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Abstract—Social media and Web services have provided a
notable number of multimedia content. Due to such explosion
of multimedia data, the multimedia community has been
facing new challenges and exciting opportunities these days.
This paper presents a new multimedia framework to address
some of the main challenges in this area. In particular, it
presents a multi-label multimodal framework for imbalanced
data classification. For this purpose, it utilizes audio, visual, and
textual data modalities and automatically generates static and
temporal features using spatio-temporal deep neural networks.
It also manages data with non-uniform distributions using a
weighted multi-label classifier. To evaluate this framework, a
video dataset containing natural disasters is used for multi-
label classification. The supremacy of the proposed framework
compared to the existing work is revealed with extensive
experiments on this dataset.
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I. INTRODUCTION

With the advances and proliferation of social networks and
mobile technologies, the world has witnessed the explosion
of multimedia data. Multimedia data usually contains various
types of modalities such as image, audio, and text. These
data modalities are usually complementary, which can be
integrated to enhance the final decisions. However, many
existing studies only focus on one or two data modalities
due to the complexity and difficulty of multimodal data
collection, analysis, and fusion [1], [2].

In addition, many real-world data samples can be rep-
resented with multiple labels. For example, an image may
contain multiple objects or a video may contain various
events. In such cases, the data samples cannot be easily
categorized by a single class. Therefore, Multi-Label Clas-
sification (MLC) is a necessity to solve these problems.
In MLC, different from single-label classification, each
instance is assigned to multiple labels simultaneously. Due
to the high dimensionality of the data, the enormous number
of label combinations, and the complex correlation between
the labels, MLC is more challenging than a single-label
classification problem. Besides, for a multimedia dataset
containing multiple data types, it is essential to discover the
correlation between both labels and data modalities.

In recent years, deep learning has shown promising results
in various applications including image classification, lan-
guage translation, voice search, cancer detection, and finance
[3], [4], [5], [6]. Despite the great success of deep learning
in the processing of single data modalities, there are still a
few research studies focusing on multimodal deep learning
frameworks [7], [8]. This problem is mainly due to the lim-
ited available datasets that contain multiple data modalities
including text, audio, video, etc. For this purpose, we utilize
a new multimodal dataset for natural disaster information
management which is originally introduced in [8] and later
used in [2]. However, in this work, this dataset is further
modified to also serve for multi-label data classification.

Another important challenge in multimedia data is how
to handle the non-uniform distribution of the data [9]. This
problem (also known as imbalanced data) is common in
many real-world scenarios. Although it has been deeply
investigated for binary classification or even multi-class
classification [10], [11], very few studies can be found to
address this issue for MLC.

Considering all these challenges, in this paper, we present
a new framework for multi-label multimodal data clas-
sification using advanced deep neural networks. In addi-
tion, we consider the imbalanced data problem to further
enhance the detection performance for both minority and
majority classes. This framework is specifically evaluated
on a multimodal dataset designed for natural disaster in-
formation retrieval and management. However, it can be
easily extended for other multimodal multi-label datasets.
The contributions of this work include: (1) deep feature
extraction using spatio-temporal deep learning models for
each modality (text, audio, and image); (2) a new fusion
technique which considers the relation between both labels
and data modalities while considering the imbalanced data
problem; (3) a modified disaster-based video dataset which
is designed for multi-label multimodal video classification.

The remaining of this paper is organized as follows. In
Section II, the literature in the multi-label multimodal deep
learning and imbalanced data is briefly discussed. Section III
presents the proposed framework in details. Section IV
discusses the experimental results on the disaster dataset.



Finally, Section V provides conclusion and future work.

II. RELATED WORK

As mentioned earlier, MLC is more complex than binary
or multi-class classification problems. This is mainly due
to the generality of multi-label problems [12]. This issue
becomes more daunting when it combines with multimodal
data problem [1]. Popular MLC algorithms can be cate-
gorized into two groups: 1) problem transformation meth-
ods, and 2) algorithm adaption methods [13]. The former
transforms MLC into well-studied single-label problems.
The latter adapts the existing classifier to handle the MLC
problems directly. In this study, we adopt the Label Powerset
(LP) method [14]. LP transforms the existing multi-label
problem into a traditional single-label multi-class one by
treating each combination of the labels as a new class.
Therefore, LP preserves the correlation between different
labels.

Deep learning has brought unprecedented advances in
natural language processing, computer vision, and speech
processing [3], [4], [5]. In particular, multimodal deep learn-
ing is a new trend which has attracted an increasing interest
in recent few years [2], [8]. Suk et al [15] proposed a multi-
modal feature representation and fusion with deep learning
for Alzheimer disease diagnosis. Huang [16] presented a
multi-label conditional restricted Boltzmann machine to han-
dle multimodal data with missing modalities and fuse them
to obtain the shared representation between the modalities.
In a recent work [7], a Multi-modal Multi-instance Multi-
label (M3) framework is proposed for complex object clas-
sification. That work also used independent deep learning
models for each modality and imposed the consistency of
data modalities on bag-level prediction. Different from the
existing multi-label multimodal deep learning frameworks,
in this paper, we focus on three different modalities (image,
audio, and text), and also consider both spatial and temporal
information in these modalities.

Imbalanced data classification is another important chal-
lenge in multimedia research that has been widely studied in
multimedia data classification tasks such as fraud detection,
disease diagnosis, and interesting event detection [9], [10].
The general solutions include data resampling (e.g., over-
sampling or undersampling) [11] and cost-sensitive learn-
ing [17]. The former changes the data distribution in a way
to have similar numbers of samples in the minority and ma-
jority classes, while the latter penalizes the misclassification
of the minority classes more than the majority ones. In the
deep learning literature, the challenges of imbalanced data
classification have not been thoroughly investigated. Few
recent studies have focused on this problem by generating
synthetic data [18] or changing the loss function to improve
the detection performance of minority classes [19]. To the
best of our knowledge, this work is the first framework for
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Figure 1. The proposed multi-label multimodal deep learning framework.

multi-label multimodal imbalanced data classification using
deep neural networks.

III. THE PROPOSED MODEL

The proposed multi-label multimodal deep learning
framework is shown in Figure 1. The input of our framework
includes disaster videos which contain visual and audio clips
as well as text descriptions. For each data modality, we
extract static features using the state-of-the-art pre-trained
deep learning models. In the next step, temporal features
are extracted using the advanced Recurrent Neural Networks
(RNNs). Then, in the fusion module, we concatenate the
features from each modality and apply a Random Forest
feature selection to remove the irrelevant features. Finally,
the selected features are used as the input of the multi-
label multimodal weighted Support Vector Machine (SVM)
to generate the final classification results.

A. Static Feature Extraction Module

Static feature sets include visual, audio, and text features
as explained below.

Visual Feature Extraction: In a video classification,
visual data play an important role in detecting various
concepts. In this paper, following our previous work [2],
we used a well-known pre-trained deep learning model



called Inception-V3 [3] to extract the visual features from
video clips. To do so, each video is subsampled to a
fixed number of frames (40 frames in this case). Then, the
features are automatically extracted from each frame using
transfer learning. We used the last average pooling layer of
Inception-V3 for feature extraction.

Audio Feature Extraction: Similar to our previous
work [2], we utilized SoundNet [5] to extract the audio
features. SoundNet is a pre-trained deep learning model
that leverages the natural synchronization between audio and
visual data. It is originally trained on two-million unlabeled
videos by transferring the knowledge from vision to sound.
The SoundNet network includes a series of one-dimensional
convolutional networks followed by nonlinear activations
such as ReLU. In our framework, we used the last con-
volutional layer (conv7) for audio static feature extraction.

Textual Feature Extraction: In comparison to visual
and audio data, text data is capable of providing rich
information which precisely describes various situations. By
adding the knowledge learned by the textual model, the
multimodal framework could capture important semantic
information [4]. We extend our previous work by integrating
textual data into our fusion framework. The data is extracted
from the video description from all the videos used by the
original dataset [2]. Preprocessing is performed to clean
and format the textual data, which includes stop words and
punctuation removal and tokenization. Then, the textual data
is transformed into the vector space by using a pre-trained
word embedding model called GloVe [20]. GloVe first learns
a word co-occurrence counts matrix and generates the vector
space representation based on the co-occurrence of each pair
of words with a soft constraint:

γTi γj + bi + bj = log(Xij)

where Xij is the word pair i and j, γi and γj are the word
vectors for words i and j, bi and bj are the biases term for
words i and j. Then, the co-occurrence matrix is reduced
to generate the final word vector. The objective of the cost
function J is to penalize rare word pairs which carry less
information:

f(Xij) =

{
(
Xij

Xmax
)α if Xij < Xmax

1 otherwise

J =

V∑
i=1

V∑
j=1

f(Xij)(γ
T
i γj + bi + bj − logXij)

2

where V is the total number of words, f(x) is the weighting
function, Xmax is the cutoff threshold, and α is the tunable
parameter.

B. Temporal Feature Extraction Module

Video data includes a series of frames and there is valu-
able temporal information between the frames’ sequences.

This temporal information can be seen among the visual
and audio frames as well as the video textual data. After
we extract the static features, we extract the temporal
features from each modality using deep RNNs. Specifically,
we extend our previously proposed model called Residual-
Bidirectional Long short-term memory (ResBiLSTM) [21]
to extract the temporal features from not only the visual data
but also audio and text data. Different from conventional
RNNs, LSTM networks are capable of learning long-term
dependencies of sequences of data and reducing the issue of
vanishing or exploding gradients. However, one directional
LSTM only considers the previous information in a sequence
of data. This problem can be solved by Bidirectional LSTM
which looks at both former and subsequent information
using forward and backward paths. Finally, we used the
idea of residual connections, which is originally proposed
for enhancing the convolutional neural networks in image
classification [22]. We add the residual connection to each
LSTM layer to directly transfer the information from the up-
per layers and add them to the output of LSTM. This shortcut
path will help transfer the spatial information through the
temporal layers. The network parameters in ResBiLSTM are
updated as follows.

hl = σ(wlhl−1x+ bl) + hl−1

where σ is the non-linearity function, hl is the hidden
layer at layer l, x is the input, and wl and bl refer to the
weight and bias in this layer, respectively. As can be inferred
from the above equation, the output of the previous layer
(hl−1) is added to the non-linearity results to generate the
final output of the current layer (hl). In this study, we only
used two ResBiLSTM layers for each modality.

C. Fusion Module

The output from the ResBiLSTM network consists of
segments of temporal features that contain the relevant
information for various concepts. By incorporating the early
outputs from the temporal networks, the semantic correlation
from different modalities could be preserved and utilized.
The overall fusion model is illustrated in Algorithm 1. The
unimodal vector representation −→vi , −→ai

−→
ti from visual, audio,

and text models are concatenated to form a single vector
representation

−→
fi . Then, all the vectors

−→
fi are grouped and

formed the new dataset F based on the original ordering
of the instances. The new vector has 384 dimensions that
may cause various problems such as overfitting and slower
training time. Therefore, dimensional reduction and feature
selection techniques are applied. Random Forest (RF) is a
tree-based ensemble learning algorithm that constructs mul-
tiple decision trees through the training phase and produces
the final prediction score based on the majority vote of each
classifier [23]. We use F as the input of RF classifier and
calculate the mean decrease of Gini Impurity (GI) of each



feature. The GI is defined as:

GI =

|C|∑
j=1

P (j) ∗ (1− P (j))

where |C| is the size of the concepts, P (j) is the probability
of an input be classified as class j. While training, the total
decrease of Gini impurity for each feature is computed on
the decision tree level. Then, the impurity decrease from
each feature is averaged on the whole forest. Based on
the mean decrease of Gini impurity, feature ranking R is
generated. In real-world data, the distribution of the number
of instances for different concepts may be heavily skewed.
This imbalanced class problem could negatively impact the
performance of the classifier since most of the machine
learning models assume the classes’ distribution are uniform.
Thus, the cost function of SVM is modified to penalize the
misclassification of instances that belong to the minority
classes. The new cost function is defined as:

J =
1∑|C|
j δj

N∑
i

δj ·max(0, 1− yi(wTi · xi + bi))

where δj is the inverse frequency of the number of instances
containing class cj , |C| is the size of the concepts, N is the
total number of instances, yi is the label of ith instance,
xi is the input instance, wi and bi are the learned weight
and bias terms. The original multi-label ground truth L is
transformed into the single-label form L̂ using the label
powerset algorithm. The weighted SVM is trained with the
new ground truth label setup using the recursive feature
elimination approach. This approach recursively drops the
lowest ranked feature rk in all the instances from input F
based on the feature ranking R. During each iteration, the
prediction result will be recorded and compared with the
previous score. If the latest score is not improved then the
previous best result (S) will be returned.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset Description

The data used in this paper is based on the dataset
collected and used in our previous work [2]. The original
dataset contains 1,540 video and audio clips that are ex-
tracted from 419 Youtube videos related to 2017 hurricane
Harvey and Irma. We extend the original dataset by 1)
adding text (extracted from the video descriptions) as a new
modality, and 2) transforming the original single label prob-
lem into a multi-label problem. The statistics information of
the disaster dataset is shown in Table I.

B. Experimental setup

Different metrics are required to evaluate the performance
of MLC compared to those used in the single label classi-
fication. In the literature, several metrics have been adopted

Algorithm 1 The proposed fusion algorithm
Input: Audio feature A, Video feature V, text feature T and

ground truth label L
Output: Final prediction score S

1: F ← {}
2: for −→ai ∈ A,−→vi ∈ V,

−→
ti ∈ T do

3:
−→
fi ← concatenate(−→a i,−→v i,

−→
t i)

4: F ← F ∪
−→
fi

5: end for
6: R← RandomForest(F )
7: IF ← {}
8: L̂← LabelPowerSet(L)
9: for cj ∈ C, j = 1, 2, ..., |C| do

10: δj ← 1
|F∈cj |

11: IF ← IF ∪ δj
12: end for
13: for rk ∈ R, k = |R− 1|, |R− 2|, ..., 1 do
14: F ← F − rk
15: sk ←WeightedSVM(IF, F, L̂)
16: if sk < sk−1 then
17: S ← sk
18: return S
19: end if
20: S ← sk
21: end for
22: return S

Table I
THE STATISTICAL INFORMATION OF THE DISASTER DATASET

No. Concepts # of Instances P/N Ratio
1 Demo 150 0.047
2 Emergency Response 338 0.105
3 Flood/Storm 971 0.301
4 Human Relief 273 0.085
5 Damage 371 0.115
6 Victim 311 0.096
7 Speak/Briefing/Interview 811 0.251

Total 3,225

[24]. The evaluation metrics applied for our proposed frame-
work include Hamming Loss, micro-averaged F-measure
and mean average precision.

The Hamming Loss (HL) represents the proportion of the
misclassified labels to the total number of labels.

HL =
1

|N |

N∑
i=1

Yi ⊕Θi

|C|

where N is the total number of samples, |C| is the total
number of concepts, Yi is the ground truth label, Θi is the
prediction results, and ⊕ is the binary logical “exclusive or”
operator. Micro averaged F-measure (MicroF1) calculates
the micro-averaged F1-score of all classes by counting the
global True Positives (TP), False Negatives (FN) and False
Positives (FP) across all classes. Mean Average Precision



(MAP) calculates the average of the Average Precision (AP)
over all the instances.

The dataset is randomly split into 60% training, 20%
validation and 20% testing. In addition, we keep the dis-
tribution of classes almost similar between training, valida-
tion, and testing datasets. All model parameters are tuned
using the validation dataset. The total numbers of static
features for visual, audio, and text are 2048, 1024, and
1000, respectively. The temporal feature extraction model is
composed of two bidirectional residual LSTM layers with
10% dropout, one dense layer using the ReLu activation
function with 50% dropout and the final dense layer using
Sigmoid activation function. The binary cross entropy is
used as the cost function for the network training. For the
weighted SVM classifier in the fusion model, a linear kernel
is applied, a 0.9 penalty parameter for the error term is used
and the shrinking heuristic is enabled.

C. Experimental Results

To demonstrate the effectiveness of the proposed multi-
label multimodal deep learning framework, it is compared
with several baselines as follows. Single visual, audio, and
textual models including static features from Inception-V3,
SoundNet, and Glove, respectively, each combined with a
dense layer for classification. The second group of baselines
includes the combinations of two different modalities (e.g.,
visual+audio, visual+text, text+audio). We also compared
the proposed framework with two different fusion techniques
including early fusion and late fusion. In early fusion, the
static features are concatenated and then we apply LSTM to
generate the temporal features followed by dense layers to
generate the final scores. On the other hand, the late fusion
concatenates the temporal features from each modality and
apply the dense layers for classification.

Table II shows the detailed performance results of the
baselines and the proposed framework. It can be seen from
the table that the single text models perform better than the
visual and audio models. Specifically, text model achieves
0.78 and 0.69 micro F1 and MAP, respectively. The visual
model also achieves a reasonable performance which is
significantly higher than the audio model. These results
illustrate the importance of textual and visual data in event
detection and disaster information management applications.
In the next step, every two various modalities are combined
to generate the classification results. Surprisingly, the au-
dio+text model achieves the highest performance (micro F1
of 0.86) among all these three combinations. This is mainly
due to the fact that audio and text can complete each other
better than visual+audio or visual+text. For example, audio
can easily detect concepts “speak” and “flood”, but it cannot
perform well for “damage” or “human relief” concepts,
while text performs well in such concepts.

Finally, we used all the three modalities to further improve
the results. It can be inferred from the table that simply

Table II
PERFORMANCE EVALUATION RESULTS ON THE DISASTER DATASET

Approach Features Micro F1 HL MAP
Single modal visual 0.6767 0.1586 0.6015
Single modal audio 0.5022 0.2565 0.4197
Single modal text 0.7789 0.1187 0.6945
Two modalities visual+audio 0.6667 0.1652 0.5928
Two modalities visual+text 0.823 0.0969 0.7472
Two modalities text+audio 0.8586 0.078 0.7882
Three modalities
(early fusion)

visual+audio
+text 0.812 0.102 0.7351

Three modalities
(late fusion)

visual+audio
+text 0.9022 0.0575 0.8409

Proposed
framework

visual+audio
+text 0.9414 0.0348 0.8993

Figure 2. Performance comparison between the fusion models

concatenating the static features using early fusion cannot
improve the classification performance compared to the two
modalities models. This is mainly due to the different nature
of the feature sets that cannot be easily combined in the
early levels. However, if the features are fused in the final
levels (after applying the temporal module), we can achieve
a significant improvement in the final performance (e.g., 0.90
micro F1). Finally, we further improve the performance by
applying our proposed fusion technique which includes late
fusion followed by RF feature selection and a weighted SVM
for imbalanced data classification. As a result, we could beat
all the benchmarks. Specifically, the micro F1, HL, and MAP
reach 0.94, 0.03, and 0.90, respectively. In other words, the
F1 score is improved by 4% and MAP is improved by almost
6% compared to the best result (late fusion).

We further demonstrate the effectiveness of the proposed
framework in Figure 2, in which our framework is compared
with the other two fusion techniques (early and late fusions).
This figure visualizes the micro F1 results for each concept
in the disaster dataset. It can be observed from the figure
that the proposed framework beats early and late fusions in
all the concepts. For a few concepts such as “speak” and
“flood”, the late fusion’s performance is very close to the
ones from our method. However, in other concepts such
as “demo” and “emergency response”, there is a big gap
between our performance and other fusion techniques. As
shown in Table I, these concepts have lower P/N ratios



compared to “speak” and “flood”. Therefore, the proposed
framework can successfully enhance the performance of the
minority classes without scarifying the majority ones. In
summary, the proposed multi-label multimodal imbalanced
data classification framework achieves an outstanding per-
formance for a very challenging and complex dataset. The
best performance for this dataset was 0.715 micro F1 for a
single-label classification task that is reported in [2].

V. CONCLUSION

This paper presents a new multi-label multimodal frame-
work based on deep neural networks for imbalanced data
classification. The proposed framework includes static fea-
ture extraction for each modality using transfer learning,
temporal feature analysis using ResBiLSTM, and a new
fusion module which considers the correlation between
both data modalities and labels. The proposed framework
also handles the imbalanced data problem by automatically
assigning a weight to each class during the classification.
This framework is evaluated using a new dataset containing
natural disaster videos. It will be also extended in the future
to be trained end-to-end for all the modalities and also be
evaluated on several larger multimodal datasets.
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