image can be the query image for the

incoming queries and is defined as follows.

Π = {πm} =

q∑

k=1

usem,k/

N∑

l=1

q∑

k=1

usel,k (4.16)

Here, N is the number of images in an image database di and parameter use is access

pattern as defined in Section 4.1.3. Therefore, the similarity values can be computed

for each pair of image databases based on the MMM parameters of each individual

database (for short, local MMMs). Then a probabilistic network is built with each image

database represented as a node in it. For nodes di and dj in this probabilistic network,

the branch probability Pi,j is transformed from the similarity value S(di, dj). Here, the

transformation is performed by normalizing the similarity values per row to indicate the

branch probabilities from a specific node to all its accessible nodes.

Clustering Image Databases

Based on the probability distributions for the local MMMs and the probabilities

Pi,j for the probabilistic network, the stationary probability φi for each node i of the
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probabilistic network is computed from Pi,j, which denotes the relative frequency of

accessing node i (the ith image database, or di) in the long run.

∑
i φi = 1

φj =
∑

i φiPi,j, j = 1, 2, ...

The conceptual image database clustering strategy is traversal based and greedy.

Conceptual image database clusters are created according to the order of the stationary

probabilities of the image databases. The image database that has the largest stationary

probability is selected to start a new image database cluster. While there is room in

the current cluster, all image databases accessible in the probabilistic network from the

current member image databases of the cluster are considered. The image database with

the next largest stationary probability is selected and the process continues until the

cluster fills up. At this point, the next un-partitioned image database from the sorted

list starts a new image database cluster, and the whole process is repeated until no un-

partitioned image databases remain. The time complexity for this conceptual database

clustering strategy is O(plogp) while the cost of calculating the similarity matrix is O(p2),

where p is the number of image databases. The size of each image database cluster is

predefined and is the same for all image database clusters.

Construction of the Integrated MMMs

As discussed earlier, each image database is modeled by a local MMM. Another level of

MMMs (called integrated MMMs) is also constructed in the proposed framework, which

is used to represent the conceptual image database cluster to model a set of autonomous

and interconnected image databases within it and to reduce the cost of retrieving images

across image databases and to facilitate accurate image retrieval. The cluster-based

image retrieval is then supported by using the integrated MMM.

For any images s and t in a conceptual image database cluster CC, the formulas to

calculate A are defined in Definition 4.5. Here, it is assumed that CC contains two or
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more image databases; otherwise, A is calculated the same as the one defined for a single

image database.

Definition 4.5. Let λi and λj denote two local MMMs for image databases di and

dj, where j 6= i and λi, λj ∈ CC.

• ps,t = fs,t/
∑

n∈CC fs,n = the probability that λi goes to λj with respect to s and t;

where fs,t are defined similarly as aff m, n in Definition 4.2, except that they are

calculated in CC instead of a single image database;

• ps = 1−∑
t/∈λi

ps,t = the probability that λi stays with respect to s;

• as,t = the conditional probability of a local MMM;

• a
′
s,t = the state transition probability of an integrated MMM, where if s, t ∈ λi ⇒

a
′
s,t = psas,t, and if s ∈ λi ∧ t /∈ λi ⇒ a

′
s,t = ps,t;

A is obtained by repeating the above steps for all local MMMs in CC. As for B and

Π in the integrated MMM, the construction methods are similar to those for local MMM,

except that the image scope is defined in the cluster CC.

Once the integrated MMMs are obtained, content-based retrieval can be conducted

at the image database cluster level similarly as defined in Definition 4.3 and then the

similarity function is defined as:

SS(q, i) =
T∑

t=1

Wt(q, i) (4.17)

SS(q, i) represents the similarity score between images q and i, where a larger score

suggests higher similarity. Note that the same retrieval algorithms can be applied to

image retrieval at both local database and database cluster levels by using local or inte-

grated MMMs. Its effectiveness in image retrieval at the local database level have been

demonstrated in [99]. In this study, the effectiveness of the proposed framework in con-

ceptual image database clustering and inter-database level image retrieval is examined.
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Experimental Results

To show the effectiveness of image retrieval in conceptual image database clusters,

12 image databases with a total of 18,700 images (the number of images in each image

database ranges from 1,350 to 2,250) are used. Affinity-based data mining process is

conducted utilizing the training data set, which contains the query trace generated by

1,400 queries issued to the image databases. The proposed conceptual image database

clustering strategy is employed to partition these 12 image databases into a set of image

database clusters. Here, the size of the conceptual image database cluster is set to 4,

which represents the maximal number of member image databases a cluster can have.

As a result, 3 clusters are generated with 6,450, 5,900 and 6,350 images, respectively.

The performance is tested by issuing 160 test queries to these 3 clusters (51, 54 and 55

queries, respectively). For comparison, an image database (namely DB whole) with all

the 18,700 images is constructed and tested by the same set of the queries.

Figure 4.11 shows the comparison results, where the scope specifies the number of

images returned and the accuracy at a scope s is defined as the ratio of the number of

the relevant images within the top s images. In this Figure, ‘MMM Cluster represents

the retrieval accuracy achieved by issuing queries to each of the database clusters, while

‘MMM Serial denotes the results of carrying out the search throughout the DB whole

image database. For instance, ‘MMM Cluster and ‘MMM Serial in Fig. 4.11(b)

represent the results obtained by issuing 51 queries to cluster 1 and DB whole, respec-

tively. As shown in this figure, the accuracy of ‘MMM Cluster is slightly worse than

‘MMM Serial, which is reasonable because ‘MMM Cluster carries out the search in a

subspace of DB whole. Considering that the search space is reduced at about one third

of the whole space and the image retrieval is conducted at the inter-database level, the

effectiveness of the proposed framework in both conceptual image database clustering

and content-based image retrieval is obvious. By using the conceptual image database
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Figure 4.11: Performance comparison.

clusters, the query cost can be reduced dramatically (almost 1/3) without significant

decreases in accuracy (averagely 3%).

Conclusions

In this section, Markov Model Mediators (MMMs), a mathematically sound frame-

work, is extended to facilitate both the conceptual image database clustering and the

cluster-based content-based image retrieval. The proposed framework takes into consider-

ation both the efficiency and effectiveness requirements in content-based image retrieval.

An effective database clustering strategy is employed in the framework to partition the

image databases into a set of conceptual image database clusters, which reduces the query
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cost dramatically without decreasing the accuracy significantly. In addition, the affinity

relations among the images in the databases are explored through the data mining pro-

cess, which capture the users concepts in the retrieval process and significantly improve

the retrieval accuracy.
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CHAPTER 5

Data Management for Video Database

With the proliferation of video data, there is a great need for advanced techniques for

effective video indexing, summarization, browsing, and retrieval. In terms of modeling

and mining videos in a video database system, there are two widely used schemes - shot-

based approach and object-based approach. The shot-based approach divides a video

sequence into a set of collections of video frames with each collection representing a

continuous camera action in time and space, and sharing similar high-level features (e.g.,

semantic meaning) as well as similar low-level features like color and texture. In the

object-based modeling approach, temporal video segments representing the life-span of

the objects as well as some other object-level features are used as the basic units for

video mining. Object-based modeling is best suitable where a stationary camera is used

to capture a scene (e.g., video surveillance applications). However, the video sequences

in most of the applications (such as sports video, news, movies, etc.) typically consists

of hundreds of shots, with their durations ranging from seconds to minutes.

In addition, the essence of the video is generally represented by important activities

or events, which are of users’ interests in most cases. This dissertation thus aims to offer

a novel approach for event-level indexing and retrieval. Since shot is normally regarded

as a self-contained unit, it is reasonable to define the event at the shot-level. Therefore,

a shot-based approach is adopted in the proposed framework in terms of video data

management. It is worth noting that the state-of-the-art event detection frameworks are

generally conduced toward the videos with loose structures or without story units, such as

sports videos, surveillance videos, or medical videos [148]. In this chapter, an intelligent

shot boundary detection algorithm is briefly introduced followed by the discussions of

shot-level video data representation, indexing and retrieval. Similar to the organization

of Chapter 4, the focus of this chapter is on the mid-level representation to bridge the
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Figure 5.1: The multi-filtering architecture for shot detection.

semantic gap and high-level video indexing which is based on the event detection. Due

to its popularity, soccer videos are selected as the test bed in this chapter. In addition,

this framework can be further extended for concept extraction as will be discussed later,

where the concepts refer to high-level semantic features, like “commercial,” “sports,” etc.

[117]. The concept extraction schemes are largely carried out on the news videos which

have content structures. One of the typical driven forces is the creation of the TRECVID

benchmark by National Institute of Standards and Technology, which aims to boost the

researches in semantic media analysis by offering a common video corpus and a common

evaluation procedure. In addition, an expanded multimedia concept lexicon is being

developed by the LSCOM workshop [73] on the order of 1000.

5.1 Video Shot Detection

Video shot change detection is a fundamental operation used in many multimedia

applications involving content-based access to video such as digital libraries and video

on demand, and it is generally performed prior to all other processes. Although shot

detection has a long history of research, it is not a completely solved problem [46],

especially for sports videos. According to [32], due to the strong color correlation between

soccer shots, a shot change may not be detected since the frame-to-frame color histogram
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difference is not significant. Secondly, camera motions and object motions are largely

present in soccer videos to track the players and the ball, which constitute a major source

of false positives in shot detection. Thirdly, the reliable detection of gradual transitions,

such as fade in/out, is also needed for sports videos. The requirements of real-time

processing need to be taken into consideration as it is essential for building an efficient

sports video management system. Thus, a three-level filtering architecture is applied for

shot detection, namely pixel-histogram comparison, segmentation map comparison, and

object tracking as illustrated in Fig. 5.1. The pixel-level comparison basically computes

the differences in the values of the corresponding pixels between two successive frames.

This can, in part, solve the strong color-correlation problem because the spatial layout

of colors also contributes to the shot detection.

However, though simple as it is, it is very sensitive to object and camera motions.

Thus, in order to address the second concern of camera/object motions, a histogram-

based comparison is added to pixel-level comparison to reduce its sensitivity to small

rotations and slow variations. However, the histogram-based method also has problems.

For instance, two successive frames will probably have the similar histograms but with

totally different visual contents. On the other hand, it has difficulty in handling the false

positives caused by the changes in luminance and contrast.

The reasons of combining the pixel-histogram comparison in the first level filtering are

two folds: 1) Histogram comparison can be used to exclude some false positives due to the

sensitivity of pixel comparison, while it would not incur much extra computation because

both processes can be done in one pass for each video frame. The percentage of changed

pixels (denoted as pixel change) and the histogram difference (denoted as histo change)

between consecutive frames, obtained in pixel level comparison and histogram comparison

respectively, are important indications for camera and object motions and can be used

to extract higher-level semantics for event mining. 2) Both of them are computationally
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(a) (b)

Figure 5.2: An example segmentation mask map. (a) An example soccer video frame;
(b) the segmentation mask map for (a)

simple. By applying a relatively loose threshold, it can be ensured that most of the correct

shot boundaries will be included, and in the meanwhile, a much smaller candidate pool

of shots is generated at a low cost.

Since the object segmentation and tracking techniques are much less sensitive to lumi-

nance change and object motion, the segmentation map comparison and object tracking

processes are implemented based on an unsupervised object segmentation and tracking

method proposed in our previous work [15][16].

Specifically, the WavSeg segmentation algorithm introduced in Section 4.1.2 for object-

level feature extraction in image database can be applied upon the video frame (a still

image) for the purpose of segmentation map comparison and object tracking. Based on

the frame segmentation result, the segmentation mask map, which contains significant

objects or regions of interest, can be extracted from that video frame. In this study,

the pixels in each frame are grouped into different classes (for example, 2 classes), cor-

responding to the foreground objects and background areas. Then two frames can be

compared by checking the differences between their segmentation mask maps. An exam-

ple segmentation mask map is given in Fig. 5.2. The segmentation mask map comparison
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is especially effective in handling the fade in/out effects with drastic luminance changes

and flash light effects [17]. Moreover, in order to better handle the situation of camera

panning and tilting, the object tracking technique based on the segmentation results is

used as an enhancement to the basic matching process. Since the segmentation results

are already available, the computation cost for object tracking is almost trivial compared

to the manual template-based object tracking methods. It needs to be pointed out that

there is no need to do object segmentation for each pair of consecutive frames. Instead,

only the shots in the small candidate pool will be fed into the segmentation process. The

performance of segmentation and tracking is further improved by using incremental com-

putation together with parallel computation [144]. The time for segmenting one video

frame ranges from 0.03∼0.12 second depending on the size of the video frames and the

computer processing power.

In essence, the basic idea for this algorithm is that the simpler but more sensitive

checking steps (e.g., pixel-histogram comparison) are first carried out to obtain a candi-

date pool, which thereafter is refined by the methods that are more effective but with a

relatively higher computational cost.

5.2 Video Data Representation

Sports video analysis, especially sports events detection, has received a great deal

of attention [28][32][53][139] because of its great commercial potentials. As reviewed in

Chapter 2, most existing event detection approaches are carried out in a two-step proce-

dure, that is, to extract the low-level descriptors in a single channel (called unimodal) or

multiple channels (called multimodal) and to explore the semantic index from the low-

level descriptors using the decision-making algorithm. The unimodal approach utilizes

the features of a single modality, such as visual [38][134], audio [133], or textual [140], in

soccer highlights detection. For example, [123] proposed a method to detect and localize

the goal-mouth in MPEG soccer videos. The algorithm in [67] took advantage of motion
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descriptors that are directly available in MPEG format video sequences for event detec-

tion. In terms of the audio mode, the announcer’s excited speech and ball-bat impact

sound were detected in [93] for baseball game analysis. For the textual mode, the key

words were extracted from the closed captions for detecting events in American football

videos [2]. However, because the content of a video is intrinsically multimodal, in which

the semantic meanings are conveyed via visual, auditory, and textual channels, such uni-

modal approaches have their limitations. Currently, the integrated use of multimodal

features has become an emerging trend in this area. In [28], a multimodal framework

using combined audio, visual, and textual features was proposed. A maximum entropy

method was proposed in [44] to integrate image and audio cues to extract highlights from

baseball video.

Though multimodal analysis shows promise in capturing more complete information

from video data, it remains a big challenge in terms of detecting semantic events from

low-level video features due to the well-known semantic gap issue. Intuitively, low-level

descriptors alone are generally not sufficient to deliver comprehensive video content.

Furthermore, in many applications, the most significant events may happen infrequently,

such as suspicious motion events in surveillance videos and goal events in soccer videos.

Consequently, the limited amount of training data poses additional difficulties in detect-

ing these so-called rare events. To address these issues, it is indispensable to explore

multi-level (low-level, mid-level and high-level) video data representations and intelli-

gently employ mid-level and knowledge-assisted data representation to fill the gap. In this

section, the extraction of low-level feature and mid-level descriptors will be introduced.

In terms of knowledge-assisted data representation, its main purpose is to largely relax

the framework’s dependence upon the domain knowledge and human efforts, which is one

of the ultimate goals for intelligent data management/retrieval and requires tremendous

research efforts. For clarity, Chapter 6 is dedicated to this topic.
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In essence, the proposed video event detection framework introduced in this section

is shot-based, follows the three-level architecture [31], and proceeds with three steps:

low-level descriptor extraction, mid-level descriptor extraction, and high-level analysis.

Low-level descriptors, such as generic visual and audio descriptors are directly extracted

from the raw video data, which are then used to construct a set of mid-level descrip-

tors including the playfield descriptor (field/grass ratio in soccer games), camera view

descriptors (global views, medium views, close-up views, and outfield views), corner view

descriptors (wide corner views and narrow corner views), and excitement descriptors.

Both of the two modalities (visual and audio) are used to extract multimodal descrip-

tors at low- and mid-level as each modality provides some cues that correlate with the

occurrence of video events.

5.2.1 Low-level Multimodal Features

In the proposed framework, multimodal features (visual and audio) are extracted for

each shot [9] based on the shot boundary information obtained in the Section 5.1.

Visual Feature Descriptors Extraction

In fact, not only can the proposed video shot detection method detect shot bound-

aries, but also produce a rich set of visual features associated with each video shot. For

examples, the pixel-level comparison can produce the percent of changed pixels between

consecutive frames, while the histogram comparison provides the histogram differences

between frames, both of which are very important indications for camera and object

motions. In addition, the object segmentation can further be analyzed to provide cer-

tain region-related information such as foreground/background areas. With these ad-

vantages brought by video shot detection, a set of shot-level visual feature descriptors

are extracted for soccer video analysis and indexing, namely pixel change, histo change,

class1 region mean, class1 region var, class2 region mean, and class2 region var. Here,

pixel change denotes the average percentage of the changed pixels between the consec-
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Figure 5.3: Framework architecture.

utive frames within a shot. Similarly, histo change represents the mean value of the

frame-to-frame histogram differences in a shot. Obviously, as illustrated in Fig. 5.3,

pixel change and histo change can be obtained simultaneously and at a low cost dur-

ing the video shot detection process. As mentioned earlier, both features are important

indicators of camera motion and object motion.

In addition, as mentioned earlier, by using the WavSeg unsupervised object segmen-

tation method, the significant objects or regions of interests as well as the segmentation

mask map of a video frame can be automatically extracted. In such a way, the pixels in

each frame are grouped into different classes (in this case, 2 classes called class1 region

and class2 region marked with gray and white, respectively, as shown in Fig. 5.2(b)) for

region-level analysis. Intuitively, features class1 region mean (class2 region mean) and

class1 region var (class2 region var) represents the mean value and standard deviation
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of the pixels that belong to class1 region (class2 region) for the frames in a shot. In this

study, the calculation of such features is conducted in the HSI (Hue-Saturation-Intensity)

color space.

Audio Feature Descriptor Extraction

Extracting effective audio features is essential in achieving a high distinguishing power

in audio content analysis for video data. A variety of audio features have been proposed

in the literature for audio track characterization [72][125]. Generally, they fall into two

categories: time domain and frequency domain. Considering the requirements of specific

applications, the audio features may be extracted at different granularities such as frame-

level and clip-level. In this section, several features are described that are especially useful

for classifying audio data.

 

0  0.25  0.5  0.75  1  1.25  1.5  1.75 
x 10 4 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

Sample nu mber  

S(n) 

1 clip (1 second long: 16000 samples) 

1st frame (512 sa mples) 

2nd frame   
(512 samples, shifted by 384 samples)  
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Figure 5.5: Volume of audio data.

The proposed framework exploits both time-domain and frequency-domain audio fea-

tures. In order to investigate the comprehensive meaning of an audio track, the features

representing the characteristics of a comparable longer period are necessary. In this work,

both clip-level features and shot-level features are explored, which are obtained via the

analysis of the finer granularity features such as frame-level features. In this framework,

the audio signal is sampled at 16,000 Hz, i.e., 16,000 audio samples are generated for a

one-second audio track. The sample rate is the number of samples of a signal that are

taken per second to represent the signal digitally. An audio track is then divided into

clips with a fixed length of one second. Each audio feature is first calculated on the

frame-level. An audio frame is defined as a set of neighboring samples which lasts about

10∼40ms. Each frame contains 512 samples shifted by 384 samples from the previous

frame as shown in Fig. 5.4. A clip thus includes around 41 frames. The audio feature

analysis is then conducted on each clip (e.g., an audio feature vector is calculated for

each clip).

The generic audio features utilized in this framework can be broadly divided into

three groups: volume related, energy related, and Spectrum Flux related features.

93



• Feature 1: Volume

Volume is one the most frequently used and the simplest audio features. As an

indication of the loudness of sound, volume is very useful for soccer video analysis.

Volume values are calculated for each audio frame. Fig. 5.5 depicts samples of

two types of sound tracks: speech and music. For speech, there are local minima

which are close to zero interspersed between high values. This is because when

we speak, there are very short pauses in our voice. Consequently, the normalized

average volume of speech is usually lower than that of music. Thus, the volume

feature will help not only identify exciting points in the game, but also distinguish

commercial shots from regular soccer video shots. According to these observations,

four useful clip-level features related to volume can be extracted: 1) average volume

(volume mean), 2) volume std, the standard deviation of the volume, normalized

by the maximum volume, 3) volume stdd, the standard deviation of the frame to

frame difference of the volume, and 4) volume range, the dynamic range of the

volume, defined as (max(v)−min(v))/max(v).

• Feature 2: Energy

Short time energy means the average waveform amplitude defined over a specific

time window. In general, the energy of an audio clip with music content has

a lower dynamic range than that of a speech clip. The energy of a speech clip

changes frequently from high peaks to low peaks. Since the energy distribution in

different frequency bands varies quite significantly, energy characteristics of sub-

bands are explored as well. Four energy sub-bands are identified, which cover,

respectively, the frequency interval of 1Hz-(fs/16)Hz, (fs/16)Hz-(fs/8)Hz, (fs/8)Hz-

(fs/4)Hz and (fs/4)Hz-(fs/2)Hz, where fs is the sample rate. Compared to other

sub-bands, sub-band1 (1Hz-(fs/16)Hz) and sub-band3 ((fs/8)Hz-(fs/4)Hz) appear

to be most informative. Several clip-level features over sub-band1 and sub-band3
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are extracted as well. Thus, the following energy-related features are extracted from

the audio data: 1) energy mean, the average RMS (Root Mean Square) energy, 2)

The average RMS energy of the first and the third subbands, namely sub1 mean

and sub3 mean, respectively, 3) energy lowrate, the percentage of samples with the

RMS power less than 0.5 times of the mean RMS power, 4) The energy-lowrates

of the first sub-band and the third band, namely sub1 lowrate and sub3 lowrate,

respectively, and 5) sub1 std, the standard deviation of the mean RMS power of

the first sub-band energy.

• Feature 3: Spectrum Flux

Spectral Flux is defined as the squared difference of two successive spectral am-

plitude vectors. Spectrum flux is often used in quick classification of speech and

non-speech audio segments. In this study, the following Spectrum Flux related

features are explored: 1) sf mean, the mean value of the Spectrum Flux, 2) the

clip-level features sf std, the standard deviation of the Spectrum Flux, normalized

by the maximum Spectrum Flux, 3) sf stdd, the standard deviation of the differ-

ence of the Spectrum Flux, which is also normalized, and 4) sf range, the dynamic

range of the Spectrum Flux. Please note that the audio features are captured at dif-

ferent granularities: frame-level, clip-level, and shot-level, to explore the semantic

meanings of the audio track. Totally, 15 generic audio features are used (4 volume

features, 7 energy features, and 4 Spectrum Flux features) to form the audio feature

vector for a video shot.

5.2.2 Mid-level Data Representation

Low-level audio-visual feature descriptors can be acquired directly from the input

video data in (un)compressed domain. However, due to their limited capabilities in

presenting the semantic contents of the video data, it is a traditionally open problem

to establish the mappings between the low-level feature descriptors and semantic events.
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Building mid-level descriptions is therefore considered as an effective attempt to address

this problem [137]. Therefore, once the proper low-level visual and audio features have

been extracted, a group of mid-level descriptors are introduced which are deduced from

low-level feature descriptors and are motivated by high-level inference. Such mid-level

descriptors offer a reasonable tradeoff between the computational requirements and the

resulting semantics. In addition, the introduction of the mid-level descriptors allows

the separation of sports-specific knowledge and rules from the extraction of low-level

feature descriptors and offers robust and reusable representations for high-level semantic

analysis using customized solutions. The aforementioned idea is illustrated in Fig. 5.7.

In this work, four kinds of mid-level descriptors are extracted to represent the soccer

video contents.

Field Descriptor

In sports video analysis, playfield detection generally serves as an essential step in

determining other critical mid-level descriptors as well as some sport highlights. In

soccer video analysis, the issue is defined as grass area detection. As can be seen from

Fig. 5.6 (a)-(b), a large amount of grass areas are present in global shots (including

goal shots), while fewer or hardly any grass areas are present in the mid- or the close-up

shots (including the cheering shots following the goal shots). However, it is a challenge

to distinguish the grass colors from others because the color values may change under

different lighting conditions, different play fields, different shooting scales, etc. The

method proposed in [38] relies on the assumption that the play field is always green in

order to extract the grass areas, which is not always true for the reasons mentioned above.

In [113], the authors addressed this issue by building a table with candidate grass color

values. As a more robust solution, the work in [32] proposed to use the dominant color

based method to detect grass areas, which does not assume any specific value for the

play field color. However, the initial field color in [32] is obtained in the learning process
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             (a) frame 1                 (b) frame 2              (c) frame 3

Figure 5.8: Three example video frames and their segmentation mask maps.

by observing only a few seconds of a soccer video. Thus, its effectiveness largely depends

on the assumption that the first few seconds of video are mainly field play scenes. It

also assumes that there is only a single dominant color indicating the play field, which

fails to accommodate variations in grass colors caused by different camera shooting scales

and lighting conditions. In this study, an advanced strategy in grass area detection is

adopted, which is conducted in three steps as given below.

• Step 1: Extract possible grass areas

The first step is to distinguish the possible grass areas from the player/audience

areas, which is achieved by examining the segmentation mask maps of a set of

video frames, S, extracted at 50-frame interval for each shot. Compared to the

non-grass areas, the grass areas tend to be much smoother in terms of color and

texture distributions. Motivated by this observation, for each frame, a comparison

is conducted between class1 region var and class2 region var, where the class with

the smaller value is considered as the background class and its mean value and

standard deviation are thus called background mean and background var, respec-
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tively. Correspondingly, the other class is regarded as foreground. Three sample

video frames and their corresponding segmented mask maps are shown in Fig. 5.8,

where the background and foreground areas are marked with dark gray and light

gray, respectively.

As shown in Fig. 5.8, the grass areas tend to correspond to the background areas

(see Figs. 5.8(b) and 5.8(c)) due to the low variance values. On the other hand,

for those frames with no grass area (e.g., Fig. 5.8(a)), the background areas are

much more complex and may contain crowd, sign board, etc., which results in

higher background var values. It is worth mentioning that all the features used

in this work are normalized in the range of [0,1]. Therefore, a background area is

considered as a possible grass area if its background var is less than Tb, which can

be determined by statistical analysis of the average variation of field pixels. Thus,

grass ratio approx is defined as the ratio of the possible grass area over the frame

size. Note that the value of grass ratio approx is an approximate value, which will

be utilized in step 2 to select the reference frames and will be refined in step 3.

• Step 2: Select reference frames to learn the field colors

The reference frames are critical in learning the field colors. An ideal set of reference

frames should contain a relatively high percentage of play field scenes with large

grass ratios. Therefore, instead of selecting the reference frames blindly, in this

work, the reference frames are selected from the shots with their grass ratio approx

greater than Tgrass. Here Tgrass is set to the mean value of the grass ratio approx

across the whole video clip. Since the feature background mean represents the

mean color value of each possible grass area, the color histogram is then calculated

over the pool of the possible field colors collected for a single video clip. The actual

play field colors are identified around the histogram peaks. It is not sufficient to

have a single dominant color corresponding to the field color for a soccer video.
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Hence, multiple histogram peak values are used as the field colors to accommodate

the varied field/lighting conditions and the color differences caused by different

shooting scales using the approach discussed in [11].

• Step 3: Refine grass ratio values

Once the play field colors are identified, the refining of the grass ratio value for

a video shot is straightforward. In brief, for each segmented frame in S, the field

pixels are detected from the background areas and thus its grass ratio approx can

be refined to yield the accurate shot-level grass ratio values. Note that since the

background areas have been detected in step 1, the computational cost of this step

is quite low. Similarly, data normalization is done within each video sequence.

In summary, the detected grass ratio acts as the field descriptor which facilitates the

extraction of some other mid-level descriptors (i.e., camera view descriptor and corner

view descriptor to be discussed below) as well as the semantic event detection. It is also

worth noting that by deducing grass ratio at the region-level, the problem is resolved that

the non-grass areas (e.g., sign boards, player clothes, etc.) may have close-to grass color,

which fails to be addressed in most of the existing works. It is worth noting that the

proposed grass area detection method is unsupervised and the grass values are learned

through unsupervised learning within each video sequence. Therefore it is invariant to

different videos.

The major theoretical advantages of the proposed approach are summarized as follows.

• The proposed method allows the existence of multiple dominant colors, which is

flexible enough to accommodate variations in grass colors caused by different cam-

era shooting scales and lightning conditions.

• In the learning process, the proposed method adopts an automated and robust

approach to choose the appropriate reference frames for the learning process.
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     (a) Global view         (b) Close view          (c) Close view

Figure 5.9: Example camera view.

Table 5.1: Camera view descriptor.

CVD Condition Thresholds
Outfield grass ratio < To To = 0.05
Global grass ratio ≥ Tg1 ∧ Max o <

STg2

Tg1 = 0.4, Tg2 = 0.05

Close (grass ratio < Tc1∨ Max o > Tc2)
∧ grass ratio > To

Tc1 = 0.4, Tc2 = 0.25, T0 = 0.05

Medium Otherwise

Camera View Descriptor

In the literature, various approaches have been proposed for camera view classifica-

tion. Most of the existing studies utilize grass ratio as an indicator of the view types,

assuming that a global view (e.g., Fig. 5.9(a)) has a much greater grass ratio value than

that of a close view (e.g., Fig. 5.9(b)) [120]. However, close view shots such as the one

shown in Fig. 5.9(c) could have large grass ratio values. Thus, the use of grass ratio

alone can lead to misclassifications. In contrast, Tong et al. [119] proposed to determine

the shot view via the estimation of the object size in the view. However, it is usually

difficult to achieve accurate object segmentation, especially with the existence of object

occlusions as shown in Fig. 5.9(b).

To address these issues, in this study, a hierarchical shot view classification scheme is

proposed as illustrated in Fig. 5.10. As can be seen from this figure, grass ratio values

act as the major criterion in differentiating the outfield views and infield views. Then
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the infield views are further categorized into close views, medium views and global views

using the grass ratio value coupled with the object size in the playfield. The reasons for

such a setting are twofold. First, a further classification of outfield views normally fails

to yield more useful information to serve users’ interests. Thus, to simplify the problem,

only the infield views are further analyzed. Second, it is relatively easy to detect the

grass area as opposed to the object detection due to its homogeneous characteristic, and

the proposed playfield segmentation scheme can yield quite promising results. Therefore,

the grass ratio value serves as the primary differentiating factor with the facilitation of

roughly estimated foreground object size in the playfield area. In brief, the foreground

object with the maximal size in the field is identified, and Max O is calculated to denote

the ratio of its area versus the frame size. The camera view descriptor is then defined as

shown in Table 5.1.

Currently, the thresholds are defined empirically. A statistical analysis or data clas-

sification approach might help in this manner.
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    (a)  (b)         (c)

     

Figure 5.11: Example corner events.

Corner View Descriptor

A corner view is defined as to have at least one corner visible in the scene. The reason

for defining the corner view lies in the fact that a large number of exciting events belong

to corner events such as corner-kicks, free-kicks near the penalty box, and line throws

from the corner (see examples in Fig. 5.11), which grants the opportunity for one team to

dominate the other and possibly leads to a goal event. It is obvious that the identification

of corner views can greatly benefit corner event detection. In [137], the so-called shape

features ls (slope of top left boundary), rs (slope of right boundary), bs (slope of bottom

boundary) and cp (corner position) were defined. However, it is not discussed in the

paper as how such features can be extracted. In fact, due to the complicated visual

contents in the videos, it remains an open issue to detect the field lines accurately, not

to mention the attempt to label the field line correctly as left, right or bottom boundary.

In this study, a simpler yet effective approach for corner views detection proposed in our

previous work [10] is adopted. The basic idea is that though the minor discrepancy or

noise contained in the segmentation mask map might deteriorate the performance of the

direct identification of the corner point, the adverse effect of the bias can be compensated

and thus reduced by intelligently examining the size of the grass area and audience area

for the purpose of corner point detection. Detailed discussion can be found in [10].
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Excitement descriptor

Different from the visual effects, the sound track of a video does not necessarily show

any significant change at the shot boundary. To avoid the loss of actual semantic mean-

ings of the audio track, the audio mid-level representation called excitement descriptor is

defined to capture the excitement of the crowd and commentator in sport videos. Such

an excitement is normally accompanied with or is the result of certain important events.

The excitement descriptor is captured in a three-stage process. First, the audio volume

feature is extracted at the clip-level. Here, an audio clip is defined with a fixed length

of one second, which usually contains a continuous sequence of audio frames. Secondly,

a clip with its volume greater than the mean volume of the entire video is extracted

as an exciting clip. Finally, considering that such excitement normally lasts a period of

time as opposed to other sparse happenings of high-volume sound (such as environmental

sound) or noises, a time period with multiple exciting clips is considered to define the

excitement descriptor. Here the time period is of fixed length and can be determined

by adopting our previously proposed temporal pattern analysis algorithm [24]. In this

study, for each shot, a time period of 6 sec is examined which includes the last 3-clip

portion of this shot (for short, last por) as well as the first 3-clip portion of its consecu-

tive shot (for short, nextfirst por). If one or more exciting clip(s) is detected in each of

these 3-sec portions, vol last (vol nextfirst) is defined to record the maximum volume of

last por (nextfirst por) and the excitement descriptor is the summation of vol last and

vol nextfirst.

5.3 Video Indexing and Retrieval

Indexing video data is essential for providing content-based retrieval, which tags video

clips when the system inserts them into the database. As discussed earlier, one focus of

this chapter is event-level indexing. Therefore, with the proper video data representation,

the next step is to effectively infer the semantic events via integrating the multi-level data
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representation intelligently. In the literature, there are many approaches proposed using

semantic rules defined based on domain knowledge. In [60], an event detection grammar

was built to detect the “Corner Kick” and “Goal” soccer events based on the detection

rules. However, these rules need to be completely studied and pre-defined for each target

event prior to generating the grammar trees that are used to detect the events. For

example, there were totally 16 semantic rules defined for the corner kick events in [60],

which were derived by carefully studying the co-occurrence and temporal relationships of

the sub-events (represented by semantic video segments) in soccer videos. However, there

are several disadvantages to this approach: (1) The derived rules are based on limited

observation of a small set of soccer videos (4 FIFA2002 videos), which may not hold true

when applied to other soccer videos produced by different broadcasters. For example,

the “PR” in [60] refers to the sub-event that one player runs to the corner just before the

corner kick events. However, it is not a necessary pre-condition for corner kick events.

(2) The classification performance of such rules largely depends upon the detection of

sub-events. However, the detection of such sub-events is of the same difficulty level as, or

sometimes even more difficult than, the target event. (3) The derivation of such a large

set of rules requires considerable manual effort, which limits its generality.

In this section, a high-level semantic analysis scheme is presented to evaluate the

effectiveness of using the multimodal multi-level descriptors in event detection. Gener-

ally speaking, the semantic analysis process can be viewed as a function approximation

problem, where the task is to learn a target function f that maps a set of feature descrip-

tors x (in this case, low-level and mid-level descriptors) to one of the pre-defined event

labels y. The target function is called a classification model. Various data classification

techniques, such as SVM, neural network, can be adopted for this purpose.

In this study, the decision tree logic is used for data classification as it possesses the

capability of handling both numerical and nominal attributes. In addition, it is able to
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select the representative descriptors automatically and is mathematically less complex.

A decision tree is a flow-chart-like tree structure that is constructed by recursively parti-

tioning the training set with respect to certain criteria until all the instances in a partition

have the same class label, or no more attributes can be used for further partitioning. An

internal node denotes a test on one or more attributes (features) and the branches that

fork from the node correspond to all possible outcomes of a test. Eventually, leaf nodes

show the classes or class distributions that indicate the majority class within the final

partition. The classification phase works like traversing a path in the tree. Starting from

the root, the instances value of a certain attribute decides which branch to go at each

internal node. Whenever a leaf node is reached, its associated class label is assigned

to the instance. The basic algorithm for decision tree induction is a greedy algorithm

that constructs decision trees in a top-down recursive divide-and-conquer manner [45].

The information gain measure is used to select the test attribute at each node in the

tree. The attribute with the highest information gain, which means that it minimizes

the information needed to classify the samples in the resulting partitions and reflects

the least ‘impurity’ in these partitions, is chosen as the test attribute for the current

node. Numeric attributes are accommodated by a two-way split, which means one single

breakpoint is located and serves as a threshold to separate the instances into two groups.

The voting of the best breakpoint is based on the information gain value. More detailed

discussions can be found in [45]. This framework adopts the C4.5 decision tree classifier

[91].

As there is a wide range of events in the soccer videos, it is difficult to present

extensive event detection results for all the event types. Therefore, in this study, two

classes of events, goal events and corner events, are selected for performance evaluation

since they significantly differ from each other in various aspects such as event pattern,

occurrence frequency, etc. Before the decision tree based classification process starts,
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a feature set needs to be constructed, which is composed of a group of low-level and

mid-level descriptors. In terms of the low-level feature descriptors, four visual descriptors

(pixel change, histo change, background mean, background var) and 14 audio descriptors

are used. In addition, four mid-level descriptors are included as well. Since most events

are the result of past activities and might cause effects in the future, to capture the

temporal characteristics, these mid-level descriptors are extracted for both the current

shot and its two adjacent shots.

5.4 Experiments

The proposed framework has been rigorously tested on a large data set with over

7 hours (432 minutes) of soccer videos, which were collected from a variety of sources,

such as European Cup 1998, World Cup 2002, and FIFA 2003, and are with different

production/post-production styles, resolutions, and frame rates. The data set contains

3,043 video shots parsed by the aforementioned shot detection algorithm, where the

number of corner event shots and goal shots is 145 and 29, respectively.

5.4.1 Experimental Settings

In the experiment, 2/3rds of the whole data set (called training data set) was used

to train the model which was then tested by the remaining 1/3rd data (called testing

data set). In order to avoid the overfitting problem in training the decision tree classifier,

the so-called 5-fold cross-validation scheme is adopted for performance evaluation. The

whole data set was randomly divided five times to obtain five different groups of training

and testing data sets. Therefore, five models were constructed, where each of them was

tested by its corresponding testing data. Such a scheme allows better estimations of the

framework’s capability in applying the learned event models to other unseen data.
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Table 5.2: Performance of corner event detection.

Corner
Event
#

Identified Missed Misidentified Recall Precision

Test 1 40 38 2 6 95.0% 86.4%
Test 2 46 45 1 9 97.8% 83.3%
Test 3 50 49 1 9 98.0% 84.5%
Test 4 43 42 1 7 97.7% 85.7%
Test 5 44 43 1 7 97.7% 86.0%

Average 97.2% 85.2%

5.4.2 Event Detection Performance

The performance of the corner event detection is illustrated in Table 5.2. As shown

in this table, the ‘Missed’ column indicates the number of false negatives, which means

that the corner events are misclassified as noncorner events; whereas the ‘Misidentified’

column indicates the number of false positives, i.e., the noncorner events are identified

as corner events. Consequently, recall and precision are defined as follows:

Recall = Identified/(Identified+Missed),

Precision = Identified/(Identified+Misidentified)

As can be seen from this table, the performance is very promising, especially for the

recall rate which reaches over 97% by average. In fact, in sports event detection, the

metric recall is normally weighted higher than precision as it is preferred to have all the

targeted events detected even at the cost of including a small number of irrelevant shots.

Also, a further check of the experimental results finds that most of the misidentified shots

(i.e., false positives) are goal kicks/attempts whose event patterns are quite similar to

that of the corner events. In fact, such events are usually considered as exciting events

as well. In future work, the current framework can be further extended for goal attempt

detection.

The framework is also tested upon the goal event detection and the performance is

summarized in Table 5.3. As can be seen from this table, the results in terms of recall and
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Table 5.3: Performance of goal event detection.

Goal
Event
#

Identified Missed Misidentified Recall Precision

Test 1 11 10 1 1 91.7% 91.7%
Test 2 10 10 0 2 100.0% 83.3%
Test 3 12 11 1 2 92.3% 85.7%
Test 4 10 9 1 1 90.0% 90.0%
Test 5 11 10 1 1 90.9% 90.9%

Average 93.0% 88.3%

precision are also quite satisfactory. It should be pointed out that the goal events account

for less than 1% of the total data set. The rareness of the target events usually poses

additional difficulties in the process of event detection. Through the cross-validation and

multiple event detection, the robustness and effectiveness of the proposed framework is

fully demonstrated in event detection.

5.5 Conclusions

In this chapter, shot boundary detection, data representation extraction and video

indexing are discussed. In particular, a multi-level multimodal representation framework

is proposed for event detection in field-sports videos. Compared with previous work in

the sports video domain, especially in soccer video analysis, the proposed framework is

unique in its systematic way of generating, integrating, and utilizing the low-level and

mid-level descriptors for event detection to bridge the semantic gap. The extraction of

low-level descriptors starts as early as in the shot detection phase, thus saving time and

achieving better performance. Four generic and semi-generic mid-level descriptors (field

descriptor, camera view descriptor, corner view descriptor, and excitement descriptor)

are constructed from low-level visual/audio features, via a robust mid-level descriptor

extraction process. In the high-level analysis, an event model is inferred from both low-

level descriptors and mid-level descriptors, by using a decision tree based classification
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model, while most of the existing work infer only the relationship between the mid-level

descriptors and the events. A large test soccer video data set, which was obtained from

multiple broadcast sources, was used for experiments. Compared to the ground truth, it

has been shown that high event detection accuracy can be achieved. Under this frame-

work, domain knowledge in sports video is stored in the robust multi-level multimodal

descriptors, which would be reusable for other field-sports videos, thus making the event

detection less ad hoc. It is also worth pointing out that the proposed framework does not

utilize any broadcast video features such as score board and other meaningful graphics

superimposed on the raw video data. Such a framework is essential in the sense that it not

only facilitates the video database in low-level and mid-level indexing, but also supports

the high-level indexing for efficient video summarization, browsing, and retrieval.

It is worth noting that in order to bridge the semantic gap, in this study, the mid-level

representation is captured with the assistance of some a priori or domain knowledge. In

the next chapter, a set of automatic analysis techniques are proposed as an attempt to

largely relax the dependence on the domain knowledge and human efforts by quantifying

the contribution of temporal descriptors in field-sports video analysis.
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CHAPTER 6

Automatic Knowledge Discovery for Semantic Event Detection

Generally speaking, the events detected by the existing methods (including the ap-

proaches introduced in Chapter 5) are semantically meaningful and usually significant to

the users. The major disadvantage, however, is that most of these methods rely heavily

on specific artifacts (so-called domain knowledge or a priori information) such as editing

patterns in broadcast programs, which are generally explored, represented and applied

with a great deal of costly human interaction. For instance, in [67], a set of thresholds

need to be manually determined in order to associate the video sequences to the so-called

visual descriptors such as “Lack of motion,” “Fast pan,” and “Fast zoom” whose tem-

poral evolutions are in turn used for soccer goal detection. However, since the selection

of timing for motion evolution is not scalable, its extensibility is highly limited. In our

earlier studies [11], to cope with the challenges posed by rare event detection, a set of

visual/audio clues and their corresponding thresholds were pre-defined based on the do-

main knowledge in order to prepare a “cleaned” data set for the data mining process.

For the heuristic methods [120][147], the situation becomes even worse with the necessity

of using a group of predefined templates or domain-specific rules. Such manual effort ad-

versely affects the extensibility and robustness of these methods in detecting the different

events in various domains.

With the ultimate goal of developing an extensible event detection framework that

can be robustly transferred to a variety of applications, a critical factor is to relax the

need for the domain knowledge, and hence to reduce the manual effort in selecting the

representative patterns and defining the corresponding thresholds. Though such pat-

terns usually play a critical role in video event detection, it is important to introduce

an automatic process in developing an extensible framework, in terms of event pattern

discovery, representation and usage. In response to this requirement, in this chapter, a
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novel temporal segment analysis method will be first discussed for defining the charac-

teristic temporal segment and its associated temporal features with respect to the event

unit (shot) [8]. Then in Section 6.2, a temporal association mining framework is pro-

posed to systematically capture the temporal pattern from the temporal segment and

automatically develop the rules for representing such patterns.

6.1 Temporal Segment Analysis for Semantic Event Detection

This section introduces a novel temporal segment analysis for semantic event detec-

tion. More specifically, the video data is considered as a time series X = {xt, t = 1, ..., N},
where t is the time index and N is the total number of observations. Let xi ∈ X be an

interesting event; the problem of event detection in this framework is decomposed into

the following three subtasks. First, an event xi should possess its own characteristics

or feature set which needs to be extracted. In this framework, the audio-visual multi-

modal approach introduced in Chapter 5 is adopted since textual modality is not always

available and is language dependent. Second, from the temporal evolution point of view,

usually an event xi is the result of past activities and might cause effects in the future as

well. Therefore, an effective approach is required to explore the time-ordered structures

(or temporal patterns) in the time series that are significant for characterizing the events

of interest. It is worth noting that the ultimate purpose of this subtask is to explore and

represent the temporal patterns automatically and to feed such valuable information in-

telligently to the next component. Finally, with the incorporation of both the feature set

and the temporal patterns (or temporal feature set), advanced classification techniques

are carried out to automatically detect the interesting events. It is in this step that

the discovered temporal patterns are fully utilized for the purpose of event detection.

The overview of the framework is illustrated in Fig. 6.1. As will be detailed, intelligent

temporal segment analysis and decision tree based data mining techniques are adopted

in this study to successfully fulfill these tasks with little human interference. Since the
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Figure 6.1: Overview of temporal segment analysis.

structure pattern of soccer videos is relatively loose and it is difficult to reveal high-level

play transition relations by simply clustering the shots according to the field of view

[67], this chapter will focus on the application of soccer goal event detection on a large

collection of soccer videos to demonstrate the effectiveness of the proposed framework.

6.1.1 Temporal Pattern Analysis

As discussed in [90], given a training time series X = {xt, t = 1, ..., N} , the task

of defining a temporal pattern p is to identify Xt = {xt−(Q−1)τ , ..., xt−τ , xt} from X,

where xt represents the present observation and xt−(Q−1)τ , ..., xt−τ are the past activities.

With the purpose of predicting the future events in [90], their goal is to capture the

temporal patterns which occur in the past and are completed in the present, with the

capability of forecasting some event occurring in the future. However, because of noise,

the temporal pattern p does not perfectly match the time series observation in X. The

rule (i.e., temporal pattern) intended to discover might not be obtained directly by using

the actual data points (i.e., the observations) in X. Instead, a temporal pattern cluster

is required to capture the variability of a temporal pattern. Here, a temporal pattern

cluster P is defined as a neighborhood of p, which consists of all the temporal observations

within a certain distance d of p with respect to both its value and the time of occurrence.
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This definition provides the theoretic basis for this proposed temporal pattern analysis

algorithm. However, many of the existing temporal analysis approaches [34][90] focused

on finding the significant pattern to predict the events. In contrast, as far as video event

detection is concerned, the target is to identify the temporal patterns which characterize

the events. Not only are the causes which lead to the event considered, but also the

effects the event might have. Consequently, the problem can be formalized to identify a

set of temporal observations

Xt = Y b
i=a(xt+iτ ), (6.1)

which belong to the temporal pattern cluster P for a certain event occurring at

xt. Here, τ , called granularity indicator, represents the granularity level (i.e., shot-level,

frame-level or clip-level in video analysis) at which the observations are measured, and the

parameters a and b define the starting and ending positions of the temporal observations,

respectively. Note that a and b are not limited to positive integers in the sense that there

might not be any cause for a certain event at xt or the event might be ended with no

effect on the later observations. Furthermore, Xt might not contain xt, if xt contributes

nothing in terms of the temporal evolution for the event occurring at xt.

Moreover, the approaches proposed in [34][90] are targeted to a direct decision of the

“eventness” of the testing units. A genetic algorithm or fuzzy objective function therefore

needs to be applied to search for the optimal heterogeneous clusters in the augmented

phase space. In contrast, the purpose of the temporal pattern analysis, which lies in two

aspects as discussed earlier, differs substantially. Consequently, a new methodology is

adopted in this framework for two reasons. First, with a high-dimensional feature set as

multimedia data usually have, the genetic algorithm is extremely time consuming and

thus becomes infeasible, especially for sports video whose relevance drops significantly

after a relatively short period of time. Second, the algorithm in [34] requires that the

observations are extracted at the same granularity level τ , whereas for video analysis,
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Figure 6.2: An example two-dimensional temporal space for a time series data.

the visual and audio features are normally examined at different levels.

In order to explore the most significant temporal patterns, three important concepts

must be addressed as follows.

• Concept 1. How to define the similarity relationships (or distance function) among

the time series observations.

• Concept 2. How to determine appropriate temporal segmentation, that is, how to

determine the values of parameters a, b and τ in Eq. (6.1), which define the time

window (its size and position) where the temporal pattern is presented.

• Concept 3. How to define the threshold d in order to determine the temporal

pattern cluster.

To address these concepts, a temporal space is constructed in the proposed framework.

Here, the temporal space is defined as a (b−a) dimensional metric space into which Xt is

mapped. The temporal observations in Xt can be mapped to a point in the dimensional

space, with xt+aτ , ..., xt+bτ being the coordinate values, whereas the “eventness” of unit

xt is assigned as the label of the temporal observations Xt. Fig. 6.2 gives an example.

Assume the yellow square marker indicates a certain event of interest. The left side of

the figure shows the grass ratios extracted from the consecutive video shots; whereas the

right figure shows the corresponding two-dimensional temporal space for this time series
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Figure 6.3: Overview of the algorithm for temporal segmentation.

data. The coordinates of each point, denoted as (xt, xt−1) in the right figure, represent

the grass ratio values obtained at time t and time t − 1, respectively, where the event

label of the unit xt in the left figure is treated as the label of the point (xt, xt−1) in the

right figure.

Concept 1. Distance Function

With the introduction of the temporal space, the problem raised in Concept 1 is

converted to the calculation of the distances among the points in a certain space, where

various distance functions (e.g., Euclidean or Manhattan distance functions) can be easily

applied. In fact, as discussed in [90], it is generally considered an effective approach to

adopt the space transition idea and the distance metrics in the case when the direct

calculation of the distance is too complicated to perform in the original space.

Concept 2. Temporal Segmentation

To determine appropriate temporal segmentation as discussed earlier, the event and

visual features are defined at the shot-level. Therefore, τ is set to the shot-level in the

temporal series for the visual features, whereas τ is defined at the clip-level for the audio

features (as the reasons mentioned earlier). To define a and b, a time-window algorithm

is developed for the visual features, which can be easily derived for audio features. The

basic idea is that a significant temporal pattern should be able to separate the event

units as far away as possible from the nonevent units, and in the meantime group the

event units themselves as closely to each other as possible.
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An overview of the algorithm is illustrated in Fig. 6.3 and a detailed discussion is

given below.
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Figure 6.4: Time window algorithm.

1. Given a training data set {E, N}, E = {ei, i > 0} represents the set of event units,

N = {nj, j > 0} is the set of nonevent units homogeneously sampled from the

source data, and normally |N | >> |E|. Let W be the upper-bound size of the
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searching window or the time section centered at ei or nj where the important

temporal segmentation is searched. For soccer goal event detection, W is set to 5.

Without loss of generality, it is assumed that a goal event might be directly caused

by two past shots and significantly affect two future shots, as shown in the two

examples in Fig. 6.4(a). In fact W can be set to any reasonably large number in

this algorithm, as will be shown in the later steps. However, the larger the value of

W , the greater is the computational cost that will be involved.

2. Define a set of time windows with various sizes w from 1 to W , which slide through

the time sections and produce a group of observations which are mapped to the

corresponding temporal space with dimension w (for example, Fig. 6.4(b) shows

time windows of sizes 2 and 3). Here, blocks 1 to m represent a set of time sections

with m = |N | + |E|, whereas TW21 and TW22 denote the first time window and

the second time window when w = 2. Note that given a dimension w, it will have

W−w+1 temporal spaces (as defined earlier in this section). Consequently, totally

(W × (W + 1)/2) temporal spaces will be generated with w varied from 1 to W .

3. A parameter S, called significance indicator, is defined to represent the importance

of each time window.

S =
∑
i∈E

(
∑
j∈N

Dij)/
∑
i∈E

(
∑

k∈E,k 6=i

Dik), (6.2)

where D represents the distance between two points in the temporal space. S is

defined as the ratio of the distance between every point in the event set (E) and

every point in the nonevent set (N) versus the distance among the points in E. The

change of the window size in step 2 results in the alteration of data dimensions. It is

well-known that as the dimensionality of the data increases, the distances between

the data points also increase [80]. Therefore, the capability of Eq. (6.2) is briefly
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discussed in handling the performance comparisons among the time windows with

various sizes. Let δij and δik be the increments caused by the introduction of the

new dimensions. After increasing the size of time window, we get

S ′ =
∑
i∈E

[
∑
j∈N

(Dij + δij)]/
∑
i∈E

[
∑

k∈E,k 6=i

(Dik + δik)] (6.3)

S ′ =
P

i∈E(
P

j∈N Dij)+
P

i∈E(
P

j∈N δij)P
i∈E(

P
k∈E,k 6=i Dik)+

P
i∈E(

P
k∈E,k 6=i δik)

=

∑
i∈E(

∑
j∈N Dij)(1 +

∑
( i ∈ E)(

∑
j∈N δij)/

∑
( i ∈ E)(

∑
j∈N Dij))∑

i∈E(
∑

k∈E,k 6=i Dik)(1 +
∑

i∈E(
∑

k∈E,k 6=i δik)/
∑

i∈E(
∑

k∈E,k 6=i Dik))
(6.4)

In other words,

S ′ = S × (1 + REN)

(1 + RE)
(6.5)

Here, REN represents the incremental rate of the distance between the units in

E and N , and RE is the incremental rate of the distance among the units in

E, respectively. It can be observed from Eq. (6.5) that when S ′ > S, the new

dimension possesses a greater impact on REN than on RE (i.e., REN > RE).

4. Also, as the significance indicator S increases, so does its importance as a time

window. Therefore, a and b are determined by the time window(s) with the greatest

S. If there is a tie, then it is broken by the preferences in the following order: 1)

choosing a window with a smaller size, which will require less computational cost

in the later processes; and 2) selecting a window closer to xt as it is generally the

case that the nearby activities have a relatively higher affinity with xt.

Since the grass ratio is among the most important visual features for many sports

video, the above-mentioned algorithm is carried out for the grass ratio feature in the pro-

posed framework. It is worth mentioning, though, that without any a priori information,
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Figure 6.5: Time window for the Volume feature.

the same procedure can be carried out for other visual features as well and the one with

the largest S value contains the most important temporal pattern.

As for the audio track, sound loudness is one of the simplest and most frequently

used features in identifying the excitement of the crowd and commentator in sports

videos. The time-window algorithm can be applied on sound loudness as well with minor

revisions. Specifically, as τ is set to the clip-level, the size of the time section W is

usually set to a larger value than the one used for shot-level visual features. In the

current implementation, W is set to 12, as shown in Fig. 6.5. Here, the ending boundary

of shot ei or nj is set as the center of the time section or as closely to the center as possible.

In real implementations, the latter occurs more frequently since the shot boundary and

clip boundary usually do not match each other. However, as can be seen from the time

window algorithm, the computational cost increases by order O(W 2). Therefore, for the

sake of efficiency, the time-window algorithm can be revised to apply on the hyper-clip

level. The 12-clip time section is broken into a set of hyper-clips. Here, a hyper-clip

is defined as a unit that consists of three consecutive clips in this framework, and is

represented by its statistical characteristics such as volume mean (the mean volume of

the hyper-clip) and volume max (the max volume of the hyper-clip).
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Formally, assume that Ch is a hyper-clip consisting of three consecutive clips c1, c2,

and c3 whose volume values are v1, v2, and v3, respectively. We have

volume mean = mean(v1, v2, v3). (6.6)

volume max = max(v1, v2, v3). (6.7)

By applying the time-window algorithm, for each shot ei or nj, the most important

time window (marked by the red rectangle in Fig. 6.5) in terms of the sound loudness

can be obtained. This time window consists of two hyper-clips Lh and Hh (as shown in

Fig. 6.5). The volume mean and volume max features in Lh are named as last mean and

last max. Correspondingly, the volume mean and volume max features in Hh are called

nextfirst mean and nextfirst max. Therefore, the significant temporal pattern for each

shot can be represented by last mean, nextfirst mean and volume sum. Here, volume sum

is defined as

volume sum = last max + nextfirst max, (6.8)

which is introduced to magnify the pattern.

Concept 3. Temporal Pattern Cluster

With the purpose of data reduction, the third concept is more related to the problem

of defining the threshold d to model the temporal pattern cluster. This is used to filter out

inconsistent and noisy data and prepare a “cleaned” data set for the data mining process.

The technique adopted is Support Vector Machines (SVMs). In a binary classification

problem, given a set of training samples {(Xi, yi), i = 1, 2, ..., n}, the ith example Xi ∈ Rm

in an m-dimensional input space belongs to one of the two classes labeled by yi ∈ {−1, 1}.
The goal of the SVM approach is to define a hyperplane in a high-dimensional feature
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space Z, which divides the set of samples in the feature space such that all the points with

the same label are on the same side of the hyperplane [116]. Recently, particular attention

has been dedicated to SVMs for the problem of pattern recognition. As discussed in

[80], SVMs have often been found to provide higher classification accuracies than other

widely used pattern recognition techniques, such as the maximum likelihood and the

multilayer perception neural network classifiers. Furthermore, SVMs also present strong

classification capabilities when only few training samples are available.

However, in multimedia applications, data is represented by high dimensional feature

vectors, which induces a high computational cost and reduces the classification speed in

the context of SVMs [78]. Therefore, SVMs is adopted in the temporal pattern analysis

step with the following two considerations. First, the classification is solely applied to a

certain temporal pattern with few features. In the case of soccer goal event detection,

SVMs is applied to the temporal patterns on the grass ratio feature only. Secondly, SVMs

are capable of dealing with the challenges posed by the small number of interesting events.

Currently, in this framework, SVM light [57] is implemented, which is an approach to

reduce the memory and computational cost of SVMs by using the decomposition idea.

For soccer goal detection, it is identified that the most significant time window upon

the grass ratio is TM33 by using the proposed time window algorithm, which means the

grass ratios of the current shot and its two consecutive shots are important to characterize

the goal event. The set of training examples fed into SVMs is defined as {(Xi, yi), i =

1, 2, ..., n}, where the ith example Xi ∈ R3 belongs to one of the two classes labeled by

yi ∈ {−1, 1} (i.e., nongoal or goal). Consequently, a SVM classifier can be learned to

determine the threshold d automatically so as to classify the temporal pattern clusters

of interest, which is thereafter applied upon the testing data for data reduction.
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Table 6.1: Performance of goal event detection using temporal segment analysis.

# of goals Identified Missed Misidentified Recall Precision
Test 1 11 10 1 2 90.9% 83.3%
Test 2 14 12 2 4 85.7% 75.0%
Test 3 12 11 1 2 91.7% 84.6%
Test 4 11 11 0 2 100.0% 84.6%
Test 5 12 10 2 2 83.3% 83.3%

Average 90.3% 82.2%

6.1.2 Experimental Results

The same experimental data set introduced in Chapter 5 was used in this section

to testify the performance of the proposed temporal segment analysis approach. As

discussed in section 6.1.1, the temporal segment analysis process by using the SVM light

algorithm was carried out to produce a “cleaned” data set. An SVM classifier was trained

by each of the training data sets in five groups and was applied upon the corresponding

testing data set. After this step, the goal shots accounted for about 5% of the remaining

data set, where many inconsistencies and irrelevant shots have been filtered out.

The resulting candidate pool was then passed to the decision tree based multimodal

data mining process for further classification. Similarly, for each group, a decision tree

model was built based on the “cleaned” training data set and was used to classify the

corresponding testing data set in the candidate pool. The results are summarized in

Table 6.1. The precision and recall values were computed for all the testing data sets

in these five groups (denoted as Test 1, Test 2, etc.) to evaluate the performance of the

proposed framework. Similarly, as defined in Chapter 5, the “Missed” column indicates

a false negative, which means that the goal events are misclassified as nongoal events;

whereas, the “Misidentified” column represents a false positive, i.e., the nongoal events

that are identified as goal events. Consequently, precision and recall are defined as:

Recall = Identified/(Identified + Missed),

Precision = Identified/(Identified + Misidentified)
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From Table 6.1, it can been clearly seen that the results are quite encouraging in the

sense that the average recall and precision values reach 90.3% and 82.2% respectively. To

the best of our knowledge, this work is among the very few existing approaches in soccer

video event detection whose performance is fully attested by a strict cross-validation

method. In addition, compared to the work proposed in Chapter 5 which adopts mid-

level representation with the assistance of the domain knowledge, the dependency on

predefined domain knowledge in this framework is largely relaxed in the sense that an

automatic process is adopted to discover, represent and apply the event specific patterns.

Nevertheless, their performances are both very promising and quite close to each other,

which demonstrates the effectiveness and robustness of this presented framework.

Conclusions

Event detection is of great importance for effective video indexing, summarization,

browsing, and retrieval. However, due to the challenges posed by the so-called seman-

tic gap issue and the rare event detection, most of the existing works rely heavily on

domain knowledge with large human interference. To relax the need of domain knowl-

edge, a novel framework is proposed for video event detection with its application to the

detection of soccer goal events. Via the introduction of an advanced temporal segment

analysis process, the representative temporal segment for a certain event can be explored,

discovered and represented with little human effort. In addition, the multimodal data

mining technique on the basis of the decision tree algorithm is adopted to select the rep-

resentative features automatically and to deduce the mappings from low-level features to

high-level concepts. As a result, the framework offers strong generality and extensibility

by relaxing its dependency on domain knowledge. The experimental results over a large

collection of soccer videos using the strict cross-validation scheme have demonstrated the

effectiveness and robustness of the present framework.
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6.2 Hierarchical Temporal Association Mining

As mentioned earlier, there are two critical issues in video event detection which have

yet not been well studied.

1. First, normally a single analysis unit (e.g., shot) which is separated from its context

has less capability of conveying semantics [148]. Temporal information in a video

sequence plays an important role in conveying video content. Consequently, an issue

arises as how to properly localize and model context which contains essential clues

for identifying events. One of the major challenges is that for videos, especially

those with loose content structure (e.g., sports videos), such characteristic context

might occur at uneven inter-arrival times and display at different sequential orders.

Some works have tried to adopt temporal evolution of certain feature descriptors

for event detection. For instance, temporal evolutions of so-called visual descriptors

such as “Lack of motion,” “Fast pan,” and “Fast zoom” were employed for soccer

goal detection in [67], with the assumption that any interesting event affects two

consecutive shots. In [60], the temporal relationships of the sub-events were studied

to build event detection grammar. However, such setups are largely based on

domain knowledge or human observations, which highly hinder the generalization

and extensibility of the framework.

2. Secondly, the events of interest are often highly infrequent. Therefore, the classifi-

cation techniques must deal with the class-imbalance (or called skewed data distri-

bution) problem. The difficulties in learning to recognize rare events include: few

examples to support the target class, the majority (i.e., nonevent) class dominating

the learning process, etc.

In Section 6.1, a temporal segment analysis approach is proposed to address the

above mentioned issues. However, its major focus is to explore the important temporal
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segments in characterizing events. In this section, a hierarchical temporal association

mining approach is proposed to systematically address these issues.

In this approach, association rule mining and sequential pattern discovery are intel-

ligently integrated to determine the temporal patterns for target events. In addition, an

adaptive mechanism is adopted to update the minimum support and confidence threshold

values by exploring the characteristics of the data patterns. Such an approach largely

relaxes the dependence on domain knowledge or human efforts. Furthermore, the chal-

lenges posed by skewed data distribution are effectively tackled by exploring frequent

patterns in the target class first and then validating them over the entire database. The

mined temporal pattern is thereafter applied to further alleviate the class imbalance issue.

As usual, soccer videos are used as the test bed.

6.2.1 Background

Association rules are an important type of knowledge representation revealing implicit

relationships among the items present in a large number of transactions. Given I =

{i1, i2, ..., in} as the item space, a transaction is a set of items which is a subset of I.

In the original market basket scenario, the items of a transaction represent items that

were purchased concurrently by a user. An association rule is an implication of the

form [X → Y , support, confidence], where X and Y are sets of items (or itemsets) called

antecedent and consequence of the rule with X ⊂ I, Y ⊂ I, and X
⋂

Y = ∅. The support

of the rule is defined as the percentage of transactions that contain both X and Y among

all transactions in the input data set; whereas the confidence shows the percentage of

transactions that contain Y among transactions that contain X. The intended meaning

of this rule is that the presence of X in a transaction implies the presence of Y in the

same transaction with a certain probability. Therefore, traditional ARM aims to find

frequent and strong association rules whose support and confidence values exceed the

user-specified minimum support and minimum confidence thresholds.
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Figure 6.6: An example video sequence.

Intuitively, the problem of finding temporal patterns can be converted as to find adja-

cent attributes (i.e., X) which have strong associations with (and thus characterize) the

target event (i.e., Y ), and thus ARM provides a possible solution. Here, assuming the

analysis is conducted at the shot-level, the adjacent shots are deemed as the transaction

and the attributes (items) can be the feature descriptors (low-, mid- or object-level ex-

tracted from different channels) or event types in the transaction. However, as discussed

below, the problem of temporal pattern discovery for video event detection has its own

unique characteristics, which differs greatly from the traditional ARM. Without loss of

generalization, an event E is normally the result of previous actions (called pre-actions

or AP ) and might result in some effects (post-actions or AN). Given the example video

sequence illustrated in Fig. 6.6, pre-transactions TP (such as {c, d, c, f} and {d, c, c, c})
and post-transactions TN (such as {a, b, b} and {b, b, b}) are defined as covered by the

pre-temporal windows and post-temporal windows, respectively. The characters ‘a,’ ‘b,’

etc., denote the attributes of the adjacent shots. Note that if the feature descriptors

are used as the attributes, certain discretization process should be conducted to cre-

ate a set of discrete values to be used by ARM. A temporal context for target event

E is thus composed of its corresponding pre-transaction and post-transaction, such as

< {c, d, c, f}{a, b, b} > and < {c, c, h, g}{b, b, b} >. The purpose of temporal association

mining is thus to derive rules < AP,AN >→ E that are frequent and strong, where
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AP ⊂ TP and AN ⊂ TN . Mainly, temporal pattern mining differs from the traditional

ARM in two aspects.

• First, an itemset in traditional ARM contains only distinct items without consid-

ering the quantity of each item in the itemset. However, in event detection, it is

indispensable that an event is characterized by not only the attribute type but also

its occurrence frequency. For instance, in surveillance video, a car passing by a

bank once is considered normal, whereas special attention might be required if the

same car appears frequently within a temporal window around the building. In

soccer video, several close views appearing in a temporal window might signal an

interesting event, whereas one single close view is generally not a clear indicator.

Therefore, a multiset concept is adopted which, as defined in mathematics, is a

variation of a set that can contain the same item more than once. To our best

knowledge, such an issue has not been addressed in the existing video event de-

tection approaches. A slightly similar work was presented in [148], where ARM is

applied to the temporal domain to facilitate event detection. However, it uses the

traditional itemset concept. In addition, it searches the whole video to identify the

frequent itemsets. Under the situation of rare event detection where the event class

is largely under-represented, useful patterns are most likely overshadowed by the

irrelevant itemsets.

• Second, in traditional ARM, the order of the items appearing in a transaction is

considered as irrelevant. Therefore, transaction {a, b} is treated the same as {b, a}.
In fact, this is an essential feature adopted to address the issue of loose video

structure. Specifically, the characteristic context information can occur at uneven

inter-arrival times and display at different sequential orders as mentioned earlier.

Therefore, given a reasonably small temporal window, it is preferable to ignore

the appearance order of the attributes inside a pre-transaction or post-transaction.
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Figure 6.7: Hierarchical temporal mining for video event detection.

However, considering the rule < AP,AN >→ E, AP always occurs ahead of its

corresponding AN , and the order between them is important in characterizing a

target event. Therefore, in this stage, the idea of sequential pattern discovery [115]

is adopted, where a sequence is defined as an ordered list of elements. In this study,

each element is a multiset, that is, the sequence < {a, b}{c} > is considered to be

different from < {c}{a, b} >. In this paper, braces are used for multisets and angle

brackets for sequences.

Fig. 6.7 shows the idea of using hierarchical temporal mining for video event detection.

As compared to Fig. 5.7, a hierarchical temporal mining scheme is used to explore the

knowledge assisted features, which will be detailed in the next section.

6.2.2 Hierarchical Temporal Association Mining

Since the target is to capture temporal patterns characterizing the contextual condi-

tions around each target event, a hierarchical temporal association mining mechanism is

proposed. As discussed earlier, due to the loose structure of videos, the attributes within
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the temporal windows (pre-temporal or post-temporal) have no orders. Meanwhile, the

appearance frequency of the attributes is important in indicating the events. Hence, the

proposed extended ARM algorithm is applied to find pre-actions AP and post-actions

AN (called “Extended ARM” in Fig. 6.7), and then sequential pattern discovery is uti-

lized where AP and AN are considered as the elements in a sequence (called “Sequential

Patterns” in Fig. 6.7). Thereafter, the temporal rules are derived from the frequent and

strong patterns. The approach is first presented with the predefined minimum support

and confidence thresholds, and an adaptive updating mechanism is introduced to define

them automatically.

Let Dv = {Vi} be the training video database and NF be the number of attributes

in the database, where Vi(i = 1, ..., Nv) is a video clip and Nv is the cardinality of Dv,

we have the following definitions.

Definition 6.1. A video sequence Vi is an ordered collection of units Vi =< Vi1, Vi2, ..., >,

where each unit Vij(j = 1, ..., ni) is a 3-tuple Vij = (Fij, sij, Cij). Here, ni is the number

of units in Vi, Fij = {Fijk} indicates the set of unit attributes (k = 1, ..., NF ), sij denotes

its associated unit number, and Cij = {yes, no} is the class label showing the eventness

of the unit.

In this study, the unit is defined at the shot level and the unit attribute, as mentioned

earlier, can be the feature descriptor or event type of the shot. As usual, the task is

to find all frequent and strong patterns from the transactions given the target event E.

Therefore, the pre-transactions (TP ) and post-transactions (TN) need to be constructed.

Definition 6.2. Given a unit Vij(j = WP +1, ..., ni−WN), the pre-temporal window

size WP and post-temporal window size WN , its associated TPij and TNij are defined

as TPij = {Fip} (p = j −WP, ..., j − 1) and TNij = {Fiq} (q = j + 1, ..., j + WN).
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Frequent patterns

This proceeds by first finding all frequent patterns. Different from traditional ARM,

to alleviate the problem of class imbalance problem, the frequent patterns are searched for

the minority class only. In other words, in counting the frequent patterns and calculating

the support values, only those TPE = {TPij} and TNE = {TNij} will be checked where

Cij = ‘yes.’ As shown in Fig. 6.6, the multisets {d, b, h, c} and {b, c, g} around the

nonevent N will not be checked in this step. Then the discrimination power of the

patterns is validated against the nonevent class.

In order to mine the frequent pre-actions and post-actions, the itemMultiset (the

counterpart of itemset in traditional ARM) is defined.

Definition 6.3. An itemMultiset T is a combination of unit attributes. T matches

the characterization of an event in window WP or WN if T is the subset of TPij or TNij

where Cij = ‘yes.’

For example, if a post-temporal window with size WN for an event E (see Fig. 6.6)

contains unit attributes {a, b, b}, then T = {b, b} is called a match of the characteriza-

tion of event E, whereas T = {a, a} is not. Consequently, the traditional support and

confidence thresholds are revised as follows.

Definition 6.4. An itemMultiset T has support s in Dv if s% of all TPE = {TPij}
(or TNE = {TNij}) for target event E are matched by T . T is frequent if s exceeds the

predefined min sup.

Mathematically, support is defined as

Support = Count(T, TPE)/|TPE| (6.9)

or

Support = Count(T, TNE)/|TNE| (6.10)
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From the equations, it can be seen that the definition of support is not simply an

extension of the one used in traditional ARM. It is restricted to TPE = {TPij} or

TNE = {TNij} which are associated with the target events (i.e., Cij = ‘yes’). An

itemMultiset which appears in Dv periodically might not be considered as frequent if

it fails to be covered by these TPE or TNE. The pseudo code for finding frequent

itemMultisets is listed in Table 6.2. The general idea is to maintain in memory, for each

Table 6.2: Logic to find all frequent unit patterns.

Algorithm 1: Finding Frequent Patterns
Input: video database Dv, pre-temporal window size WP , post-temporal window
size WN , minimum support min sup, target-event type E
Output: frequent actions AP , AN
FrequentActions(Dv, WP , WN , min sup, E)
1. Bp = ∅; T = ∅; Bn = ∅
2. for each video sequence Vi ∈ Dv

3. for each unit Vij = (Fij, sij, Cij) ∈ Vi

4. for each unit Vik = (Fik, sik, Cik) ∈ T
5. if (sij − sik) > WP
6. Remove Vik from T
7. endif
8. endfor
9. if Vij is a target event // i.e., Cij = ‘yes’
10. Bp = Bp ∪ {Fik|(Fik, ) ∈ T}
11. PS = sij + 1
12. while (PS − sij) < WN
13. Bn = Bn ∪ {Fik|sik = PS}
14. PS is set to its next shot until it is the end of Vi

15. endwhile
16. endif
17. T = T ∪ Vij

18. endfor
19. endfor
20. Use extended Apriori over Bp to find AP with min sup
21. Use extended Apriori over Bn to find AN with min sup

target event, all the units within its associated TPij and TNij, which are then stored in

Bp and Bn (steps 1 to 19), and extended Apriori algorithm is applied to find the frequent

pre-actions and post-actions from Bp and Bn (steps 20 to 21).

133



Table 6.3: The procedure of extended A-priori algorithm.

1. Construct 1-itemMultisets. Count their supports and obtain the set of all fre-
quent 1-itemMultisets as traditional A-priori algorithm

2. A pair of frequent k-itemMultisets are merged to produce a candidate (k + 1)-
itemMultisets. The merges are conducted in two steps:

2.1. A pair of frequent k-itemMultisets are merged if their first (k − 1) items are
identical and

2.2 A frequent k-itemMultisets can be merged with itself only if all the elements in
the multiset are with the same value

3. The supports are counted and the frequent itemMultisets are obtained as the
traditional A-priori algorithm. Go to step 2.

4. The algorithm terminates when no further merge can be conducted.

The procedure of the extended Apriori algorithm is shown in Table 6.3, which will be

explained by an example. Since in the transactions (TP or TN) and itemMultisets the

existence of duplicated elements is allowed, each unit attribute needs to be considered

as a distinct element even though some attributes might have the same values, except

for the construction of 1-itemMultisets. The frequent pre-patterns and post-patterns,

obtained by using the proposed extended Apriori algorithm upon the example video

sequence shown in Fig. 6.6, are listed in Tables 6.4 and 6.5, respectively.

Here, it is assumed that the minimum support count is set to 2 and the frequent

actions are highlighted in yellow. Since the ordering of the units and the inter-arrival

times between the units and target events within each time window is considered to be

irrelevant in finding the frequent pre- and post-patterns, for the sake of simplicity, all the

units inside the transactions and itemMultisets are sorted in the algorithm. The com-

putational cost for such procedures is minimal because the transactions are constructed

only for minority class and the number of elements in such transactions is small. Without

loss of generality, the window size is reasonably small since only the temporally adjacent

shots have strong association with the target events.

As mentioned earlier, the ordering between pre-actions AP and post-actions AN needs

to be observed, and thus the idea of sequential pattern discovery is adopted (omitting the
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Table 6.4: Frequent pre-actions.

1 count frequent 2 count frequent 3 count frequent
{c} 3 Yes {c, c} 3 Yes {c, c, c} 1 No
{d} 2 Yes {c, d} 2 Yes {c, c, d} 2 Yes
{f} 1 No {d, d} 0 No - - -
{g} 1 No - - - - - -
{h} 1 No - - - - - -

Table 6.5: Frequent post-actions.

1 count frequent 2 count frequent 3 count frequent
{a} 1 No {b, b} 2 Yes {b, b, b} 1 No
{b} 3 Yes - - - - - -
{g} 1 No - - - - - -
{f} 1 No - - - - - -

detailed algorithm here). However, it is worth noting that instead of scanning TP and

TN to explore the frequent sequential patterns, the Apriori like principle can be applied

to simplify the process, which states that for a particular sequence to be frequent, its

element(s) must be frequent as well. For instance, given the examples shown in Fig.

6.6 and frequent pre- and post-actions listed above, respectively, it can be known that

sequence < {a}{d} > is not frequent since its pre-action element < {a} > is not frequent.

Therefore, the frequent sequential patterns can be constructed upon the frequent AP

and AN . It is legal to have null pre-action or post-action in a sequential pattern (e.g.,

< {}{b, b} > or < {c, c, d}{} >).

After creating the 1-itemMutlisets, the corresponding sequential patterns can be ex-

tracted. Then when another pass is made over the transactions to find frequent 2-

itemMultisets, the support of the constructed sequential pattern can be counted as well.

The procedure terminates until no more frequent (k+1)-itemMultisets can be identified.
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Strong patterns

To validate that these patterns effectively characterize the event of interest, a restrict

solution is to adopt the traditional association measure called confidence, where a similar

idea presented in [121] can be adopted. The general idea is to count the number of times

each of the patterns occurs outside the windows of the target events.

Definition 6.5. A sequential pattern P has confident c in Dv if c% of all transactions

matched by T are associated with the target event. P is strong if c exceeds min conf .

Intuitively, inputs of a set of transactions are checked, which correspond to all TPN =

{TPij} and TNN = {TNij} with Cij = ‘no.’ In fact, such lists can be obtained in

algorithm 1 when scanning through the unit sequence and storing them in B
′
p and B

′
n,

respectively. Let x1 and x2 be the counts when the pattern T is matched in B and

B
′
. Here B = {b1, b2, ..., bn} is constructed by linking Bp = {bp1, bp2, ..., bpn} and Bn =

{bn1, bn2, ..., bnn}, where bi =< bpi, bni >. Similarly, B
′
can be constructed by B

′
p and B

′
n.

The confidence of P is defined as follows.

confidence(P,B, B
′
) = x1/(x1 + x2) (6.11)

This metric is thus applied to compare with min conf and to validate whether the

temporal patterns are strong.

6.2.3 Temporal rules

Once the frequent and strong temporal patterns are obtained, temporal rules can be

built to facilitate the event detection. The principle is defined as follows.

Definition 6.6. Given two patterns, Pi and Pj, Pi Â Pj (also called Pi has a higher

rank than Pj) if

1. The confidence of Pi is greater than that of Pj, or

2. Their confidences are the same, but the support of Pi is greater than that of Pj, or
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3. Both the confidences and supports of Pi and Pj are the same, but Pi is more specific

than Pj (i.e., Pj is a subsequence of Pj).

The rules are in the form of Pi → E (targeted event). Let R be the set of generated

rules and Dv be the training database. The basic idea is to choose a set of high ranked

rules in R to cover all the target events in Dv. Such temporal rules are applied in the

data pruning process to generate a candidate event set and to alleviate class imbalance

problem in the data classification stage.

Adaptive metrics updating mechanism

The performance of the proposed approach is partially related to four parameters:

WP , WN , min sup and min conf . Among them, WP and WN can be determined

relatively straightforward as generally only the temporally adjacent shots have strong

association with the target events. Therefore, they can be set to any reasonably small

values such as 3 or 4. In addition, as discussed in Section 6.1, an advanced approach was

proposed to identify the significant temporal window with regard to the target event,

which can be incorporated into this framework to define the window size. Therefore, in

this section, an adaptive metrics updating mechanism is proposed to define min sup and

min conf in an iterative manner.

The richness of the generated patterns is partially dependent on min sup, which in

most existing works is defined manually based on domain knowledge. However, given a

training database, it is infeasible to expect users to possess knowledge of the complete

characteristics of the training set. Therefore, the proposed approach addresses this issue

by refining the support threshold SupTHk+1 iteratively based on the statistical analysis

of the frequent patterns obtained using threshold SupTHk. Given kth threshold SupTHk,

let Rk be the number of attributes in the largest frequent itemMultisets, we have Supkr =

{supportsofallr − itemMultisets}, where r = 1, ..., Rk. Equations 6.12 to 6.14 define

min sup.
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diff(r) = mean(Supkr)−mean(Supkr+1), r = 1, ..., Rk−1 (6.12)

rk = argmaxr(diff(r)) (6.13)





ifdiff(rk) > Rk/2 SupTHk+1 = (mean(Supkr)−mean(Supkr+1)

else min sup = SupTHk

(6.14)

where r = 1, ..., Rk - 1.

The idea is that the learned frequent patterns in the previous round can help reveal

certain knowledge regarding the training data set and thus help refine the support thresh-

old intelligently. Specifically, the biggest fluctuation is studied between the supports of

two adjacent itemMultisets. Since (r+1)-itemMultisets are rooted from r-itemMultisets,

if the difference is greater than Rk/2, the support threshold is adjusted to avoid the pos-

sible over-fitting issue and improve framework efficiency. Note that the initial support

threshold SupTH0 can be set to a reasonably small value.

For the confidence threshold, a similar criterion is adopted to examine the biggest

difference between two adjacent sequential patterns with the condition that the gener-

ated rules in R should be able to cover all target events in Dv. In other words, if the

newly defined confidence threshold ConTHk+1 causes the missing of target events in Dv,

ConTHk is chosen as min conf .

6.2.4 Experiments

To testify the effectiveness of the proposed temporal association mining approach,

the same experimental data set used in both Chapter 5 and Section 6.1 was adopted.

A set of temporal association rules were generated following the procedure addressed in

Sections 6.2.2 and 6.2.3. To apply the temporal association mining, in current imple-
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Table 6.6: Performance of goal event detection using temporal association mining.

# of goals Identified Missed Misidentified Recall Precision
Test 1 11 10 1 2 90.9% 83.3%
Test 2 14 12 2 3 85.7% 80.0%
Test 3 12 11 1 2 91.7% 84.6%
Test 4 11 11 0 2 100.0% 84.6%
Test 5 12 11 1 1 91.7% 91.7%

Average 92.0% 84.8%

mentation, a discretization process is performed first to convert the continuous feature

values into nominal values. In future work, fuzzy logic might be applied in this step

to further improve the performance. The constructed rules were thus applied as a data

reduction step to alleviate the class imbalance issue. Finally, the decision tree logic was

applied upon the ‘cleaned’ data set for event detection. Similarly, a 5-fold cross validation

scheme was adopted and the same metrics, recall and precision, were used to evaluate the

framework performance. Table 6.6 shows the experimental results. As can be seen, the

performance is improved in comparison to the results shown in Table 6.1 as the temporal

association mining offers an intelligent approach to not only capture but also represent

the characteristic temporal patterns.

The precision and recall values were computed for all the testing data sets in these

five groups (denoted as Test 1, Test 2, etc.) to evaluate the performance of the proposed

framework. As shown in Table 5, the “Missed” column indicates a false negative, which

means that the goal events are misclassified as nongoal events; whereas the “Misiden”

column represents a false positive, i.e., the nongoal events are identified as goal events.

From the above results, it can be clearly seen that the performance is quite promising

in the sense that the average recall and precision values reach 96.5% and 84.1%, respec-

tively. In addition, the performance across different testing data sets is greatly consistent.

Furthermore, the dependency on predefined domain knowledge is largely relaxed since

an automatic temporal association mining process is adopted in the framework to dis-
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cover, represent, and apply the characteristic event temporal patterns. As a result, the

framework possesses a greater potential to be applied to different domains.

6.2.5 Conclusions

As discussed in Section 2.2.3, currently high level indexing techniques are primarily

designed from the perspective of manual indexing or annotation as automatic high-level

video content understanding is still infeasible for general videos. With the ultimate goal

of developing a general and flexible framework which can be applied to different domains

with minor extra effort, a key aspect is to largely relax the reliance on domain knowledge

or a priori information. In response to such demand, in this section, an innovative

temporal association mining approach is proposed to effectively capture and represent

the characteristic context information for interesting events. Compared to most existing

works, the dependence on domain knowledge is largely relaxed with the assistance of

the automatic knowledge discovery method. In addition, different from the approach

discussed in Section 6.1, this framework offers a systematic principle to represent the

significant context information and takes into consideration the special challenges posed

by the class imbalance issue. This approach is thus an initial yet critical step in the

continuous efforts in automating the high-level indexing process. The effectiveness of

this framework is fully demonstrated by the experimental results.
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CHAPTER 7

Conclusions and Future Work

In this dissertation, a knowledge-assisted data management and retrieval framework is

proposed for Multimedia Database Management Systems (MMDBMSs). The main focus

of this work is to address three essential challenges: semantic gap, perception subjectivity

and data management. Taking image and video as the test beds, a variety of techniques

are proposed to address these challenges in three main aspects of a MMDBMS: multime-

dia data representation, indexing and retrieval.

In terms of image data representation, low-level features, such as color and texture,

are extracted from images. In addition, to capture the salient object information in the

images, an unsupervised segmentation technique called WavSeg is adopted to decom-

pose the images into homogeneous regions, where the object-level features are captured

correspondingly. Although a set of low-level and object-level features are captured by a

number of advanced techniques, they alone are inadequate to model the comprehensive

image content (semantic meanings). Therefore, a semantic network approach is proposed

to model the semi-semantic representation of the images in the image database. The se-

mantic network adopts the Markov Model Mediator concept and stochastically models

the affinity relationships among the images based on the accumulated feedback logs in

the database. As each feedback contains valuable semantic information with respect to

the similarity of the images, by probabilistic reasoning, the high-level knowledge from

general users’ viewpoints is not only captured, but also systematically modeled by the

semantic network to bridge the semantic gap.

To construct the video data representation, in this work videos are first decomposed

into a set of meaningful and manageable units, i.e., shots for analyzing. Shot-level multi-

modal features (visual and audio features) are then obtained by averaging frame features

across the entire shot. Alternatively, key frame(s) can be extracted to serve as a repre-
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sentation of the corresponding shots and its content is processed. Since each frame is

in fact a static image, some of the techniques, such as WavSeg algorithm, color/texture

feature extraction, adopted for image content analysis are also applied for shot bound-

ary detection and visual feature extraction. Since video streams are with complicated

content form and inherent temporal dimensions, a mid-level representation and temporal

knowledge discovery approaches are adopted to bridge the semantic gap. As discussed

in Section 5.2.2, the advantage of introducing mid-level representation is that it offers

a reasonable tradeoff between the computational requirements and resulting semantics.

The effectiveness of mid-level representation is fully demonstrated by the experiments.

However, it requires certain levels of domain knowledge and human effort. To relax such

dependency, two advanced knowledge discovery approaches are proposed with the aim to

automatically capture the characteristic context information to assist the video semantic

content analysis.

The various levels of media data representations result in a multi-level indexing scheme

to accommodate different kinds of query and retrieval requirements. In particular, for

video database management, a data classification mechanism is presented for high-level

video event detection and annotation with the assistance of both low-level features and

mid-level or knowledge-assisted data representations.

To serve for user’s specific query interests (i.e., perception subjectivity) and at the

same time ensure a fast convergence process, the MMM mechanism and RF technique

are integrated seamlessly to capture users’ perception in the image level. In addition, the

MMIR framework is proposed to effectively model users’ perception at both the image and

object-level based on users’ interactions. Furthermore, the MMM mechanism is extended

to enable image database clustering and cluster-based image retrieval to support efficient

image retrieval in a distributed environment.
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On the basis of current research results, the future work is proposed accordingly as

listed below.

1. Integration of multimodal features: In the current video mining framework, the

integration of different modalities is conducted by manually analyzing the tempo-

ral evolution of the features within each modality and the temporal relationships

between different modalities. More specifically, the audio and visual features are

aligned in the shot-level and it in many cases this might not be an optimal solution.

In future work, the modeling of each modality will be conducted by using statistical

models or temporal association rule mining scheme such that different modalities

can be integrated and temporal constraints can be accommodated.

2. The automatic temporal knowledge discovery provides great potential to facili-

tate high-level video analysis, indexing and annotation as they aim to relax the

framework’s dependence on domain knowledge or human effort. However, further

research effort is required to enhance these approaches. For instance,

• In the current temporal association mining algorithm, the size of temporal

window on which the algorithm is applied is not yet well-defined. A simple

assumption is adopted that for a temporal pattern to be significant in charac-

terizing a certain event, it should be found in its adjacent temporal segments

and the size is thus set to 5 (i.e., the temporal segment contains 5 consecutive

shots). Such a setting is rather ad hoc and is not dynamic enough to model

different events in various applications. In future work, the effects caused by

various window sizes should be first studied and a systematic method should

be proposed to determine the window size intelligently. In fact, the temporal

segment analysis algorithm targets deciding the size and location of the tem-

poral segment. Therefore, one possible solution is to integrate the temporal
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segment analysis approach with the temporal association mining framework.

Alternatively, the window size can be defined by a function associated with

the performance metrics, such as support and confidence values.

• The temporal association mining algorithm should be performed upon the

nominal attributes. For continuous values, a discretization process should

be applied beforehand. Currently, this process is conducted empirically. In

future work, fuzzy discretization or other discretization approaches might be

introduced in this step to reduce the information loss and boost the framework

performance.

• Effective spatio-temporal indexing for video database remains an open issue.

In this study, the proposed temporal segment analysis and temporal associa-

tion mining algorithm possess the capabilities of capturing the characteristic

temporal segment and important context information for a specific event unit.

Such information is essential not only for event detection but for temporal in-

dexing, as basically it represents the temporal evolution of the video activities.

Future research can be conducted to construct a feasible mechanism to utilize

the temporal analysis results in temporal indexing.

3. In terms of video event detection, the current classification algorithm aims to min-

imize the expected number of errors with the assumption that the costs of different

misclassification errors are identical. However, in many real application domains

such as medical diagnosis, surveillance videos or even sports videos, the event class

is usually rare and the cost of missing a target event (false negative) is generally

greater than including a nonevent (false positive). In such domains, classifier learn-

ing methods that do not take misclassification costs into account might not perform

well. For instance, in rare event detection, the influence of rare events will be over-

shadowed by the majority class and the classification model is built in favor of the
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majority class. Therefore, cost-sensitive classification approaches can be adopted

which perform the data classification with non-uniform costs. A possible solution

is to define the cost matrix where the cost of a false negative is set to be higher

than that of a false positive. Essentially, the goal is to build a classifier to minimize

the expected misclassification costs rather than to minimize the expected number

of misclassification errors.

4. In general, a large set of attributes are extracted to represent the media content.

However, such high-dimensional data representation poses great challenges towards

media data management. In fact, various attributes might be correlated in the sense

that they contain redundancy information. In addition, some features contain noisy

information which actually deteriorates the overall performance. Moreover, the

discrimination between classes becomes much more difficult with a high dimensional

feature set because the training samples are likely scattered in a high-dimensional

space. Therefore, an automatic feature selection scheme is of great importance to

improve both the effectiveness and efficiency of a MMDBMS.

5. Future research efforts will also be directed to develop a better interaction scheme

and faster converging process to alleviate the manual effort in media retrieval.

Generally, for an interactive CBR system, the query performance is achieved at

the cost of huge human effort. Take the relevance feedback system as an example.

Normally, users are asked to go through 3 to 4 iterations to provide their feedback

(positive, negative, or even the level of relativity in some approaches) for tens of

images in each iteration. It can be expected that the level of manual effort required

for image retrieval will be one of the most important factors that determine the

potential and popularity of the CBR system in the real application domains. In this

proposal, a semantic network is proposed to accumulate and analyze the historical

feedback to improve long-term system performance and to speed up the converging
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process. However, currently the feedback information is not fully utilized as only

positive feedback is analyzed in constructing the semantic network. This work can

be further extended to probabilistic learning of not only the positive and negative

feedback, but also the level of relativity (if provided).

6. With the prosperity of the Internet, the Web has become a huge repository for vari-

ous media data and image retrieval from the Web has attracted increasing attention.

Some well-known search engines such as Google and Yahoo! generate search re-

sults by using automated web crawlers, such as spider and robot. However, general

search engines often provide inaccurate search results since they are designed to be

keyword-based retrieval, which as discussed in Section 2.1.3 has large limitations.

A solution to address this issue is to construct the web crawler by using a content-

based image retrieval mechanism, which improves the rudimentary searching results

provided by the general Internet search tools. For this exciting new application do-

main, many techniques addressed in this proposal can be applied but need further

adjustment or customization. For instance, although low-level feature extraction

in general image databases has certain efficiency requirements, it is becoming even

more critical for Web image searching. In addition, a semantic network constructed

for general image databases effectively bridges the semantic gap by stochastically

analyzing the accumulated feedback log. Intuitively, this mechanism will be of great

help for Web image searching as well. However, a problem exists as how to collect

and accumulate the feedback logs. It is also possible that the semantic network

needs to be constructed by using different information sources.

Each of the topics mentioned above is of great importance for a successful MMDBMS

and will be addressed by leveraging the current research framework.
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