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Abstract—Deep Learning (DL) has made significant changes
to a large number of research areas in recent decades. For
example, several astonishing Convolutional Neural Network
(CNN) models have been built by researchers to fulfill image
classification needs using large-scale visual datasets success-
fully. Transfer Learning (TL) makes use of those pre-trained
models to ease the feature learning process for other target
domains that contain a smaller amount of training data. Cur-
rently, there are numerous ways to utilize features generated by
transfer learning. Pre-trained CNN models prepare mid-/high-
level features to work for different targeting problem domains.
In this paper, a DL feature and model selection framework
based on evolutionary programming is proposed to solve
the challenges in visual data classification. It automates the
process of discovering and obtaining the most representative
features generated by the pre-trained DL models for different
classification tasks.

Keywords-evolutionary programming; deep learning; image
classification; transfer learning;

I. INTRODUCTION

Multimedia research is a unique research area that offers
vibrant and dynamic solutions across individual traditional
disciplines. Multimedia data, such as image, video, audio,
and text, can be found in almost every research area. Many
research disciplines undergo fast developments by studying
those data [1][2]. Within the multimedia community, re-
search activities that generate broad outcomes can benefit a
vast amount of research topics, including multimedia content
understanding, multimodal human-computer interaction, etc.
Image classification, as one of the fundamental research
topics in multimedia, plays a vital role in both industry and
academia and keeps improving by leveraging more advanced
techniques [3]. Meanwhile, high-resolution data generated
by various types of devices every second conveys more
information that significantly improves the quality of the
visual data and thus requires more effective and efficient
approaches to deliver reliable solutions. In recent decades,
Deep Learning (DL) has shown high impacts in multimedia
research. For example, image classification and audio recog-
nition keep reaching higher and higher accuracies and even
break the ability of human beings. Therefore, DL approaches

have been widely utilized in addressing multimedia data
mining challenges such as video classification.

DL approaches transform the data in different ways for the
feature extraction, feature generation, and feature learning
processes altogether, which consolidates the complicated
training process. They take raw data as the input to establish
an accurate data representation model. However, designing
and building an extraordinary DL model requires both ex-
pensive computational facilities and vast volumes of training
data. It is unlikely that every researcher can build a single
model from scratch for each research aim. Adopting a pre-
trained model and transferring the knowledge that has been
learned previously can significantly reduce the training time
and complexity to maintain an adequate model performance
while working on a new application domain. There are many
pre-trained models that were built on either the same or
different training datasets, enabling them to perform Transfer
Learning (TL). Thus, researchers need to make decisions on
which model should be used for a specific purpose. There
is no universal model that can always produce outstanding
results for every research aim. In addition, for an under-
discovered dataset, which layer in the selected pre-trained
model could produce the most representative and discrimi-
nated features for a specific task is not determined.

Although TL brings many possibilities to lots of research
areas, little work has been done to investigate methods
that can automatically determine a pre-trained model with
the potential high-performance layers for feature extrac-
tion [4][5]. Among those optimization/search algorithms,
Genetic Algorithm (GA) and Evolutionary Programming
(EP) are two potential ones to achieve this objective [6][7].
The advantage of this family of algorithms is to perform
global optimization without depending on probability dis-
tributions. In this paper, the advantage of EP over GA
is explored by mainly utilizing gene mutation operations
for automatic pre-trained DL models and feature selection.
We anticipate that the crossover operation in GA is not
necessary for the process to obtain an optimal solution while
considering advance mutation operations.

The rest of this paper is organized as follows. In sec-



tion II, several optimization/search algorithms that have
been introduced into DL research are discussed. Section III
describes the proposed workflow in details, followed by a
set of experimental results in section IV. Lastly, section V
concludes this paper.

II. RELATED WORK

Since a very early age, many advanced research areas,
including DL now, incorporated the concepts of genetic
science [8][9][10][11] to effectively solve non-deterministic
polynomial hard problems, for example, finding the optimal
number of hidden layers in a deep learning model. Several
researchers have concluded that GAs are superior to other
searching algorithms (such as grid search) when solving the
search and optimization problems by finding a set of ideal
solutions near the global optimal. The experimental results
in [9] indicated that a GA-assisted approach improves the
performance of a deep autoencoder. Multiple weights of one
neural are stored and evolved via genetic operations, and
only the higher rank weights are selected for backpropaga-
tion while the rest are disregarded. Other than that, deciding
the number of layers before training a neural network is
critical as the structure of the network is fixed when the
training process starts. In [8], the authors used GA for both
input feature selection and time series model building. A
GA selects the optimal number of time lags to organize
the inputs and the number of hidden layers for a Long-
Short-Term-Memory (LSTM) deep network model from pre-
defined ranges of time lags and layers.

Many research disciplines adopt GAs to explore ample
search space efficiently. Considering DL, particularly, the
number of possible network structures increases exponen-
tially when the number of layers varies. Xie and Yuille
proposed a genetic Convolutional Neural Network (CNN) in
2017 for automated deep network structures learning [11].
Specifically, they proposed an encoding method to define
a fixed-length binary string to represent different network
structures. Standard genetic operations, such as selection,
crossover, and mutation, are defined to select individuals that
obtain a higher recognition accuracy on a reference dataset.
Most recently, Miikkulainen et al. proposed CoDeepNEAT,
an automated method, for optimizing deep learning archi-
tectures through evolutions [10]. Their method achieves per-
formances that are comparable to best human designs using
standard benchmarks regarding object recognition and lan-
guage modeling tasks. Neuroevolution methods are utilized
for network construction, including topology, components
designing, and hyperparameters selection. They also claimed
that the CoDeepNEAT method could support automated
image captioning. Overall, the evolution of deep networks
is a promising approach to construct deep learning models
giving that available computing power is expected to be
further enhanced in the future.

Different from GA, EP heavily relies on the mutation
operation to generate new genes. Mutation strategies are
essential for EP to discover offspring far different from
the parents [12]. Comparing to a few researchers who have
successfully evolved networks with reinforcement learning
and long-short-term memory, very few have attempted to
optimize the deep CNN structure using the evolutionary
programming approaches. These approaches aim to evolve
the network structure and then subsequently optimize the
hyper-parameters of the network. However, a mechanism to
evolve the deep network structure under the techniques cur-
rently being practiced in the manual process is still absent.
The incorporation of such techniques into the chromosome
level of evolutionary computing can certainly take us to
better topological deep structures. Dias et al. identified the
gap between the evolutionary based deep neural networks
and the deep neural networks, and concluded some insights
for optimizing deep neural networks using the evolutionary
computing techniques [6].

III. PROPOSED FRAMEWORK

In Figure 1, the overall workflow of the proposed frame-
work is depicted. For each dataset, the raw data is organized
as the input for different pre-trained DL models (e.g., N
models). The models have been trained on some large
datasets, such as ImageNet. Each model is designed with
different numbers of layers that can be considered as a
collection of feature extractors. For example, X layers in
model 1 can generate X sets of features.

Gene evolution first happens in the layer selection phase.
By encoding each layer’s id as a unique gene, gene evolution
evaluates each layer’s performance on a validation dataset
and generates a ranked list of potential feature candidates.
This process keeps evolving for several generations to output
the final ranking for the top layers. After the top feature can-
didates (individual layers) are selected, the feature selection
phase also utilizes the gene evolution process to determine
whether multiple feature sets should be included to improve
the current model’s performance. This process imitates the
design in some of the pre-trained DL models: Concatenation
happens in the middle of the model, which selects multiple
early layers’ outputs to form a new layer. Every gene gets
a score from the fitness calculation. The top one feature
combination is the final feature set for a pre-trained model.
All model performances are evaluated using the best feature
combination on the validation dataset through the fitness
score calculation and ranking to determine the final feature
set that performs the best on the current dataset.

A. Gene Evolution

The gene evolution process shown in Algorithm 1 is
repeatedly used in both the layer selection phase and the
feature selection phase. Differences between these two sce-
narios are handled by the GeneEncoding() function which
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Figure 1. Proposed framework for deep learning model selection using Evolutionary Programming

sets up the restrictions for the initialization function. In layer
selection, it considers the maximum number of layers that
can be used for feature extraction of each specific model and
converted each particular layer ID into a binary string as a
unique gene to represent an individual layer. For instance,
a string “11001” (binary format of decimal number 25) can
represent layer ID 43 with a shift value of 18 from number
0. The length of the gene can vary for each model since
the number of layers available for each model is different.
Besides, the shift value is explicitly defined for each model
to disregard the very first layers containing very low-level
features. In the feature selection phase, one gene encodes the
selection of every feature candidate as a binary value into the
gene string. The length of the gene in this stage equals the
total number of layers designed to be selected as potential
feature extractors from layer selection. It is empirically
set to be equal to the number of individuals obtained by
the population retaining operation. Value 1 means a set of
features is selected, while value 0 means this set of features
is not chosen. Thus, string “0010” represents only the third
set of features is selected for the final model training.

Three genetic operations occur in each generation (line
7 to line 23). They are population retaining, random se-
lection, and mutation. For every generation, a fitness score
is calculated for each individual in the current population.
Then, the individuals are ranked in the descending order by
their scores. Only the top portion of the individuals will be
retained as the candidates to evolve in the next generation
(40% in the proposed model). The random selection oper-

ation randomly adds some low-performance individuals to
participate in the mutation operation with a 0.1 probability.
The mutation operation looks through every binary value of
one randomly selected gene to determine whether each piece
of the gene should be changed or kept. The mutation rate
is set to 50% in line 3, which means that for every binary
number (a piece of gene) in a particular gene, the probability
of changing or keeping the current piece is equal.

As the primary purpose of the proposed framework is to
identify the best features that can be learned from the pre-
trained deep learning models, linear Support Vector Machine
(SVM) models are adopted for feature strength evaluation.
Though more powerful classification models can replace the
SVM model when considering final stage high-level feature
training, the linear SVM models are efficient enough to
evaluate each individual’s wellness during every generation
repeatedly. Hence, in the proposed framework, each SVM
classifier is trained using the feature set represented by
an encoded gene as the input to build a model on the
target classification domain. The model’s performance on
the validation dataset depicts the wellness of this individual.
Then, fitness score is defined as the averaged F1 score of
the output among every prediction concept. This score is
defined by the following equation.
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where P! and R! stand for precision and recall respectively



Algorithm 1: Gene Evolution

1 RETAIN <« 0.4; SELECT <+ 0.1,
MUTATE + 0.5

2 GeneEncoding(); Population < Initialization()

3 for individual i € Population p do

4 calculate FITNESS FUNCTION f ()

5 gradeli].score < f(i)

6 Sort grade in descending order

7

8

9

# Population Retaining
topGrade = gradel0 : RETAIN x grade.size]
restGrade = grade[RETAIN % grade.size :
grade.size]

10 for = € topGrade do

1 parents.append(x)

12 # Random selection

13 for z € restGrade do

14 if SELECT > random() then

15 parents.append(x)

16 size < Population.size — parents.size

17 # Mutation

18 while children.size < size do

19 select candidate randomly from parents
20 for i € range(candidate.length) do

21 if MUTATE > random() then

2 MUTATE(candidateli])

23 children.append(candidate)
24 parents.append(children)
25 return parents

Table T
THE PRE-TRAINED DL MODEL CANDIDATES WITH THE AVAILABLE
NUMBER OF FEATURE CHOICES

Models Layers | # combinations
InceptionV3 94 947
ResNet50 64 647%
MobileNet 13 132
DenseNet201 80 80%
Total combinations - 3.41E32

for every class ¢ € C and instance ¢ in the validation dataset.

IV. EXPERIMENTAL RESULTS

Four pre-trained DL models currently included in the
framework are listed in Table I. Each model has a different
number of layers that are available for feature extraction.
Since the retaining rate in the gene evolution is set to 0.4,
and the number of individuals in one generation is set to 10,
4 (10*0.4) individuals are reliable for better performance in
the last generation. Therefore, the feature selection phase
considers combinations of the top 4 feature sets for each
model. The last column in the table shows the total number
of possible combinations for each model. The total number
of combinations to output the final model decision reaches

3.41E32, which is not manageable by handpicking or ex-
haustive search.

Four visual datasets are used in the experiments to
evaluate the proposed framework’s performance. Two of
them are balanced while the rest are imbalanced. A balance
dataset shares approximately the same number of instances
for every concept. On the contrary, the total number of
instances for each concept in an imbalanced dataset may
vary. The statistical information for the two imbalanced
datasets can be found in Table II (Network Camera 10K
and Disaster). Having a model to classify instances in an
imbalanced dataset is more challenging since simple models
are usually easy to be biased to the majority class and ignore
the minority ones. In the Network Camera 10K dataset,
images are captured from the surveillance camera system,
and the majority concept is “Highway” which takes 1/3 of
the total number of instances. The majority concepts in the
Disaster dataset are “Flood and Storm” and “Speak”. As
the total number of instances is depicted in the table, 20%
of the instances for each concept are randomly selected to
form the testing dataset. Then, another 20% of the instances
from the rest are further separated into the validation set.
The validation data is used in the training phase to evaluate
the fitness of a particular generation after training the SVM
classifier. In the Disaster dataset, about 1,500 YouTube
videos related to two hurricane events are used to generate
the keyframe images. Each keyframe image contains one
single concept to represent the entire video’s semantic. In
Year 2017, Hurricane “Harvey” happened first in the state
of Texas and followed by Hurricane “Irma” which majorly
affected Florida. The first hurricane event is used as the
training dataset, and the second one is used as the testing
dataset. Besides, 20% of the instances for each concept
from the training set is further selected as the validation
dataset. The other two balanced datasets, CIFAR10 and
MNIST-Fashion, are publicly available. CIFAR 10 includes
10 classes that cover animals and objects. MNIST-Fashion is
a replacement of the original MNIST dataset, which collects
grayscale images of 10 clothing types.

Table III compares the proposed EP method with the
other three algorithms (all from the evolutionary algorithm
family). They are different in the way how specific genetic
operations perform. Single position mutation EP does not
incorporate crossover operations like GA. Besides that, for
a length | gene code, only one position in each gene can
be randomly selected for the mutation operation during
each generation. GA w/o mutation excludes the mutation
operations in the evolution process. Therefore, creating a
new gene relies completely on the crossover operation.
In regular GA algorithms, both mutation and crossover
operations are included, in which the mutation operation
only changes one position for one selected gene once in a
generation. We report Precision, Recall, Averaged F1 score
(Avg. F1), and Weighted Averaged F1 score (W. Avg. F1)



Table II
THE STATISTICAL INFORMATION OF THE NETWORK CAMERA 10K AND DISASTER DATASET

Network Camera 10K Disaster
No. Concepts Instances | No. Concepts Instances | No. Concepts Harvey | Irma
1 Intersection 855 8 Yard 161 1 Demonstration 42 8
2 Sky 495 9 Forest 139 2 Emergency Response 81 20
3 Water Front 978 10 Street 431 3 Flood and Storm 426 177
4 Building+Street 603 11 Parking 99 4 Human Relief 70 1
5 Park 499 12 Building 243 5 Damage 42 172
6 Montain View 719 13 Highway 3724 6 Victim 75 16
7 City 432 14 Park+Building 149 7 Speak 347 63
Total 9527 Total 1083 457
Table IIT
EVALUATION RESULTS ON FOUR DATASETS
Datasets Algorithms Final Model | Precision | Recall | Avg. F1 | W. Avg. F1
EP w/ one position mutation | InceptionV3 0.3192 0.3084 0.2514 0.3937
Disaster GA w/o mutation InceptionV3 0.3215 0.3256 0.2747 0.3920
Genetic Algorithm ResNet50 0.3212 0.3276 | 0.2867 0.4430
EP Top 1 Layer ResNet50 0.2624 0.2652 | 0.2302 0.3981
Proposed EP Method ResNet50 0.3186 0.3440 | 0.2910 0.4432
Network EP w/ one position mutation | InceptionV3 0.6644 0.5896 0.6108 0.7705
Camera GA w/o mutation ResNet50 0.6391 0.6081 0.6175 0.7761
10K Genetic Algorithm InceptionV3 0.6508 0.6339 0.6409 0.7985
EP Top 1 Layer InceptionV3 0.6434 0.6173 0.6278 0.7768
Proposed EP Method InceptionV3 0.6582 0.6405 | 0.6479 0.7957
EP w/ one position mutation ResNet50 0.8996 0.8995 0.8995 -
CIFARI0 GA w/o mutation ResNet50 0.8934 0.8928 0.8930 -
Genetic Algorithm ResNet50 0.9063 0.9061 0.9061 -
EP Top 1 Layer ResNet50 0.8996 0.8995 0.8995 -
Proposed EP Method ResNet50 0.9073 0.9069 0.9070 -
EP w/ one position mutation ResNet50 0.9282 0.9285 0.9282 -
MNIST GA w/o mutation ResNet50 0.9282 0.9285 0.9282 -
-Fashion Genetic Algorithm ResNet50 0.9289 0.9292 0.9289 -
EP Top 1 Layer ResNet50 0.9260 0.9263 0.9260 -
Proposed EP Method ResNet50 0.9294 0.9298 | 0.9294 -
Table IV
LAYER SELECTION AND COMBINATION: PROPOSED EP v.S. GA
Datasets Models Top 1 Top 2 Top 3 Top 4 Combine
EP Gene 11001 11111 01101 11011 0101
Disaster Layer | activation_43 | activation_49 | activation_31 activation_45
(ResNet50) GA Gene 10001 10000 11111 00001 1111
Layer | activation_35 | activation_34 | activation_49 | activation_19
Network Camera | EP Gene 110000 110100 001011 100011 1011
10K Layer | activation_78 | activation_83 | activation_41 activation_65
(InceptionV3) GA Gene 011110 101111 010111 010110 1111
P Layer | activation_60 | activation_77 | activation_53 | activation_52
EP Gene 11100 11111 11001 11101 1110
CIFAR10 Layer | activation_46 | activation_49 | activation_43 | activation_47
(ResNet50) GA Gene 11111 11001 11101 11010 1111
Layer | activation_49 | activation_43 | activation_47 | activation_44
EP Gene 10011 10000 10110 11000 0101
MNIST-Fashion Layer | activation_37 | activation_34 | activation_40 | activation_42
(ResNet50) GA Gene 10011 10000 11000 10111 1011
Layer | activation_37 | activation_34 | activation_42 | activation_41

for each dataset per algorithm in Table III. For each dataset,
the results by only using our EP method to select the
top one feature layer are also given in the row before the
proposed EP method. As can be seen from the comparison
results, the proposed method can select the best feature layer

comparing with the first two algorithms. However, the single
feature layer’s strength is not comparable with the final
proposed framework, which considers feature combination.
Thus, the experiments demonstrate that feature combination
is necessary when considering knowledge transfer across



different datasets. Both GA and the proposed EP method
identify the same model for the final feature generation for
every dataset. However, the EP algorithm reaches higher
Recall and Avg. F1 for all datasets. Only for Network
Camera 10K dataset, EP performs 0.28% worse than GA
in W. Avg. F1. However, it obtains higher results for all the
other three criteria. An explanation for this issue could be the
follows: because the evolution process in the proposed model
takes Avg. F1 instead of W. Avg. F1 for each individual’s
fitness calculation, W. Avg. F1 is not seeking the most
optima during the training time. This can be easily obtained
by redefining the fitness function.

In Table IV, we go one step deeper to analyze which
feature sets are discovered when using GA and EP in our
proposed framework. The top 4 layers in the final ranking list
and the final feature layer combinations are compared. As
can be found from the above table, for different datasets, the
feature performances are notably diverse. Top layers that ap-
peared in EP and GA models can be completely different or
overlap. For example, layers id 37, 34, and 42 in ResNet50
are identified by both EP and GA in the top 4 layers when
classifying images from the MNIST-Fashion dataset. Layer
42 ranks the third in the GA model but the fourth in the EP
model, which depicts that one layer with better performance
appeared in the EP model (layer 40). Though the final feature
combination does not incorporate layer 40 in the final model,
in the same numbers of generations, EP identifies a better
feature combination (concatenating features from layer 34
and layer 42) that is superior to the feature combination
selected in GA. Notably, after examining the feature layers
selected for the final model training, sorting all layers from
one model and then selecting the top layers do not always
promise an outstanding performance. A combination of less
powerful feature layers may outperform the top one layer’s
performance. Also, utilizing the top layer features, together
with other features, can downgrade the model performance
for some datasets. GA tends to repeat a similar portion
of predecessors as the parents who gained higher fitness
scores in early generations. However, EP is more capable
of identifying sparse individuals from each population.

V. CONCLUSIONS

In this paper, we propose to utilize EP to perform DL
feature and model selection for visual data classification.
This framework considers each layer in a pre-trained DL
model as an individual that carries a unique gene in the
population and uses advanced genetic operations to explore
the optimal solution automatically. The experimental results
prove that the crossover operation is not necessary for
identifying an optimal solution within a restricted number
of generations. Evolving the gene for the same number of
generations as GA, EP generates new genes via the mutation
operation, which carries a set of more characteristic features.
Regarding the final generation’s individuals selected by GA

and EP, EP could find better genes with higher performance
while being more diverse from each other.
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