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Abstract—As the development of Virtual Reality and 
Augmented Reality (VR/AR) technology rapidly advances, 
learning in an artificial immersive environment becomes 
increasingly feasible. Such emerging technology not only 
facilitates and promotes an efficient learning process, but also 
reduces the cost of access to learning materials and 
environments. Current research mainly focuses on the 
development of immersive learning environments and the 
adaptive learning methods based on interactions between 
trainees and the environment. However, valuable human 
biometric data available in immersive environments, such as eye 
gaze and controller pose, have not been explored and utilized to 
help understand the affective state of the trainees. In this paper, 
we propose a machine-learning based research framework to 
estimate trainees’ confidence about their decisions in immersive 
learning environments. Using this framework, we designed an 
experiment to collect biometric data from a multiple-choice 
question and answer session in an immersive learning 
environment. This includes collecting answers from 10 
participants on 35 questions and their self-reported confidence 
in their answers. A Long Short-Term Memory neural network 
model was used to analyze the data and estimate the confidence 
with 85.6% accuracy.  
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I.  INTRODUCTION 
Immersive environments built with Virtual Reality or 

Augmented Reality (VR/AR) technology are in the initial 
phase of development as a way to provide a scalable and 
affordable learning environment. Early studies have 
demonstrated a marked increase in trainees’ skills, 
knowledge, and motivation while completing coursework in 
such environments [1]. Some examples of related VR/AR 
applications include: an automotive mechanic VR training 
system to better study complex parts of automobiles [2], 
motherboard assembly training using adaptive learning and 
computer vision techniques in AR [3] and providing a 
guidance system for catheter-based minimally invasive 

surgery [4], among many others. These training platforms are 
very hands-on, making VR/AR an attractive alternative to 
more traditional approaches that involve expert instructors 
and example/correction activities, which can be both time-
consuming and expensive [5]. 

The ability to put 3D objects in an immersive space and 
directly manipulate them can enable the exploration of novel 
ways to present educational content, such as teaching a 
computer science course as an interactive escape room [6]. 
Furthermore, it allows for a more intuitive way to visualize 
concepts that would otherwise be physically impossible or 
extremely resource-intensive to actually observe [7]. With 
this, trainees can engage in more hands-on work, for which a 
lack thereof has been a common complaint among trainees in 
education software such as Massive Open Online Courses 
(MOOCs) [8]. Immersive environments have also been found 
to aid in the trainees’ understanding, enabling rapid skill 
development [3]. 

In addition to advanced visualization techniques, a VR/AR 
environment is a well-suited medium to incorporate an 
Adaptive Learning System (ALS). These systems can create 
tailored instruction for different types of trainees or allow 
access to detailed real-time analytics to an instructor, which 
has initially shown positive effects on trainee learning [9]. 
While the problem of tailored instruction is considered non-
trivial, VR/AR environments allow for the collection of large 
amounts of both assessment data and environmental/biometric 
data, which can be used to model and train an ALS. 

Many current approaches to creating an ALS for 
immersive environments involve using on-board sensors on a 
VR/AR headset, along with external hardware/software for 
extra sensory input and to run the algorithms that are the core 
of the ALS. Some examples include leveraging sensor fusion 
with an on-body sensor network and computer vision module, 
which is then fed into a petri-net for accurate workflow 
recognition [5], using a mixture of on-device input such as 
eye-gaze along with external objects such as Kinect sensors 
and gloves used across different interaction layers to provide 
haptic and auditory output [10], and using AR video/tracking 



to communicate over TCP/IP with a custom tutoring system 
using ASPIRE [3]. 

One major building block in an ALS is estimating the 
trainee’s proficiency throughout the provided learning content 
in order to make decisions. This can be non-trivial, especially 
in an unstructured immersive environment where a large set 
of possible inputs need to be accounted for when interacting 
with the learning content. Paired interaction data have been 
found to be a good indicator for trainee knowledge in a more 
traditional environment [11], as well as Item Response Theory 
(IRT) in the realm of multiple-choice examination [12]. 

In this paper, we propose a general framework for 
confidence estimation within an immersive environment. We 
developed a prototype system using a Magic Leap One 
headset in the context of a multiple-choice question 
assessment. Various types of data were collected in the 
immersive environment, including the layout of the 
environment, eye-gaze data, controller pose data, and event-
driven data from the assessment itself, without any external 
hardware other than the existing sensor suite on the headset. 
The collected multimodal data were found to allow for 
accurate tracking of a trainee’s understanding of the content 
using a Long Short-Term Memory (LSTM) neural network 
model. The proposed confidence estimation framework has 
the potential to provide better understanding of the trainees’ 
learning status and accelerate their learning progress. 

II. RELATED WORK 

A. Learning in Virtual Environment 
There is an emerging trend to train professionals in 

VR/AR immersive environments. This can allow for research 
work into improving user experience, efficiency, flexibility, 
and scalability of training for professionals needing new skills 
in a self-contained package. It can also allow for the 
democratization of learning, leading to low-cost and effective 
simulation solutions, which traditionally would have been 
prohibitively expensive for many educational institutions [1]. 

Furthermore, emerging AI techniques can enable the 
integration of adaptive learning (commonly applied to e-
learning systems) in an immersive environment. Adaptation 
can be applied to five core technologies of VR, which are: 
haptic devices, stereo graphics, adaptive content, assessment, 
and autonomous agents [10], which would be leveraged to 
create an ALS. Research into ALSs and Massive Open Online 
Courses (MOOCs) can help inform an initial framework and 
highlight what problems can be solved by learning in an 
immersive environment, along with the difficulties in 
adapting such a system. Working with labeled knowledge 
units, learning paths for working through these units, and an 
AI system for creating these paths are some ideas that could 
enhance the trainee experience in learning systems like 
MOOCs [8], which could also be extended to immersive 
environments. 

ALSs typically adjust the training content and difficulty 
based on a trainee's performance using one or more of the 
aforementioned techniques. In [2], a performance evaluation 
module was incorporated in a 3D model assembly training in 
the VR environment to adjust the difficulty and complexity of 

the training materials automatically. Similarly, in [3], 
researchers built an ALS that automatically generated 
feedback based on trainee's performance during AR 
motherboard assembly training. The integration of such a 
training system was shown to improve the efficiency and 
effectiveness of training in the immersive AR/VR 
environment. 

AI-based computer vision techniques can help recognize 
the scene and events in the immersive enviornment, allowing 
for adaptation of training materials to happen in real-time. It 
can also be used to estimate workflows that trainees are taking 
for tasks with multiple parts, comparing it to expert instruction 
and giving feedback accordingly. Westerfield et al. [3] have 
shown that trainees who learned with context-based materials 
in a VR/AR environment can achieve better learning 
performance (25% higher test scores) and efficiency (30% 
faster speed), compared to video-based materials. 

B. Machine Learning on Temporal Data 
In immersive environments, various types of data, 

including biometric data, can be collected continuously as the 
user interacts with the environment, i.e., data are collected in 
the form of temporal data [13]. Various machine learning 
methods can be applied in order to learn patterns and build 
models based on such data. Hidden Markov Models (HMMs) 
[14], for example, are one of the most widely applied 
techniques to model temporal data. For example, human 
activities can be recognized by an HMM based on the data 
collected from a set of depth sensors in the context of a smart 
environment [15]. 

As high-performance computation accelerators such as 
Graphical Processing Units (GPUs) become more and more 
affordable, deep neural network techniques can be explored 
for analyzing and modeling temporal data. Recurrent neural 
networks (RNN) [16] have a unique deep neural network 
architecture designed to learn patterns in a sequence of data. 
The temporal dependencies among the data are modeled by 
the parameters in the RNN and are capable of extracting high-
level knowledge about the data, which are useful for 
downstream tasks such as forecasting, temporal data 
classification, or language modeling. The LSTM [17] is a type 
of RNN that introduces a three-gate architecture to resolve the 
vanishing gradient problem typical of most RNN architectures 
and has shown superior performance in many applications 
including video classification [18], language modeling [19], 
and gesture recognition [20]. 

C. Confidence Estimation 
Confidence estimation in the context of trainee 

understanding, decision-making, and proficiency has been a 
field of active research for many years, with the goal of 
producing accurate models of trainee learning upon which an 
ALS could be built. Bayesian Knowledge Tracing (BKT) has 
been a mainstay in the field for knowledge modeling, with 
other algorithms such as the deep learning-based Deep 
Knowledge Tracing (DKT) being shown to have a substantial 
performance advantage [21]. 

Item-response theory was demonstrated as an alternative 
to grading for gauging trainee learning proficiency, by going 



down to the question level and using metrics for question 
difficulty to aid in finding the probability that a trainee will 
answer it correctly [12]. This technique is well-suited for 
multiple-choice assessments, wherein the software system 
could predict how well a trainee will theoretically do on an 
assessment and can be the basis of an ALS. 

Using paired interaction data with tutoring software has 
also been used to gauge proficiency in a more open-ended 
environment, such as that of a VR/AR immersive 
environment. This technique seeks out patterns of behavior 
that trainees take and determines which ones are indicators of 
good or bad scores on certain kinds of content using machine 
learning [11]. This could be very beneficial for more hands-
on or laboratory work, which has been the main driver and 
focus for education within immersive environments. 

III. MACHINE-LEARNING-BASED CONFIDENCE 
ESTIMATION FRAMEWORK 

A. Framework Architecture 
Confidence estimation, an essential technique for in-depth 

understanding of learning status, evaluates whether trainees 
are confident about their answers or decisions to accomplish 
an assigned task. It provides cues to better understand why the 
trainees make decisions and can be used to customize training 
based on the observations, potentially accelerating the 
learning progress. 

Compared to a conventional learning environment, 
biometric data, such as eye gaze and hand pose, can be easily 
collected in an immersive learning environment and can be 
helpful for confidence estimation. Thus, in this section, we 
propose a general framework to perform trainee confidence 
estimation in an immersive learning environment, as well as 
describe how a machine learning model, the LSTM, can be 
trained to estimate the trainee confidence for a specific task.  

As shown in Figure 1, the sensor and camera data were 
collected using a VR/AR engine (Unity) along with a list of 
registered events in the environment (e.g., a button click). The 
sensor and camera data are synchronized with the registered 
event based on the system clock, and after that, the data are 
preprocessed appropriately. For example, the positions of eye 
gaze might need to be projected to a canvas in the immersive 
environment or the registered events might need to be encoded 
(e.g., one-hot encoding) for dense feature representations.   

Once the data have been preprocessed and synchronized, 
the data can be used for either model training or model 
inference. To train the trainee confidence estimation model, 
the synchronized data were logged to disk. A confidence 
survey was completed right after the users accomplished the 
test in the immersive environment, where the users were asked 
how confident they were about their answers. So, the ground-
truth confidence was collected from the trainees as a self-
reported evaluation and used to train the trainee confidence 
estimation model using a supervised learning approach. Once 
a pre-trained model was ready, it was sent to the model 
inference environment, and the synchronized data was 
buffered in memory and fed into the pre-trained model, as it 
was collected. The model inference environment can be the 
same as the immersive learning environment or a completely 
different environment. If the trainee confidence estimation 
model is so large as to be computationally expensive, the 
model can be deployed as a cloud service and the buffered 
data can be transmitted to the cloud for trainee confidence 
estimation. 

B. Data Collection 
Since the trainee confidence estimation model draws all its 

input data from the learning environment to train the model 
and run inference, it is important to make sure that all the 
collected data are synchronized appropriately. Therefore, each 
type of data is handled by a separate process in the immersive 
learning environment to fetch data from the sensor, camera, 
and monitored events. A first-in-first-out (FIFO) queue is 
maintained by each process, where the data are pushed into. 
Once the data are pushed into the queue, the corresponding 
data preprocessing function is applied to the data and the 
preprocessing is executed in a separate process. An additional 
process is used to handle data synchronization and data 
collection. It pulls data from the queues after the 
preprocessing and either saves them into the logs for training 
or puts the processed data into the inference buffer. Figures 2 
and 3 show the data synchronization and data collection 
systems, respectively. The data collection system is primarily 
meant for temporal sensor data as long as the event logs are 
triggered by signals in the VR/AR engine.  

 
Figure 1.  Machine-Learning-Based Confidence Estimation Framework. 

 
 

 
Figure 2.  Data Synchonization. Process 1 handles fetching data from 
VR/AR enginel, Process 2 handles data pre-processing, and Process 3 
handles data collection. Process 3 is shared while each type of data has  
exclusive Process 1 and Process 2. 

 
 



C. Confidence Estimation in Immersive Environment 
RNNs and their variants, such as LSTMs, are exceptional 

neural network architectures for modeling sequential data 
[22]. In this study, we adopt the basic structure of the LSTM 
network. More specifically, all the input data forms a feature 
embedding vector that is fed into a neural network with L 
LSTM layers, with each layer composed of K hidden units. 
Then, the intermediate outputs are passed through a fully 
connected (FC) layer, followed by a dropout layer with 0.5 
probability. The activation functions used for the LSTM and 
FC layers are the Hyperbolic Tangent (Tanh) and Rectified 
Linear Unit (ReLU), respectively. Then, the second FC (final) 
layer outputs the probability score generated by a Softmax 
activation function. Binary cross-entropy is used as the loss 
function since we are working on a binary classification 
problem, with the target label being either confident (Y=1) or 
not confident (Y=0). 

D. Adaptive Learning based on Confidence Estimation 
Once the LSTM model is trained, the confidence can be 

estimated while trainees are learning in the immersive 
environment in real-time. Therefore, the immersive learning 
system will be able to know not only whether the decisions 
made by the trainees are correct or not but also how confident 
they are about their decisions. Based on the estimated 
confidence, the training can be better customized to accelerate 
the learning progress [23]. 

By understanding the confidence of the user for a 
particular task or skill, the system could optimize the length 
of time needed for the associated task. For example, if the user 
has high confidence for a specific task or skill, that task could 
be sped up or potentially switched out for another task that the 
user has less confidence on. Conversely, if the user has low 
confidence for a specific task or skill, that task could be 
slowed down, repeated multiple times throughout a lesson, or 
be presented in alternative formats to optimize learning and 
increase user confidence. Confidence in the skills needed by 
professionals in Architecture, Engineering, and Construction 
is crucial as the building industry has a tremendous 
responsibility for the safety and lives of everyone who 
engages with a built structure. Additionally, when working 
with heavy and potentially dangerous machinery, including 
industrial robotics, confidence in the skills and tasks involving 

these technologies is crucial for the safety of the operator and 
those around them. 

IV. EXPERIMENT SETUP AND RESULTS 

A. Experiment Environment 
To validate the effectiveness of the proposed trainee 

confidence estimation framework, a multiple-choice   
question and answering assessment application and data 
collection protocol were implemented for the immersive 
environment. In this experiment, the immersive environment 
was created in Unity (version 2019.2.18) and the Magic Leap 
One Creator Edition with Magic Leap SDK (version 0.22.0). 
As shown in Figure 4, the immersive environment uses a flat 
UI plane for the experiment, which consists of a screen 
showing all of your options (A, B, C, D) on the left, and 
control buttons to navigate to the adjacent questions or submit 
the answer on the right. The questions and possible responses 
were loaded into the environment using a JSON file.  

Once the assessment was completed, the users were asked 
to take a survey and self-evaluate whether they were confident 
about their answers in the environment. After that, the users 
watched several learning videos which contain all of the 
answers to the questions in the assessment. In the end, a post-
learning assessment using the same questions was presented 
in the immersive environment, followed by another survey to 
self-evaluate their confidence level about their answers in the 
post-study assessment. 

B. Data Collection Protocol and CEIE Dataset 
To estimate the confidence in the context of multiple-

choice question answering, 10 participants were exposed to 
the experiment environment and answered 35 questions using 
the Magic Leap One Creator Headset in both pre- and post- 
learning sections. 

The raw data collected from the AR device include 
fixation data, pointer data, and assessment data. 

• Fixation Data: includes the normalized world 
position of eye gaze fixation, eye gaze confidence, 
and time stamps. 

• Pointer Data: includes the normalized world plane 
position of the pointer, whether the button is pressed, 
and time stamps. 

• Assessment Data: time-stamped data that is saved 
whenever a trainee answers a question or clicks any 
buttons in the assessment, along with the correct 
answers. 

 
Figure 4.  The UI Design for Multiple-Choice Question Answering. 

  
Figure 3.  The Overall Framework of Data Collection. 

 



Both fixation and pointer data are collected at the same time 
intervals as the assessment data are recorded, whenever a 
button is pressed and at the end of the assessment. 

After that, the world position of fixation data is converted 
to the gaze fixation relative to the flat plane where the 
assessment is being shown (as shown in Figure 4), along with 
data on which part of the assessment your eyes are focused on. 
The screenshots of the user interface are divided into 11 
regions, which include the question title, each of the 4 answer 
buttons on the left part of the screen, each of the 4 options in 
the center of the screen, a single area that covers the 3 buttons 
on the right part of the screen and the background. 
Furthermore, the part of the gaze is coded using one-hot 
encoding.  

Both types of data are standardized into the coordinates 
defined by the 700x500 resolution screen. The world position 
of pointer data is converted in the same manner as well. The 
length of time it takes a trainee to answer the questions is 
computed, based on the timestamps of the assessment data. 
Data is collected once the pre-learning assessment begins and 
is stopped once it ends. The data is collected again after the 
user has seen the learning materials and decides to start the 
post-learning assessment. Right after the pre- and post-
assessment, the trainee was asked to take a survey on whether 
they are confident about their answer to each question, 
respectively. 

Following this data collection protocol, data on 700 
questions (10 testers, two tests per tester, and 35 questions per 
test) were collected, which is called CEIE (Confidence 
Estimation in the Immersive Environment) dataset. We used 

8 trainees' samples for training and 2 trainees' data for testing. 
To avoid overfitting and improve the model performance, we 
augment the dataset by truncating each sample based on the 
shortest sequence length among all the questions. Those 
samples with shorter sequence lengths are padded with 0. 
Overall, we collected 23,857 samples. Table I summarizes the 
statistics of the training and test datasets. Please note that the 
augmentation procedure is performed on the test dataset in 
order to maintain consistency with the training dataset. During 
the testing phase, a majority vote is applied to the results of all 
truncated samples that belong to the same question to produce 
the reported question-level result.  

C. Model Training 
Based on the CEIE dataset, the proposed LSTM-based 

confidence estimation model for multiple-choice question 
assessment was implemented, as shown in Figure 5, where 
one LSTM layer with 30 hidden units were deployed, 
followed by two fully connected layers. The input embedding 
vector concatenates four groups of data: fixation data, pointer 
data, time spent, and screen region of the fixation. The fixation 
and the pointer data refer to the positions of the gaze and the 
pointer on the plane, the time spent data refers to the time 
taken to answer the question, and the screen region is the one-
hot-encoded part of the UI that the gaze focuses at. The model 
was trained using the Adam optimizer [24] and the learning 
rate was set to 0.001. 

D. Model Performance 
Table II illustrates the results of all possible combinations 

of the four data modalities. It can be noted that among models 
trained on single modality, the one that used time as the input 
produced the best score. This is not surprising because, in 
general, the longer a trainee spends on a question, the less 
confidence they have. Therefore, time spent is a crucial 
feature. There are no noticeable performance differences 
between models that only utilize one of the other three 
modalities. Generally speaking, models that used time spent 
as an input feature tended to have better performance than the 
ones that did not. Among all the models, the one that used both 
screenshot area and time spent features achieved the best 
performance with an accuracy of 85.60% and a 0.8584 F1 

TABLE I.  STATISTICS OF CEIE DATASET. 

Dataset Training Test 

Before 
Augmentation 

#Samples 461 127 

#Confident 253 50 
#Not 
Confident 208 77 

After 
Augmentation 

#Samples 20003 3854 

#Confident 8756 1117 
#Not 
Confident 11247 2737 

 

 
Figure 5.  Confidence Estimation Model for Multiple-Choice Question 
Assessment. 

 

TABLE II.  PERFORMANCE COMPARISON AMONG ALL 
COMBINATIONS OF FOUR INPUT MODALITIES  ON THE CEIE DATASET. F 

INCIDATES FIXATION FEATURE, P INDICATES POINTER FEATURE, T 
INDICATES TIME SPENT FEATURE, AND S INDICATES SCREEN AREA 

FEATURE. 

Modality Accuracy F1 Score 
F 0.6725 0.5411 
P 0.6657 0.5634 
T 0.7975 0.7979 
S 0.6729 0.5413 

F+T 0.8427 0.8459 
P+T 0.8108 0.8143 
S+T 0.8560 0.8584 
P+S 0.6704 0.5440 
F+S 0.6725 0.5411 
F+P 0.6661 0.6003 

 



score. The model which used fixation data and time spent 
features had slightly worse performance (84.27% accuracy 
value and 0.8459 F1 scores). The next best performer was the 
model that used fixation, screen area, and time spent features. 
It indicates that the combination of time event-based features 
and context-based features can significantly improve the 
performance of just using a single modality. All other models 
demonstrate marginal improvement or even inferior 
performance than the model which uses only the time spent 
feature. Therefore, using the time spent model can provide a 
suitable baseline upon which to base future development. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we introduced a general confidence 

estimation framework for immersive learning environments, 
which includes four main components: data collection, data 
synchronization, confidence estimation, and model training 
and inference. A prototype system was implemented in an AR 
environment with the Magic Leap headset for a multiple-
choice question assessment. The CEIE dataset was collected 
from 10 participants and an LSTM model using multi-
modality data as the input was trained to estimate the 
confidence. The model reached and accuracy of 85.6% and F1 
score of 0.8584 on the test dataset. 

The multiple-choice question assessment was relatively 
simple, and the current environment only implements a 2D 
plane for simplicity. In the future, the proposed confidence 
estimation framework will be evaluated for more complicated 
tasks in a 3D environment, with a much larger variance in the 
type of content shown. Also, additional types of biometric 
data will be explored to improve trainee confidence estimation 
performance. 
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