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Abstract

Videos serve to convey complex semantic information
and ease the understanding of new knowledge. However,
when mixed semantic meanings from different modalities
(i.e., image, video, text) are involved, it is more difficult
for a computer model to detect and classify the concepts
(such as flood, storm, and animals). This paper presents a
multimodal deep learning framework to improve video con-
cept classification by leveraging recent advances in transfer
learning and sequential deep learning models. Long Short-
Term Memory (LSTM) Recurrent Neural Networks (RNN)
models are then used to obtain the sequential semantics for
both audio and textual models. The proposed framework is
applied to a disaster-related video dataset that includes not
only disaster scenes, but also the activities that took place
during the disaster event. The experimental results show the
effectiveness of the proposed framework.

1. Introduction

Vast amounts of multimodal data (image, video, and
text) are being generated on a daily basis by users through
personal devices and social networking services. Classify-
ing massive amounts of single-modal data is an ongoing re-
search field that has gained benefits from the advances in
computer vision, audio classification [1], text recognition
[13], and natural language processing [10]. However, as the
magnitude and capabilities of data generation and collection
grow exponentially, more reliable and cutting-edge classi-
fication methods are needed in order to reap the benefits
of the knowledge that can be attained, from not only each
single modality alone but also multiple modalities. Addi-
tionally, the new challenges that surface when trying to ac-
quire the useful information from multimodal data demand
improved techniques to obtain more accurate classification
results.

Each data modality has its own strengths and associated

deep learning approaches and techniques. For audio data,
models that are able to extract or predict natural sounds
are very scarce due to the focuses on speech recognition
and music classification. As for textual data, word embed-
ding models show significant improvements both as feature
learning and language modeling techniques by represent-
ing the similarity between words and meaning through their
closeness in the real-number vector space.

More recently, multimodal deep learning techniques [5]
have been introduced to enhance the performance of deep
models that focus solely on a single-modal data type. In this
paper, we propose a multimodal deep learning framework
that incorporates sequential information from audio and tex-
tual models, where different deep features are extracted
from each modality using the pre-trained Convolutional
Neural Network (CNN) models and word-to-vector tech-
nique. Subsequently, Long Short-Term Memory (LSTM)
neural networks are applied to leverage the sequential re-
lationships, particularly for text and audio data. We use
CNNs to build our fusion model to incorporate the classifi-
cation ranking scores produced by data from single modal-
ities. Finally, the proposed framework is applied to classify
the videos in a disaster-related video dataset as a certain
disaster-related concept (flood, storm, etc.).

The contributions of the proposed framework are as fol-
lows. a) A multimodal deep learning framework that incor-
porates sequential information from both audio and textual
models; b) For the audio model, an effective and efficient
deep learning model is utilized to extract the most discrim-
inative and high-level feature representations that we ex-
tend through a time distributed fully connected layer and
the subsequent LSTM layers. For the textual model, a pre-
trained word embedding layer is used with a stacked LSTM
model to generate the video-level concepts; and c) A novel
two-stage fusion technique is proposed based on the frame-
level image, audio, and video-level information by building
a CNN model. Most notably, the image model predictions
are incorporated into the audio model to adjust the classifi-
cation ranking scores based on the reliability of the different



Figure 1. The proposed framework

predicted sound classes.
The remainder of this paper is organized as follows. Sec-

tion 2 reviews the existing approaches for video classifica-
tion. A detailed description of each component in the over-
all framework is presented in Section 3. The evaluation re-
sults are shown in Section 4 and followed by the conclu-
sions in Section 5.

2. Related Work

The advances in multimedia research have sparked the
interests in improving the detection and classification from
data in closely related modalities. Video classification
has been positively impacted by the improvements in
the detection and classification of objects within images
[2][3][4][7][8][12]. In [6], CNNs, having the best advan-
tage in image classification tasks, are proposed to clas-
sify videos from a dataset comprised of over 480 sports
videos. In contrast to CNNs, Recurrent Neural Networks
(RNNs) show promising performance in handling and mod-
eling temporal and/or sequential behavior. Among the most
frequently used RNN models, the LSTM networks have
shown its promise in speech recognition, language model-
ing, and more generally, any classification or prediction task
where the problem has sequential or temporal traits.

The introduction of multimodal deep learning techniques
enables a significant improvement compared with using a
single modality alone. This motivates the researchers to
build deep networks that could learn, improve, and fuse
knowledge in order to achieve a higher prediction accuracy
when different modalities (image, audio, text, etc.) share
similar semantic concepts. Recently, a novel approach pro-
posed in [15] leverages the advantages of a hybrid frame-
work that learns features from both static data (images) and
optical flows. Multimodal deep learning approaches en-
compassing data modalities beyond image, audio, and video

are still very few. Since text data can be obtained as easily
as audio and video, it can also help to improve the accuracy
in deep learning frameworks. Global Vectors for Word Rep-
resentation (GloVe) [10] is a favorite technique that works
with word embedding and maps text words into a real vector
domain.

3. The Proposed Framework

Figure 1 illustrates the overall framework which includes
three deep learning models for the different data modalities
and a two-stage fusion model. The outputs from the cor-
responding deep learning models predict potential semantic
concepts by providing ranking scores. The scores (or prob-
abilities) are taken as the inputs by the fusion model, which
considers both frame-level and video-level concepts.

3.1. Preprocessing

Video key frame extraction is the first step in preprocess-
ing. Each key frame represents the idea of each video shot.
A shot boundary detection technique is applied to identify
the boundaries of each video shot automatically. Multiple
key frames will be kept for one video shot if the variations
between them are significant. We also reduce the duplica-
tion of similar key frames as well as blurred and noisy ones.
InceptionV3 [14], a pre-trained CNN model, is used to ex-
tract deep features from the key frames (images).

In order to use the labels (semantic concepts) of the key
frames (images) as the references to the audio model, we
first extract the full audio tracks from the raw videos with
a sampling frequency of 16000 Hz. The metadata of the
video and the frame numbers of the key frames are used to
calculate the starting and ending points of the audio clips.
Algorithm 1 shows the mechanism we used to slice the au-
dio clips from the full audio tracks, which also guarantees



Algorithm 1: Get audio clips from full audio tracks

1 begin
2 audio metadata←− initialize();
3 foreach track ∈ audio metadata do
4 track d←− load audio(track.vid);
5 fps←− get(video fps, track.vid);
6 ref time←− track.fid/fps;
7 if ref time− span < 0 then
8 save clip(track d, 0, duration, track);
9 return;

10 else
11 start←− ref time− span;
12 track length←− len(track data/1000);
13 if ref time+ span > track length then
14 last←− track length− ref time;
15 start←− ref time− (duration− last);
16 end←− track length;
17 save clip(track data, start, end, track);
18 return;
19 else
20 end←− ref time+ span;
21 save clip(track d, start, end, track);

that such clips are generated accurately in order to get sound
waves that really match with the visual concepts. The inputs
include a list of raw audios with the corresponding frames
per second (fps) rate (frame rate) for the associated videos.

The initialize() function in line 2 generates a key-value
paired dictionary audio metadata, where the keys represent
the video ID (vid) and the values represent the frame ID
(fid) for that specific video. The variable duration holds the
value in seconds of the desired audio clip. Additionally,
span holds the duration of each interval before and after the
specified key frame. Starting from line 3, the program loops
to process the entire dictionary. The first steps for every
audio track (track) consist of: a) loading the audio through
Pydub (line 4); b) getting the frame rate of the video (line 5);
and c) calculating the temporal reference for that specific fid
(line 6). The variable ref time contains the value in seconds
of the current key frame. Lines 7-9 handle key frames that
are close to the beginning of the audio track. Similarly, lines
13-18 handle case where the key frame is close to the end of
the audio track. This guarantees that all the audio clips have
a duration of exactly eight seconds. In line 14, the variable
last holds the value in seconds from the current key frame
being processed until the end of the audio track. We use this
value to determine how much we need in order to build an
eight-second audio clip. save clip is a helper function that
slices and saves the audio clip through Pydub [11].

SoundNet [1], a deep learning model trained on more
than 2 million unlabeled videos by using transfer learning

to classify audios is used in our deep feature extraction pro-
cess to extract audio features from the clips that we obtained
in the previous step. The deep features used as the inputs to
our audio model were extracted from the conv7 layer using
their 8 layer model, which show good capabilities to detect
high-level concepts, such as natural sounds (water streams,
underwater, etc.) and human-related sounds (speech, talk-
ing, cheering, etc.). The features form a matrix with size
TIME×DIM (5×1024), where TIME is the number of sam-
ples in the input audio clip and DIM represents the number
of filters that are applied to the conv7 layer.

3.2. Frame-based Model

Linear kernel Support Vector Machines (SVMs) are pop-
ularly used to replace the softmax layer as the prediction
layer of several deep learning models. As an advanced ver-
sion of SVMs, the Sequential Minimal Optimization (SMO)
algorithm speeds up the training process by avoiding matrix
computations and scaling the training set size for different
test problems. Our proposed framework uses an SMO clas-
sifier with linear kernel to process the deep features for the
key frames that we obtained through InceptionV3 and out-
puts the label prediction probabilities for each instance. We
use these probabilities as the input to the first stage of our
fusion model and at the same time, as a guide for the model
to take the scores from the audio model with an adjustable
reliability.

In order to overcome the limited capability of the exist-
ing audio models, which detect few concepts as compared
to the image models, we extended the SoundNet model to
detect natural sounds and other activities by considering the
sequential characteristics of the features. The audio model
presents a higher accuracy in comparison to using SMO as
the output layer on all the frame-level concepts.

The audio model aims to improve the performance of the
frame-level classification by adding the capability of detect-
ing scenes that are easily recognizable through sounds but
harder to recognize through vision. The audio model con-
sists of a fully connected Dense layer with 512 outputs,
wrapped in a TimeDistributed layer, and then the subse-
quent LSTM and output layers. The Dense layer on top
of an LSTM performs input compression before running
it through the subsequent RNNs. Based on the output we
generate from the audio features extraction step, the LSTM
model takes the input as 5 timestamps, with each one con-
taining 512 features. The LSTM model takes sequential
data to learn how the changes of features in a temporal man-
ner generate a better understanding of the audios in order to
classify different kinds of sounds. RMSprop optimizer is
used to compile the model with a customized learning rate
of 0.0001.



3.3. Video-based Text Model

To get the relationship between a video description and a
video concept, a text classification model that uses a pre-
trained word embedding layer with stacked LSTM is in-
troduced. We select the most frequent 5000 words from
the video descriptions and each word is then mapped into
a real-valued vector of length 200, which is generated by
using 400k words computed from a 2014 dump of the En-
glish version of Wikipedia. Since the sequence length (i.e.,
the number of words) in each video description varies, we
constrain each one to be of 1000 words, truncating long de-
scriptions and padding the shorter ones with zeros.

On top of the text model, the embedding layer uses word
vectors of length 200. The next layer is the LSTM layer
with 256 memory units (smart neurons). We add another
LSTM layer that receives the sequential output from the
previous layer in order to increase the depth of the model.
By using additional hidden layers to build a stacked LSTM
network, the model recombines the learned representation
from prior layers and creates new representations at higher
levels of abstraction. The model is designed to learn dif-
ferent patterns, such as people describing various semantic
concepts with the emotional changes. Adam optimizer is
used to compile the model with a customized learning rate
of 0.0001.

3.4. Two-stage Fusion Model

The fusion model has two stages. The first stage con-
cludes the frame-level concept predictions (for both image
and audio models) and outputs the probabilities for potential
video-level concepts. The latter one takes the textual model
outputs that predict the video concept directly and integrate
them with the results from the previous fusion stage to gen-
erate the final output.

Each single-modality has its own limitations. For exam-
ple, the image model has the advantages on detecting static
objects, but presents a limitation in scene detection which
requires temporal information. On the other hand, the audio
model has the advantages on detecting natural and human
sounds, but the complexities arise when trying to detect ac-
tivities that only produce few sounds or noise, such as near-
silent situations. Inspired by the strengths and advantages
of the different models, we propose a fusion algorithm that
considers both the reliability and limitation factors of each
modality for different cases. The purpose is to balance the
ranking scores which might dominate the potential concepts
in different situations.

Algorithm 2 depicts how the ranking scores of the audio
model are changed based on the predictions from the im-
age model before the fusion stage. For each key frame f
in video F , we examine the ranking scores and get the pre-

dicted labels from both visual and audio (A) models (L1 and
L0, respectively). The most unlikely concept to be detected,
which is identified by the lowest score among all concepts
C, is also saved in variable m. If the predicted labels match
with each other, the audio model prediction is trusted and a
dominating concept penalty factor is applied to the scores,
as shown in Equation (1). If a mismatched prediction is
detected, the scores from the audio model need to be deter-
mined, considering the limitations from both models. Bf,c
represents the balanced ranking score for the frame-based
concept c (c ∈ C) and the associated key frame f , where
L0 is the predicted concept from the audio model (Af,c) and
L1 is the predicted concept from the image model (If,c). | · |
represents the cardinality of the set.

Bf,c =



Af,β(c,L0)

Rank(c)
for L0 = L1

Af,c
Rank′(c)

for c = L0 6= L1

Af,c
|C|

otherwise

(1)

where β(c,L0) =

{
c c = L0

m otherwise

Rank(c) =

{
1 for c ∈ {OtherSounds}

ln(|R(c)|) otherwise
(2)

R(c) = {{c ∈ NaturalSounds} ∪ {c ∈ HumanSounds}},

Rank′(c) =|N ∪H| for c ∈ {N : NaturalSounds}
|H| for c ∈ {H: HumanSounds}
|O ∪H| for c ∈ {O: OtherSounds}.

(3)

β(c,L0) is an activation function which selects the con-
cept with either the highest or the lowest ranking score from
the audio model, depending on whether the concept is a
match or not. The function Rank(c) returns a penalty fac-
tor for the frame-level concepts that belong to either human
sounds or natural sounds (as shown in Equation (2)). Nat-
ural logarithm is used in the equation in order to guarantee
the return of a penalty factor by preventing the divisor in the
first case of Equation (1) from being equal to 1. Consider-
ing the capability of the audio model, no penalty factor will
be applied when there is a match for other sounds. Equation
(3) is the Rank′(c) function that returns a coefficient based
on the number of image concepts associated to the current
audio concept in case of a concept mismatch.

Based on our observations, the audio model can better
differentiate human and natural sounds from other sounds.
However, the ranking scores might be dominated by natural



sounds since they are frequently present as the background
sound in most of the disaster-related events and activities.
To remediate this imbalance scenario, the penalty factor for
different sound types will be the opposite of the accuracy
of the model. This way, natural sounds will always take the
biggest penalty factor compared to other sounds.

Algorithm 2: Frame-level audio rank balancing

1 for f ∈ F do
2 L0 ←− argmax

c∈C
Af,c;

3 L1 ←− argmax
c∈C

If,c;

4 m←− argmin
c∈C

Af,c;

5 for c ∈ C do
6 if L0 6= L1

⋂
c = L0 then

7 Af,c = min(Af,m, Bf,c)

8 else
9 Af,c = Bf,c

The grouped and balanced ranking scores from both im-
age and audio models are the inputs of the first stage of
the fusion model, with the first convolutional layer config-
ured with a stride of 2 and a kernel of size 10. The net-
work is trained using a RMSprop optimizer with the default
learning rate to preserve the sequential capabilities of the
data. During the second fusion stage, the text classification
model results will be integrated with the predicted conclu-
sions from the frame-level modalities. Since there are some
videos that do not provide text information, our proposed
framework also has the ability to deal with missing values
at this stage. If the text information for the related video ex-
ists, the prediction from the text model will be integrated
into the network. Otherwise, the results from the previ-
ous model’s outputs will be directly used. In this model,
two Dropout layers (with 0.7 and 0.4 dropout rates, respec-
tively) are added after the Flattened and Dense layers in or-
der to prevent overfitting. The network is also trained using
a RMSprop optimizer with default learning rate.

4. Experiments and Analysis

The experiments were conducted by using a dataset
which includes almost 400 Hurricane Harvey-related videos
with associated text information, namely video title and de-
scription, which we collected from YouTube in 2017. Ta-
ble 1 shows the frame-level, video-level concepts, and gen-
eral audio concepts (grouped and mapped to the frame-level
concepts). The dataset is split into training (80%) and test-
ing (20%) sets randomly on the condition of maintaining
the frame-level concepts within an approximately similar

Table 1. Image (frame-level), general audio,
and video-level concepts across different
modality datasets.

No. Image Concepts Video Concepts
1 Building Collapse Situation Reporting
2 Flood Emergency Response
3 Human Relief Human Relief
4 Damage Preparation
5 Speak/Interview Disaster Scene
6 Prepare Demonstration
7 Briefings Victim Situation
8 Demonstration Damage Situation
9 Emergency Response Volunteer Activity
10 Volunteer Activity
11 Storm
12 Road Debris Audio Concepts
13 Regular Surrounding Natural Sounds ( 2, 11)
14 Victim/Refugee Human Sounds ( 5, 7, 8)
15 Daily Necessaries Other Sounds
16 Animals ( 1, 3, 4, 6, 9, 10, 12-16)

distribution. At the same time, the key frames (images) and
audio clips that correspond to a video will only appear in
either the training or testing set.

The evaluation metrics used in our experiments of multi-
class classification are Accuracy (ACC.) and Label Ranking
Average Precision (LRAP) [9]. LRAP was originally used
in multi-label ranking problems, where the goal is to give
better ranks to the labels associated to each sample. In this
study, there is exactly one relevant label per sample, which
makes LRAP equivalent to the mean reciprocal rank. Let I
be the total number of instances and |C| be the total num-
ber of concepts. Formally, given a binary indicator matrix
of the ground truth labels y ∈ RI×|C| and the score associ-
ated with each label f̂ ∈ RI×|C|, the label ranking average
precision is defined as:

LRAP (y, f̂) =
1

I

I−1∑
i=0

∑
j:yij=1

|Lij |
rankij

(4)

with Lij =
{
k : yik = 1, f̂ik ≥ f̂ij

}
, rankij =∣∣∣{k : f̂ik ≥ f̂ij

}∣∣∣.
As shown in Table 2, the prediction using image features

alone achieves higher ACC. and LRAP compared to the
prediction using audio features. Through the LSTM audio
model, we show the strength of our sub-model compared
to the simple output layer (SMO) that does not consider se-
quential information. However, if we use our sequential fu-
sion model directly on the image and audio models’ outputs,



Table 2. Evaluation results

Methods ACC. LRAP # of
concepts

Frame-based audio
(SMO) 0.261 0.448 16

Frame-based audio
(LSTM Model) 0.283 0.470 16

Image Model 0.346 0.534 9
Audio+Image Fusion 0.345 0.525 9

Video-based text
(LSTM Model) 0.366 0.530 9

Proposed Framework 0.457 0.596 9

it shows how the contradiction of the predictions in differ-
ent modalities will degrade the results of the entire frame-
work, which leads to a decrease in accuracy. By applying
our proposed two-stage fusion model, the fusion results gain
strength from both image and audio models and reduce the
effects of contradicting predictions. The proposed frame-
work, through the fusion of predictions from three modali-
ties, improves the accuracy by more than 10%.

5. Conclusions

Multimodal deep learning has recently attracted a lot of
attention. This paper proposes a novel multimodal deep
learning framework that considers sequential information
from both audio and textual models. Furthermore, a two-
stage fusion technique is proposed that utilizes the frame-
level image, audio, and video-level information by build-
ing a CNN model. In our experiments, we demonstrate
how the proposed framework improves the accuracy from
single-modal models and illustrate the capability of fusion
strategies by taking into account the prediction contradic-
tions across modalities in order to balance the reliability for
different class predictions.
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