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Abstract—The damage caused by a natural disaster such
as a hurricane, not only impacts human lives but can also
be detrimental to the city’s infrastructure and potentially
cause the loss of historical buildings and essential records.
Delivering an effective response requires quick and precise
analyses concerning the impact of a disastrous event. With the
current technological developments to acquire massive volumes
of data and the recent advances in artificial intelligence and
machine learning, now more than ever, disaster information
integration and fusion have the potential to deliver enhanced
situational awareness tools for humanitarian assistance and
disaster relief efforts. Given the aerial images of a residential
building taken before and after a natural disaster, recent
applications of Convolutional Neural Networks (CNNs) work
well when differentiating two types of damage (i.e., whether the
structure is intact or destroyed) but underperform when trying
to differentiate more damage levels. According to our findings:
(1) including enough surrounding context provides essential
visual clues that help the model better predict the building’s
level of damage and (2) learning the correspondence between
the features extracted from pre- and post-imagery boosts the
performance compared to a simple concatenation. We propose
a two-stream CNN architecture that overcomes the difficulties
of classifying the buildings at four damage levels and evaluate
its performance on a curated, fully-labeled dataset assembled
from open sources.

Keywords-damage assessment; deep learning; convolutional
neural networks

I. INTRODUCTION

September 10, 2017 marks the date Hurricane Irma struck
the Florida Keys as a category four storm with the maximum
sustained wind speed of 132 mph and storm surge reaching
up to 8 feet [1]. The eye of the storm made landfall
over Cudjoe Key, and consequently, the Lower and Middle
Keys received the highest impact. The moment such a
catastrophic event strikes, quick and accurate situational
information is critical in delivering an effective response.
Emergency responders need to have complete situational
awareness, including location, cause, and severity of the
damage before they can act on an affected area. However,
disasters often cause disruptions to local communication
systems and transportation infrastructure, making the areas
in most needs inaccessible.

Remote sensing data, which is the data collected by a
high-flying aircraft or the satellite scanning of the earth,
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Figure 1. Samples of aerial photographs depicting the different levels of
damage caused by Hurricane Irma on the Florida Keys.

has become a crucial tool to survey the damage of the
affected regions with limited accesses rapidly. Current efforts
have started to rely on aerial photographs captured right
after the tragedy to assess the resulting damage and make
decisions [2]. However, the search and assessment of the
damage concerning specific regions become a laborious and
time-consuming job for emergency responders when large
areas get affected. Hence, there is a need for tools and
methods that can aid the rapid assessment of damaged homes
in these time-sensitive situations.

Machine learning and deep learning have shown tremen-
dous success in various research areas [3], [4], [5], [6].
Convolutional Neural Networks (CNNs) are renowned for
achieving state-of-the-art performance in image classifica-
tion. Given the current technological developments to ac-
quire massive volumes of data and the recent advances in
artificial intelligence and machine learning, now more than
ever, disaster information integration and fusion have the
potential to deliver enhanced situational awareness tools
for humanitarian assistance and disaster relief efforts [7],
[8]. We propose a model trained on pre- and post-disaster
satellite imagery. As a case study, we selected the event
of Hurricanes Irma and the damage it has inflicted on the
Florida Keys. Figure 1 shows a sample of the manually-
labeled dataset depicting residential buildings under four
varying levels of damage.

Our objective is to explore the optimum application of



CNNs to solve this real world problem. Thereupon, Sec-
tion II, reviews related studies that apply deep learning
methods and other statistical techniques to damage assess-
ment. Section III introduces our proposed approach, the
challenges, and how to overcome the challenges. Then,
Section IV describes the dataset selected as our case study
to demonstrate the effectiveness of our proposed work. In
Section V, the effectiveness of our proposed model is shown
through experimental results. Finally, Section VI concludes
the paper with some potential future work.

II. RELATED WORK

The technological advances in data collection and the
growing availability of high-quality data have enabled sub-
stantial research in the field of automated and rapid dam-
age assessment. Indeed some of our proposed techniques
were inspired and improved upon Fujita et al.’s research
previously published in 2017 [9]. The study proposed the
application of a two-stream CNN model to classify whether
a building survived or was washed away by a tsunami
that followed the wake of the Great East Japan earthquake
on March 11, 2011. Another source of inspiration and
information was the survey conducted after Hurricane Irma
by Xian et al. [10] assessing the damage of more than 1600
residential buildings in the Florida Keys. The study also
provided a statistical analysis that reveals distinct factors
potentially influencing the degree of damage in some of the
most affected regions.

Some of the most recent work includes Ci et al., which in-
troduced a new approach by combining CNNs for extracting
features and a new loss function known as ordinal regression
for optimizing classification results, aiming at assessing
the degree of building damage caused by the 2010 Yushu
earthquake and the 2014 Ludian earthquake [11]. Moreover,
in the Summer of 2019, the Defense Innovation Unit (DIU)
announced the xView2 Challenge [12] which aimed to
stimulate applied research with a focus on automating the
process of assessing building damage after a natural disaster.
DIU publicly released a high-quality and large-scale dataset
known as xBD, composed of satellite imagery annotated
with building localization and levels of damage before and
after natural disasters.

The previously introduced damage assessment studies
work well when classifying damaged buildings into two cat-
egories (i.e., intact or destroyed). The goal of our proposed
approach is to overcome the difficulties of classifying the
building at different damage levels and greatly boost the
performance of the model.

III. APPROACH

A two-stream CNN deep feature fusion network is de-
signed to take a pair of image patches as input and predict
the damage level of the building at the center of the patch.

The concept of two-stream architecture is not new in the con-
text of damage assessment from before and after images [9],
[11]. However, we demonstrate the improvements made by
our proposed work by first preprocessing the input data in
a unique way that reduces the uncertainty and increases the
performance of the model (Sec. III-A) and then applying a
new network configuration focusing on a fusion technique
more advanced than simply concatenating the deep features
from each stream (Sec. III-B).

A. Data Preprocessing

Bounding	box

Building
footprint
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Figure 2. The input patch preprocessing steps start with (a) the bounding
box surrounding the building’s footprint is extended to cover enough
surrounding area; (b) then the resized patch containing the building in the
center is cropped; and (c) finally, nearby buildings are occluded to avoid
confusing the model.

Our study finds that the surroundings of a building provide
critical contextual information and visual cues that can help
the model better predict the building’s level of damage.
However, when including too much of the surrounding area
increases the risk of confusing the model by inadvertently
feeding it image patches that contain multiple buildings of
different damage levels. As shown in Figure 2, after resizing
the bounding box to a size 80% larger than the footprint’s
geometric bounding box, and cropping the widened patch
containing the building in the center, the nearby buildings are
occluded by negating the pixels found inside the surrounding
buildings’ footprints. Hence, for each input pair, the model
will only focus on the building in the center, and the clues
found in the surrounding area will serve to help improve the
performance. This method is very effective in reducing the
uncertainty of the model.

B. Framework Configuration

Figure 3 demonstrates the proposed architecture with
both CNN streams following the ResNet50 architecture pre-
trained on ImageNet [13]. The last classification layer is
removed to fuse the outputs of the networks’ average pooling
layer and fine-tune the weights of the entire network. Both
networks are trained on their own unshared weights, giving
each of them the flexibility to learn specific features from
their individual input data stream. Training both streams on
unshared weights have shown to be much more effective
rather than sharing the weights [9], especially when there is
a significant gap between the time the images were taken
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Figure 3. Proposed two-stream CNN architecture

(as described in Sec. IV), causing the image’s appearance to
be distinct.

1) Deep Feature Fusion: Our goal is to fuse the features
generated by the two streams in a manner that allows
the overall model to learn the correspondence of the in-
puts from both networks [14]. Namely, a fusion function
f : xl

n,x
r
n, → yn fuses the feature pair at the

output of both models’ n-th layer given the feature maps
xl
n ∈ RH×W×D and xr

n ∈ RH′×W ′×D′
to produce the

output feature yn ∈ RH′′×W ′′×D′′
, where H , W , and

D constitute the height, width, and number of channels
of the corresponding feature map. In our approach, f is
applied as a late-fusion. The following assumptions are
made, H = H ′ = H ′′, W = W ′ = W ′′, D = D′ = D′′,
and the subscript n is dropped for simplicity purpose.

Concat Fusion. ycat = f cat(xl,xr) joins the feature
sequence along an existing axis. In our case, both features
are joined across their width:

ycat = concat{xli,j,d, xri,j,d},

where 1 ≤ i ≤ H , 1 ≤ j ≤ W , 1 ≤ d ≤ D and
y ∈ RH×2W×D. Concatenation is one of the most common
fusion techniques. This type of fusion often works well and
is simple to implement. However, this technique by itself
does not define a correspondence between the features.

Conv Fusion. yconv = f conv(xl,xr) first the two feature
maps are stacked at the same spatial location (i, j) across
channel d, namely:

ystack
i,j,2d = xli,j,d, ystack

i,j,2d−1 = xri,j,d,

where y ∈ RH×W×2D. The layers that follow define
the correspondence by learning the suitable filters when
convolving the stacked data defined as follows.

yconv = ystack ∗ f+ b,

where b ∈ RD′′′
is the term for bias and f ∈ R1×1×2D×D′′′

is a bank of filters. In our approach, the total number of
filters is set to D′′′ = 100. Thus, f is trained on the weighted
combinations of xl and xr at the same feature location.

IV. DATA

A. Aerial Photographs Taken Before and After Hurricane
Irma

1) Pre-disaster images: The Florida Keys are part of
Monroe County, which Geographic Information System
(GIS) department [15] makes available high-quality satellite
images throughout different years, with the latest three years
being 2012, 2015, and 2018. Thus, the data available for
the year 2015 was selected to serve as a reference for how
the building structure looked like before the catastrophic
event. Unlike the post-disaster images, the images provided
by Monroe County have a ground sample distance (GSD)
of 50 cm per pixel. They are also better orthorectified and
depict a more consistent level of illumination throughout the
region.

2) Post-disaster images: Right after the event of a natural
disaster, the National Oceanic and Atmospheric Adminis-
tration (NOAA)’s Remote Sensing Division often conducts
aerial photography missions using a Trimble Digital Sensor
System (DSS) from an altitude of 2,500 to 5,000 feet [2],
[16]. The images are captured using specialized cameras
aboard NOAA’s aircraft, then posted online for the public
to access [17]. The images captured right after Hurricane
Irma are high-quality, with each pixel representing a ground
sample distance (GSD) of 15 cm to 30 cm.

B. Building Footprints

Other than high-quality orthorectified natural images, the
Monroe County GIS department provides information on the
geometric references of various building footprints. These
geometries are then combined together with the geometries



of building footprints from OpenStreetMaps [18] to obtain
a more cohesive set.

C. Preliminary Damage Assessment

For Hurricane Irma, Monroe County released a prelimi-
nary damage assessment report [19]. Although the assess-
ment appears to be incomplete, only including references
for some of the majorly damaged and destroyed residen-
tial homes, it still provides a good reference on how to
get started with labeling the different types of damages.
The assessment from this survey was combined with the
information from Xian et al. [10] to create the dataset
summarized in Table I. The following lists the definition
of each classification label in accordance to FEMA’s official
guide to assess damage and impact [20].

Table I
THE STATISTICAL INFORMATION OF THE BUILDING DAMAGE DATASET.

No. Concepts # of Instances
1 No damage 17,482
2 Minor damage 2,633
3 Major damage 962
4 Destroyed 1,436

Total 22,513

• No damage: the structure exhibits no damage or min-
imal change, such as some missing shingles in the
building rooftop.

• Minor damage: it constitutes a wide range of damages
that do not necessarily affect the integrity of the struc-
ture.

• Major damage: the building sustained significant dam-
age to its structural elements and requires extensive
repairs.

• Destroyed: the structure is rendered a total loss, and
repair will not be feasible.

V. EXPERIMENTS AND ANALYSES

A. Experimental Setup

The fusion techniques introduced in Section III-B1
(i.e., concat fusion and conv fusion) are compared
with a scenario (called post only) where one pre-trained
ResNet50 model is trained on the images taken after the
disaster event. Our approach is evaluated on our fully-labeled
dataset depicting various damage levels resulting from Hur-
ricane Irma’s landfall on the Florida Keys. Our inputs are
also divided into two sets (1) crop center, the size of
the patch is only as large as the size of the bounding box
surrounding the building footprint, the information in the
patch will focus mostly on the building rooftop, and the final
patch sizes are 112× 112; and (2) extended patch, where
the bounding box is extended to cover enough surrounding
area as described in Sec. III-A, and the final patch sizes are
224× 224.

To overcome the highly-imbalanced nature of the Hurri-
cane Irma dataset (as depicted in Table I), data augmentation
is applied to enhance the training set. Data augmentation is
a common approach that serves to improve the performance
of the CNN models as well as its generalization capability
by applying random transformations to the input data. The
augmentation techniques which are randomly applied to our
dataset consist of horizontal and vertical flips, rotation, shear
transformations, and zooming. Moreover, given the limited
size of the dataset, 5-fold cross-validation is utilized to
evaluate our model and to prevent over-fitting. In each fold,
80% of the images are randomly selected for training and
the remaining 20% for testing. Each model configuration is
trained for a total of 80 epochs on each fold.

The Adam solver is employed to optimize our model
with an initial learning rate (η = 0.0001) that is small
enough to update the transferred weights slowly when fine-
tuning the model and to achieve a more optimal set of final
weights [21]. During training, the learning rate will drop to
10% of its current learning rate after there have been no
improvements to the testing loss for 10 epochs. Moreover,
the model is also trained using small batches of size 16. The
smaller batch sizes introduce noise to the training process,
leading to a regularizing effect that improves the model’s
generalization capability for a given computational cost [22].

B. Results and Discussion

Table II demonstrates the performance summary for
the class-specific F1-scores under the three configurations
previously described (Sec. V-A) as well as considering
the crop center and extended patch input scales. The
results report the average of five runs from the cross-
validation setup, with a standard deviation ranging from
σ = 9.6e−04 to σ = 3.8e−02. The experimental results
demonstrate the effectiveness of our proposed approach
which (1) extended patch, pre-processing the data by
extending the building patch to include enough surrounding
context while occluding surrounding buildings of potentially
different damage levels; and (2) conv fusion, applying an
advanced fusion technique by learning the correspondence
between two feature maps. The proposed approach consis-
tently achieves the best results throughout the four damage
categories.

Various aspects are emerged when analyzing the results.
First, the fusion of deep features from the pre-post image
pairs performs better than the post only configuration, even
though there is a significant gap of 2 years between the times
both images were captured. Other than the time difference,
there are also significant changes in angle, illumination, and
resolution. Moreover, because the imagery must be captured
in a timely manner after the event, it is common for the post-
disaster photos to have clouds present and sometimes present
blurriness. The performance improvements demonstrate the
need to include a reference of how the building looked



Table II
RESULTS SUMMARY OF EACH CLASS’S F1-SCORE AVERAGED FROM THE RESULTS OF 5-FOLD CROSS-VALIDATION

config crop center extended patch
no-dmg minor-dmg major-dmg destroyed no-dmg minor-dmg major-dmg destroyed

post
only 0.938 0.673 0.530 0.747 0.951 0.739 0.582 0.815

concat
fusion 0.956 0.745 0.587 0.819 0.969 0.819 0.701 0.875

conv
fusion 0.957 0.749 0.616 0.834 0.971 0.831 0.711 0.901

(a) (b) (c)

no	damage
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destroyed

Figure 4. t-SNE visualization of the feature layer right before the softmax layer for the first fold in cross-validation trained on the input data of the
extended patch for (a) post only; (b) concat fusion; and (c) conv fusion

like before possibly being affected by the event in order
to make a better assessment. Second, there is also a boost
in performance by extending the image patch to include the
building’s surroundings (i.e., extended patch) compared
to using the image patches by including mostly the rooftop
information (i.e., crop center).

The configuration concat only is a very common ap-
proach of fusing the features and performs well when
compared with the post only option. However, it is demon-
strated that by considering the correspondence between the
features, the model’s performance can be further improved.
Figure 4 shows the capability of each model configuration
to separate the four categories using t-Distributed Stochastic
Neighbor Embedding (t-SNE) [23] to visualize the features
from the layer right before the softmax classifier. t-SNE is
a powerful tool that is able to map high-dimensional data
into a lower dimension and has an insight into how the data
is arranged. While Figures 4(a) and 4(b) demonstrate some
overlaps between different damage levels, Figure 4(c) shows
a better separation of the classes.

Our proposed model obtains a weighted F1-score of 0.94,
calculated by first computing the F1-score for each damage
class, then finding their average weighted by the number
of true instances in each class, taking into consideration
the imbalanced nature of the data. Table III summarizes
the Precision, Recall, and F1-scores on a class-by-class
basis for the proposed approach. The model demonstrates
the weakest performance when classifying major damaged

Table III
PERFORMANCE MEASURES OF THE PROPOSED NETWORK

CONFIGURATION

Damage Type Precision Recall F1-Score
No Damage 0.96 0.98 0.97

Minor Damage 0.87 0.79 0.83
Major Damage 0.73 0.69 0.71

Destroyed 0.90 0.90 0.90

instances. This is due to the limited number of samples
available (as shown in Table I) and the overlaps between
major and minor damaged buildings.

VI. CONCLUSION

Due to the technological advances in artificial intelligence
and machine learning, now more than ever, disaster infor-
mation integration and fusion have the potential to deliver
enhanced situational awareness tools. In this study, CNNs
are explored to assess the damages of residential homes
by consolidating the aerial photographs taken before and
after a disaster and finding the correspondence between the
features of the image pair. The effectiveness of our model
is demonstrated using a curated dataset collected from open
data sources. As future directions for this work, we plan to
1) extend the problem to involve both the localization [24]
of the building and classification of the damage level,
and 2) integrate the image data with other remote sensing
information, such as Light Detection and Ranging (LIDAR),
to further improve the performance.
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